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Abstract

We present a simplex algorithm for linear programming in a linear classification
formulation. The paramount complexity parameter in linear classification prob-
lems is called the margin. We prove that for margin values of practical interest
our simplex variant performs a polylogarithmic number of pivot steps in the worst
case, and its overall running time is near linear. This is in contrast to general linear
programming, for which no sub-polynomial pivot rule is known.

1 Introduction

Linear programming is a fundamental mathematical model with numerous applications in both com-
binatorial and continuous optimization. The simplex algorithm for linear programming is a corner-
stone of operations research. Despite being one of the most useful algorithms ever designed, not
much is known about its theoretical properties.

As of today, it is unknown whether a variant of the simplex algorithm (defined by a pivot rule) exists
which makes it run in strongly polynomial time. Further, the simplex algorithm, being a geomet-
rical algorithm that is applied to polytopes defined by linear programs, relates to deep questions in
geometry. Perhaps the most famous of which is the “polynomial Hirsh conjecture”, that states that
the diameter of a polytope is polynomial in its dimension and the number of its facets.

In this paper we analyze a simplex-based algorithm which is guaranteed to run in worst-case poly-
nomial time for large class of practically-interesting linear programs that arise in machine learn-
ing, namely linear classification problems. Further, our simplex algorithm performs only a poly-
logarithmic number of pivot steps and overall near linear running time. The only previously known
poly-time simplex algorithm performs a polynomial number of pivot steps [KS06].

1.1 Related work

The simplex algorithm for linear programming was invented by Danzig [Dan51]. In the sixty years
that have passed, numerous attempts have been made to devise a polynomial time simplex algorithm.
Various authors have proved polynomial bounds on the number of pivot steps required by simplex
variants for inputs that are generated by various distributions, see e.g. [Meg86] as well as articles
referenced therein. However, worst case bounds have eluded researchers for many years.

A breakthrough in the theoretical analysis of the simplex algorithm was obtained by Spielman and
Teng [STO04], who have shown that its smoothed complexity is polynomial, i.e. that the expected
running time under a polynomially small perturbation of an arbitrary instance is polynomial. Kelner
and Spielman [KS06] have used similar techniques to provide for a worst-case polynomial time
simplex algorithm.
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In this paper we take another step at explaining the success of the simplex algorithm - we show that
for one of the most important and widely used classes of linear programs a simplex algorithm runs
in near linear time.

We note that more efficient algorithms for linear classification exist, e.g. the optimal algorithm of
[CHW10]. The purpose of this paper is to expand our understanding of the simplex method, rather
than obtain a more efficient algorithm for classification.

2 Preliminaries

2.1 Linear classification

Linear classification is a fundamental primitive of machine learning, and is ubiquitous in applica-
tions. Formally, we are given a set of vectors-labels pairs {A;, y;|i € [n]}, such that A; € R4, y; €
{—1, +1} has /5 (Euclidean) norm at most one. The goal is to find a hyperplane x € R that parti-
tions the vectors into two disjoint subsets according to their sign, i.e. sign(A;x) = y;. W.Lo.g we
can assume that all labels are positive by negating the corresponding vectors of negative labels, i.e.
Viys = 1.

Linear classification can be written as a linear program as follows:

findx € R? s.t. Vi € [n] (A,x) >0 (1)

The original linear classification problem is then separable, i.e. there exists a separating hyperplane,
if and only if the above linear program has a feasible solution. Further, any linear program in stan-
dard form can be written in linear classification form (1) by elementary manipulations and addition
of a single variable (see [DV08] for more details).

Henceforth we refer to a linear program in format (1) by its coefficient matrix A. All vectors are
column vectors, and we denote inner products by (x,y). A parameter of paramount importance to
linear classification is the margin, defined as follows

Definition 1. The margin of a linear program in format (1), such that ¥;||A;|| < 1, is defined as
A= A(A) = max min(A;, x)

lIxl|<1i€[n]

We say that the instance A is a \-margin LP.

Notice that we have restricted x as well as the rows of A to have bounded norm, since otherwise the
margin is ill-defined as it can change by scaling of x. Intuitively, the larger the margin, the easier
the linear program is to solve.

While any linear program can be converted to an equivalent one in form (1), the margin can be ex-
ponentially small in the representation. However, in practical applications the margin is usually a
constant independent of the problem dimensions; a justification is given next. Therefore we hence-
forth treat the margin as a separate parameter of the linear program, and devise efficient algorithms
for solving it when the margin is a constant independent of the problem dimensions.

Support vector machines - why is the margin large ? In real-world problems the data is seldom
separable. This is due to many reasons, most prominently noise and modeling errors.

Hence practitioners settle for approximate linear classifiers. Finding a linear classifier that mini-
mizes the number of classification errors is NP-hard, and inapproximable [FGKPO06]. The relaxation
of choice is to minimize the sum of errors, called “soft-margin SVM” (Support Vector Machine)
[CV95], and is one of the most widely used algorithms in machine learning. Formally, a soft-margin
SVM instance is given by the following mathematical program:

min Z &

Vi€ [n] yi((x,A;) +b) +& >0
x| <1
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The norm constraint on x is usually taken to be the Euclidean norm, but other norms are also com-
mon such as the /1 or £, constraints that give rise to linear programs.

In this paper we discuss the separable case (formulation (1)) alone. The non-separable case turns out
to be much easier when we allow an additive loss of a small constant to the margin. We elaborate
on this point in Section 6.1. We will restrict our attention only to the case where the bounding norm
of x is the ¢ norm as it is the most common case.

2.2 Linear Programming and Smoothed analysis

Smoothed analysis was introduced in [ST04] to explain the excellent performance of the simplex
algorithm in practice. A o-smooth LP is an LP where each coefficient is perturbed by a Gaussian

noise of variance o2.

In their seminal paper, Spielman and Teng proved the existence of a simplex algorithm that solves
o-smooth LP in polynomial time (polynomial also in ¢~1). Consequently, Vershynin [Ver09] pre-
sented a simpler algorithm and significantly improved the running time. In the next sections we will
compare our results to the mentioned papers and point out a crucial lemma used in both papers that
will also be used here.

2.3 Statement of our results

For a separable SVM instance of n variables in a space of d dimensions and margin A\, we provide
a simplex algorithm with at most poly(log(n), A\~!) many pivot steps. Our statement is given for
the ¢5-SVM case, that is the case where the vector w (see Definition 1) has a bounded /5 norm.
The algorithm achieves a solution with margin O(4/log(n)/d) when viewed as a separator in the d
dimensional space. However, in an alternative yet (practically) equivalent view, the margin of the
solution is in fact arbitrarily close to A.

Theorem 1. Let L be a separable {5-SVM instance of dimension d with n examples and margin .
Assume that A > c1+/logn/d where ¢y is some sufficiently large universal constant. Let 0 < &€ < A

be a parameter. The simplex algorithm presented in this paper requires O(nd) preprocessing time
and poly(e ', log(n)) pivot steps. The algorithm outputs a subspace V. C R? of dimension k =
©(log(n)/e?) and a hyperplane within it. The margin of the solution when viewed as a hyperplane

inR%is O(/log(n)/d). When projecting the data points onto V, the margin of the solution is \—e.

In words, the above theorem states that when viewed as a classification problem the obtained margin
is almost optimal. We note that when classifying a new point one does not have to project it to the
subspace V/, but rather assign a sign according to the classifying hyperplane in R

Tightness of the Generalization Bound In first sight it seems that our result gives a week gener-
alization bound since the margin obtained in the original dimension is low. However, the margin of
the found solution in the reduced dimension (i.e., within V') is almost optimal (i.e. A\ — € where A is
the optimal margin). It follows that the generalization bound essentially the same one obtained by
an exact solution.

LP perspective and the smoothed analysis framework As mentioned earlier, any linear program
can be viewed as a classification LP by introducing a single new variable. Furthermore, any solution
with a positive margin translates into an optimal solution to the original LP. Our algorithm solves
the classification LP in a sub-optimal manner in the sense that it does not find a separator with an
optimal margin. However, in the perspective of a general LP solver!, the solution is optimal as any
positive margin suffices. It stands to reason that in many practical settings the margin of the solution
is constant or polylogarithmically small at worst. In such cases, our simplex algorithm solves the LP
by using at most a polylogarithmic number of pivot steps. We further mention that without the large
margin assumption, in the smoothed analysis framework it is known ([BD02], Lemma 6.2) that the
margin is w.h.p. polynomially bounded by the parameters. Hence, our algorithm runs in polynomial
time in the smoothed analysis framework as well.

!'The statement is true only for feasibility LPs. However, any LP can be transformed into a feasibility LP by
performing a binary search for its solution value.



3 Our Techniques

The process involves five preliminary steps. Reducing the dimension, adding artificial constraints
to bound the norm of the solution, perturbing the low dimensional LP, finding a feasible point and
shifting the polytope. The process of reducing the dimension is standard. We use the Johnson and
Lindenstrauss Lemma [JL84] to reduce the dimension of the data points from d to k = O(log(n)/e?)
where ¢ is an error parameter that can be considered as a constant. This step reduces the time
complexity by reducing both the number and running time of the pivot steps. In order to bound
the ¢ norm of the original vector, we bound the /., norm of the low dimensional vector. This will
eventually result in a multiplicative loss of 4/log(k) to the margin. We note that we could have
avoided this loss by bounding the ¢; norm of the vector at the cost of a more technically involved
proof. Specifically, one should bound the #; norm of the embedding of the vector into a space where
the /1 and ¢5 norms behave similarly, up to a multiplicative distortion of 14+¢. Such an embedding of
% in ¢ exists for K = O(k/e?) [Ind00]. Another side effect is a larger constant in the polynomial
dependence of ¢ in the running time.

The perturbation step involves adding a random Gaussian noise vector to the matrix of constraints,
where the amplitude of each row is determined by the norm of the corresponding constraint vector.
This step ensures the bound on the number of pivot step performed by the simplex algorithm. In
order to find a feasible point we exploit the fact that when the margin is allowed to be negative, there
is always a feasible solution. We prove for a fixed set of constraints, one of which is a negative lower
bound on the margin, that the corresponding point v is not only feasible but is the unique optimal
solution for fixed direction. The direction is independent of the added noise, which is a necessary
property when bounding the number of pivot steps.

Our final step is a shift of the polytope. Since we use the shadow vertex pivot rule we must have
an LP instance for which O is an interior point of the polytope. This property is not held for our
polytope as the LP contains inequalities of the form (a,x) > 0. However, we prove that both 0
and v are feasible solution to the LP that do not share a common facet. Hence, their average is
an interior point of the polytope and a shift by —v/2 would ensure that O is an interior point as
required.

Once the preprocessing is done we solve the LP via the shadow vertex method which is guaranteed
to finish after a polylogarithmic number of pivot steps. Given a sufficiently small additive noise and
sufficiently large target dimension we are guaranteed that the obtained solution is an almost optimal
solution to the unperturbed low dimensional problem and a O(+/k/d) approximation to the higher
dimensional problem.

4 Tool Set

4.1 Dimension reduction

The Johnson-Lindenstrauss Lemma [JL84] asserts that one can project vectors onto a lower dimen-
sional space and roughly preserve their norms, pairwise distances and inner products. The following
is an immediate consequence of Theorem 2.1 and Lemma 2.2 of [DGO03].

Theorem 2. Let € 0 and let k,d be integers where d > k > 9/e2. Consider a linear projection
M : R* — RF onto a uniformly chosen subspace®. For any pair of fixed vector u,v € R? where
[[ull, IvIl <1, it holds that

Pr HHuH2 — ||Mu||2’ > 5} < exp(—k52/9)
Pr[|(u,v) — (Mu, Mv)| > 3¢] < 3exp(—ke?/9)
4.2 The number of vertices in the shadow of a perturbed polytope
A key lemma in the papers of [ST04, Ver09] is a bound on the expected number of vertices in the

projection of a perturbed polytope onto a plane. The following geometric theorem is will be used in
our paper:

2 Alternatively, M can be viewed as the composition of a random rotation U followed by taking the first &
coordinates



Theorem 3 ([Ver09] Theorem 6.2). Let A1, ..., A, be independent Gaussian vectors in R¢ with
centers of norm at most 1, and whose varaince satisfies:

9 1

L —
7 = 36dlogn

Let E be a fixed plane in RY. Then the random polytope P = conv(0, A1, ..., A,,) satisfies
E[|edges(P N E)|] = O(d*c~%)

4.3 The shadow vertex method

The shadow vertex method is a pivot rule used to solve LPs. In order to apply it, the polytope of the
LP must have 0 as an interior point. Algebraically, all the inequalities must be of the form (a, x) <1
(or alternatively (a,x) < b where b > 0). The input consists of a feasible point v in the polytope
and a direction u in which it is farthest, compared to all other feasible points. In a nutshell, the
method involves gradually turning the vector u towards the direction of the target direction c, while
traversing through the optimal solutions to the temporary direction at every stage. For more on the
shadow vertex method we refer the reader to [ST04], Section 3.2

The manner in which Theorem 3 is used, both in the above mentioned papers and the current one, is
the following. Consider an LP of the form

max CTX

Vi € [n} <Ai,X> S 1

When solving the LP via the shadow vertex method, the number of pivot steps is upper bounded by
the number of edges in P N E where P = conv(0, A4, ..., A,) and E is the plane spanned by the
target direction c and the initial direction u obtained in the phase-1 step.

5 Algorithm and Analysis

Our simplex variant is defined in Algorithm 1 below. It is composed of projecting the polytope
onto a lower dimension, adding noise, finding an initial vertex (Phase 1), shifting and applying the
shadow vertex simplex algorithm [GS55].

Theorem 4. Algorithm 1 performs an expected number of O(poly(logn, 1)) pivot steps. Over

instance A with \-margin it returns, with probability at least 1 — O(% + %) a feasible solution X

A\/E)
Vdlogk/:

with margin (

Note that the algorithm requires knowledge of A. This can be overcome with a simple binary search.
To prove Theorem 4, we first prove several auxilary lemmas. Due to space restrictions, some of the
proofs are replaced with a brief sketch.

Lemma 5. With probability at least 1 — 1/k there exists a feasible solution to LPyounded, denoted

(%, 7) that satisfies T > X — € and ||X||oo < 5\/13%%%.

Proof Sketch. Since A has margin ), there exists x* € R? such that Vi . (A;, x*) > \and ||x* || =
1. We use Theorem 2 to show that the projection of 2* has, w.h.p., both a large margin and a small
{~ norm.

O

Denote the k£ + 1 dimensional noise vectors that were added in step 3 by erry,...,err,or. The
following lemma will provide some basic facts that occur w.h.p. for the noise vectors. The proof
is an easy consequence of the 2-stability of Gaussians, and standard tail bounds of the Chi-Squared
distribution and is thus omitted.

Lemma 6. Lef erry, ..., err, o be defined as above:

err;||2 < O(o+/klog(n)) < 201/%

1. wp. atleast 1 — 1/n, Vi,



Algorithm 1 large margin simplex

1: Input: a A-margin LP instance A.

. A o 916%log(n/e) 2 1
2: Lete =4,k = =2 » 0" = T00klogklogn"

3: (step 1: dimension reduction) Generate M € R¥*¢, a projection onto a random k-dimensional
subspace. Let A € R™*(*+1) e given by A; = (\/%MA“ -1)

4: (step 2: bounding ||x||) Add the k constraints (e;, x) > —%vicak log , the k constraints (—e;, x) >
—L\l;kgk, and one additional constraint 7 > —8 log(k:). Denote the coefficient vectors

Api, .., An+2 1 and AO correspondingly. We obtain the following LP denoted by L Py, ounded,
max (eg+1, (X,7)) 3)

Vie[0,...,n+ 2k . <Ai,(x,7')> > b

5: (step 3: adding noise) Add a rapdom independently distribAuted Gaussian noise to every entry of
every constraint vector except A according to (0, o2:||A;||3). Denote the resulting constraint
vectors as A ;. Denote the resulting LP by L P, ise-

6: (step 4: phase-1): Let v € RF*! be the vertex for which inequalities 0,n + k + 1,...,n + 2k
are held as equalities. Define uy € R**! as ug 2 (1,...,1,-1).

7: (step 5: shifting the polytope) For all ¢ € [0,...,n + 2k|, change the value of b; to bi £
b; + <Ai,v0/2>.

8: (step 6 - shadow vertex simplex): Let £ = span(ug,er+1). Apply the shadow ver-
tex 31mplex algonthm on the polygon which is the projection of conv{V}, where V =

{0, Ao/bo7 Al/bl, . An+2k/bn+2k} onto E. Let the solution be X.
9: return - where X = M (X + vo/2)

2. Fixsome I C [n+ 2k| of size |I| = k and define By be the (k + 1) x (k + 1) matrix whose
first k columns consist of {err; };cr and k + 1 column is the O vector. W.p. at least 1 —1/n
it holds that the top singular value of By is at most 1/2 Furthermore, w.p. at least1—1/n
the 2-norms of the rows of B are upper bounded by 1 \/7

Lemma 7. Let A, A, x € R* be as above. Then with probability at least 1 — O(1/k):
1. for T = X\ — 2¢, the point (X, 7) € R¥*1 is a feasible solution of LP,;sc.

2. forevery x € R*, 7 € R where (x,T) is a feasible solution of the LP, ;s it holds that

L S e e &

Proof of this Lemma is deferred to the full version of this paper.

Lemma 8. with probability 1 —O(1/k), the vector vy is a basic feasible solution (vertex) of L Pgise

proof sketch. The vector vy is a basic solution as it is defined by k + 1 equalities. To prove that is
feasible we exploit the fact that the last entry corresponding to 7 is sufficiently small and that all of
the constraints are of the form (a, z) > 7. O

The next lemma provides us with a direction uy for which vy is the unique optimal solution w.r.t to
the objective maxxep (ug, X), where P is the polytope of L P;ise- The vector ug is independent of
the added noise. This is crucial for the following steps.

Lemma 9. Lerug = (1,...,1,—1). With probability at least 1 — O(1/n), the point vy is the
optimal solution w.r.t to the objective maxxcp (Ug, X), where P is the polytope of LP,ise.



Proof Sketch. The set of points u in which vy is the optimal solution is defined by a (blunt) cone
{3, va;| Vi, o; > 0}, where a; = —A,,y4; fori € [k], ar41 = —Ap. Consider the cone
corresponding to the constraints A; ug resides in its interior, far away from its boarders. Specifically,

ug = Zf_l( An+kﬂ) (- Ao) Since the difference between A; and A; is small w.h. p., we get

that ug resides, w.h.p., in the cone of points in which vy is optimal, as required. O

Lemma 10. The point v(/2 is a feasible interior point of the polytope with probability at least

—O(1/n).

Proof. By Lemma 9, vy is a feasible point. Also, according to its definition it is clear that w.p 1, it
lies on k + 1 facets of the polytope, neither of which contains the point 0. In other words, no facet
contains both vy and 0. Since O is clearly a feasible point of the polytope, we get that v /2 is a
feasible interior point as claimed. O

Proof of Theorem 4. We first note that in order to use the shadow vertex method, 0 must be an
interior point of the polytope. This does not happen in the original polytope, hence the shift of step
5. Indeed according to Lemma 10, v(/2 is an interior point of the polytope, and by shifting it to 0,
the shadow vertex method can indeed be implemented.

We will assume that the statements of the auxiliary lemmas are held. This happens with probability
at least 1 — O(% + %) which is the stated success probability of the algorithm. By Lemma 7,
L P, ise has a basic feasible solution with 7 > X\ — 2¢. The vertex v, along with the direction ug
which it optimizes, is a feasible starting vector for the shadow vertex simplex algorithm on the plane
E, and hence applying the simplex algorithm with the shadow vertex pivot rule will return a basic

feasible solution in dimension k + 1, denoted (X, 7'), for which Vi € [n] . <AZ, (x, 7' )> > 0 and
7/ > X\ — 2e. Using Lemma 7 part two, we have that for all i € [n],

<AZ—, (%, T’)> > <Ai, (i,T’)> - ‘/1&’? > e = (MA,R) > A 3e. @)

Since X = /d/kMTx%, we get that for all i € [n], (A;,X) = \/d/kA] M x = (f(A;),%) >
A — 3¢ and this provides a solution to the original LP.

To compute the margin of this solution, note that the rows of M consist of an orthonormal set.

x|z = |[|X]]2 < 7+/log(k) meaning that ||X||2 < 7+/log(k)d/k. Tt

follows that the margin of the solution is at least > (A — 3¢) - Vk/(7+/log(k)d)

Running time: The number of steps in this simplex step is bounded by the number of vertices in
the polygon which is the projection of the polytope of L P, eise onto the plane F = span{ug, vr}.
Let V = {A}""2*_ Since all of the points in ) are perturbed, the number of vertices in the polygon
conv(V) N E is bounded w.h.p. as in Theorem 3 by O(k*s—*) = O(log''(n)/\'*). Since the
points 0, Ay reside in the plane F, the the number of vertices of (conv(V U {0,Ag})) N E is at
most the number of vertices in conv()) N E plus 4, which is asymptotically the same. Each pivot
step in the shadow vertex simplex method can be implemented to run in time O(nk) = O(n/\')
for n constraints in dimension k. The dimension reduction step required O(nd) time. All other
operations including adding noise and shifting the polytope are faster than the shadow vertex simplex

procedure, leading to an overall running time of O(nd) (assuming A is a constant or sub polynomial
in d).

proof of Theorem 1. The statement regarding the margin of the solution, viewed as a point in R is
immediate from Theorem 4. To prove the claim regarding the view in the low dimensional space,
consider Equation 4 in the above proof. Put in words, it states the following: Consider the projec-
tion M of the algorithm (or alternatively its image V') and the classification problem of the points
projected onto V. The margin of the solution produced by the algorithm (i.e., of X) is at least A — 3¢.
The {.-norm x of is clearly bounded by O(+/log(k)/k). Hence, the margin of the normalized point

x/|I%x||2 is 2(A/+/log(k)). In order to achieve a margin of A — O(e), one should replace the £
bound in the LP with an approximate /> bound. This can be done via linear constraints by bounding



the ¢; norm of Fix where F' : R¥ — RX, K = O(k/c?) and F has the property that for every

k| IFl
z € R% | T,

This step would eliminate the need for the extra 4/log(k) factor. The other multiplicative constants
can be reduced to 1 + O(e), thus ensuring the norm of X is at most 1+ O(¢), by assigning a slightly
smaller value for o; specifically, o /¢ would do. Once the 2-norm of X is bounded by 1 + O(e), the
margin of the normalized point is A — O(¢).

- 1‘ < €. A properly scaled matrix of i.i.d. Gaussians has this property [Ind00].

6 Discussion

The simplex algorithm for linear programming is a cornerstone of operations research whose com-
putational complexity remains elusive despite decades of research. In this paper we examine the
simplex algorithm in the lens of machine learning, and in particular via linear classification, which
is equivalent to linear programming. We show that in the cases where the margin parameter is large,
say a small constant, we can construct a simplex algorithm whose worst case complexity is (quasi)
linear. Indeed in many practical problems the margin parameter is a constant unrelated to the other
parameters. For example, in cases where a constant inherent noise exists, the margin must be large
otherwise the problem is simply unsolvable.

6.1 soft margin SVM

In the setting of this paper, the case of soft margin SVM turns out to be algorithmically easier to
solve than the separable case. In a nutshell, the main hardship in the separable case is that a large
number of data points may be problematic. This is since the separating hyperplane must separate
all of the points and not most of them, meaning that every one of the data points must be taken in
consideration. A more formal statement is the following. In our setting we have three parameters.
The number of points 7, the dimension d and the ‘sub optimality’ €. In the soft margin (e.g. hinge
loss) case, the number of points may be reduced to poly(¢~1) by elementary methods. Specifically,
it is in easy task to prove that if we omit all but a random subset of log(¢~!)/e? data points, the
hinge loss corresponding to the obtained separator w.r.t the full set of points will be O(e). In fact,
it suffices to solve the problem with the reduced number of points, up to an additive loss of ¢ to the
margin to obtain the same result. As a consequence of the reduced number of points, the dimension
can be reduced, analogously to the separable case to d’ = O(log(e 1) /e?).

The above essentially states that the original problem can be reduced, by performing a single pass
over the input (perhaps even less than that), to one where all the only parameter is €. From this
point, the only challenge is to solve the resulting LP, up to an ¢ additive loss to the optimum, in time
polynomial to its size. There are many methods available for this problem.

To conclude, the soft margin SVM problem is much easier than the separable case hence we do not
analyze it in this paper.
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