
Appendix A. MED in details

A.1 General MED for multi-way classification

Let x ∈ RK be an input feature vector. We consider general multi-way classification, where the
response variable y takes value from a finite set {1, · · · , L}. Let F (y,x;η) be the discriminant
function parameterized by η. MED learns a distribution q(η) by solving an entropic regularized risk
minimization problem under prior p0(η)

min
q(η)

KL (q(η)‖p0(η)) + CR(q(η)), (26)

where
R(q(η)) =

∑

d

max
y

{
`∆d (y) + Eq[F (y,xd;η)− F (yd,xd;η)]

}
(27)

is the hinge-loss on training data D = {(xd, yd)}Dd=1, capturing the large-margin principle underly-
ing the MED prediction rule

ŷ = argmaxy Eq[F (y,x;η)], (28)
and `∆d (y) measures how y differs from the true label yd.

A.2 MED under mean-field assumption (for binary case)

The general solution to the MED problem for binary case (5) is

p(η) =
1

Z
p0(η) exp

{∑

d

ωdydF (xd;η)

}
, (29)

where Z is the partition function ensuring p(η) a valid distribution and ωd are the Lagrange multi-
pliers, which can be obtained by solving the dual problem

max
ω

`
∑

d

ωd − logZ

s.t. ∀1 ≤ d ≤ D : 0 ≤ ωd ≤ C.
(30)

Very often we adopt mean-field assumptions on p(η), i.e. p(η) =
∏
i p(ηi) where ηis constitute

a partition of η, to seek a variationally approximated solution which is otherwise intractable to get.
As a result, problem (5) is partially decomposed, one for p(ηi) each, as

min
p(ηi)

−H (p(ηi))− Eηi [Ẽ(ηi)] + C
∑

d

h`

(
ydEηi [F̃d(ηi)]

)
, (31)

where Ẽ(ηi) = Eη−i [log p0(η)] and F̃d(ηi) = Eη−i [F (xd;η)]. Note that the dependence of Ẽ(ηi)

and F̃d(ηi) on p(η−i) disqualifies (31) from being a thoroughly independent decomposition.

Since we can always define a distribution p̃(ηi) so that log p̃(ηi) = Ẽ(ηi) + const., we may rewrite
subproblem (31) even further as

min
p(ηi)

KL (p(ηi)‖p̃(ηi)) + C
∑

d

h`

(
ydEηi [F̃d(ηi)]

)
, (32)

whose solution, according to Eq. (29), reads

p(ηi) =
1

Zi
p̃(ηi) exp

{∑

d

ωdYdF̃d(ηi)

}
, (33)

where p̃(ηi) ∝ exp{Ẽ(ηi)} ∝ exp{Eη−i [log p0(ηi|η−i)]} ∝ p0(ηi) exp{Eη−i [log p0(η−i|ηi)]}.
Incidentally, we may partially decompose KL(p‖p0) as follows,

KL (p(η)‖p0(η))

= KL (p(ηi)‖p̃(ηi))−
∑

j 6=i
H (p(ηj))− log

∫
exp

{
Ẽ(ηi)

}
dηi (∀i)

= KL (p(ηi)‖p̃(ηi)) + KL (p(η−i)‖p0(η−i))− log

∫
exp

{
Eη−i [log p0(ηi|η−i)]

}
dηi,

(34)

which might help with the calculation of the KL-divergence term, as shown later in D.2.3.

10

Appendix B. Solving M3F via blockwise coordinate descent

The alternative objective proposed in [11] for ordinal rating is

J(U, V, θ) =
1

2

(
‖U‖2F + ‖V ‖2F

)
+ C

∑

ij∈I

L−1∑

r=1

h
(
T rij(θir − UiV >j)

)
, (35)

which can be efficiently optimized to a local minimum by a gradient descent scheme, the cost of
which however is to substitute some smooth hinge function for the canonical hinge loss so as to
bypass its non-differentiability [11].

Here we propose an alternative efficient blockwise coordinate descent algorithm that directly solves
problem (35) and obtains comparable results. It involves (N + M) SVM solvers for optimizing U
and V , and N × (L− 1) linear programming solvers for θ, each of which reduces to a binary search
as explained later in B.3.

B.1 Optimizing U given V & θ

Observing that minU |V,θ J(U, V, θ) can be decomposed into N independent subproblems, one for
Ui each, as

min
U |V,θ

J(U, V, θ) =
N∑

i=1

min
Ui

J(Ui|V, θ) + const., (36)

where

J(Ui|V, θ) =
1

2
‖Ui‖2F + C

∑

j|ij∈I

L−1∑

r=1

h
(
T rij(θir − UiV >j)

)
(37)

and const. denotes the remaining term, which is independent of Uis (‖V ‖2F /2 in this case), we may
achieve a considerable speedup by solving these downsized subproblems in a parallel fashion.

And J(Ui|V, θ), under a slight reformulation, can be efficiently solved by SVMstruct, an existing high
performance structural SVM solver.

The prototype structural SVM problem: The primal objective of the n-slack structural SVM with
margin rescaling [6] is given by

min
w,ξ≥0

1

2
wTw +

C

n

n∑

i=1

ξi

s.t. ∀i ∈ {1, . . . , n}, ∀ȳi ∈ Y : wT [Ψ(xi, yi)−Ψ(xi, ȳi)] ≥ ∆(yi, ȳi)− ξi,
(38)

where w is the weight vector, Ψ(x, y) the feature vector relating input data vector x and output y,
(xi, yi) the training data, and ∆(yi, ȳi) the prediction loss.

The hinge loss thereof is thus maxȳ∈Y{∆(y, ȳ)−w>Ψ(x, y) + w>Ψ(x, ȳ)}, which subsumes the
canonical hinge loss h(x) = max(1 − x, 0) for binary classification problem Y = {−1, 1} when
we take ∆(y, ȳ) = 1− δ(y, ȳ) and Ψ(x, y) = yx/2:

max
ȳ∈{−1,1}

(
1− δ(y, ȳ)− 1

2
yw>x+

1

2
ȳw>x

)

= max
ȳ∈{−y,y}

(
1− δ(y, ȳ)− 1

2
yw>x+

1

2
ȳw>x

)

= max(1− yw>x, 0).

(39)

Reformulation: To better disclose the correspondence, we first rewrite each subproblem
minUi J(Ui|V, θ) by introducing slack variables ξrij as follows:

min
Ui,ξi≥0

1

2
‖Ui‖2F + C

∑

j|ij∈I

L−1∑

r=1

ξrij

s.t. ∀j ∈ {j | ij ∈ I}, ∀r ∈ {1, . . . , L− 1} : −T rijUiV >j ≥ (1− T rijθir)− ξrij .
(40)

11

Then we may use the similar technique as in (39) to reduce (40) to (38), specifically by taking




w = U>i
xrij = V >j
yrij = −T rij
Y = {−1, 1}
Ψ(x, y) = 1

2yx

∆(yrij , ȳ
r
ij , θir) =

(
1− δ(yrij , ȳrij)

)
(1 + yrijθir)

as well as a scaled C. Note that w is of dimensionality K, the number of latent factors, while the
number of constraints |{j | ij ∈ I}|×(L−1), upper-bounded byM×(L−1), might vary diversely
across different rows in Y according to how many items the corresponding user has rated.

Also note that we’ve extended the loss ∆ in a sense by taking into account not only the prediction
ȳ and the training output y, but also another sample-specific constant θir. This change might bring
about a negative loss, but it will not impact the optimization process.

B.2 Optimizing V given U & θ

Similar to B.1, we may decompose minV |U,θ J(U, V, θ) into M independent subproblems, one for
Vj each, and then solve them in parallel by SVMstruct.

B.3 Optimizing θ given U & V

Again the special structure of the problem allows us to decompose it into N × (L− 1) independent
subproblems, one for θir each, as

min
θ|U,V

J(U, V, θ) = C
N∑

i=1

L−1∑

r=1

min
θir

J(θir|U, V) + const., (41)

where
J(θir|U, V) =

∑

j|ij∈I
h
(
T rij(θir − UiV >j)

)
(42)

and const. denotes the remaining term, which is independent of θirs ((‖U‖2F + ‖V ‖2F)/2).

Rewrite minθir J(θir|U, V) by introducing slack variables ξrij and after some rearrangement, we
have

min
θir,ξri≥0

∑

j|ij∈I
ξrij

s.t. ξrij ≥ 1 + UiV
>
j − θir (if T rij = 1)

ξrij ≥ 1− UiV >j + θir (if T rij = −1).

(43)

While (43) is solvable by any general linear programming solver, we find it to be an innate binary
search problem over θir and thus can be solved far more efficiently.

We group the constraints according to T rij and denote them by C1 and C−1 respectively, and then
define 




Z .
= {z | ∃j, s.t. z = zj

.
= UiV

>
j + T rij}

J 1(θ)
.
= {j ∈ C1 | zj > θ}

J−1(θ)
.
= {j ∈ C−1 | zj < θ}

∆l(θ)
.
= |J 1(θ − ε)| − |J−1(θ − ε)|

∆r(θ)
.
= |J−1(θ + ε)| − |J 1(θ + ε)|

Note that we’ve omitted the index i, r whenever possible to imply the same process applies to any
subproblem of θir. Think of each constraint in problem (43) as a clipped half-plane in the (θir, ξ

r
ij ≥

0) space, then Z denotes all the unique zero-crossings (or θir intercepts) and it’s easy to see that
ε∆l(θ) and ε∆r(θ) equals the change in the objective when taking a small enough step ε to the left
and right from θ respectively.

12

We sort Z in ascending order so that z′1 < z′2 < · · · < z′|Z|, on which we conduct a binary search to
find the optimal θir as follows.

(a) Start with s = 1, t = |Z|, and j = d s+t2 e.
(b) If ∆l(z

′
j) < 0, take t = j − 1 and goto (c);

If ∆r(z
′
j) < 0, take s = j + 1 and goto (c);

Otherwise, goto (d).
(c) Take j = d s+t2 e and goto (b).
(d) If ∆l(z

′
j) = 0, θir ∈ [z′j−1, z

′
j];

If ∆r(z
′
j) = 0, θir ∈ [z′j , z

′
j+1];

Otherwise, θir = z′j .

Hence the overall time complexity of optimizing each θir is O(|Z| log |Z|), which is further bound-
ed by O(M logM).

B.4 Influence of the margin parameter on M3F

Both the original M3F model and its fast version adopted hinge loss, which is appropriate for discrete
ordinal ratings. A simple generalization to the canonical hinge loss would be

h`(x) = max(`− x, 0) (` > 0), (44)

where ` is the margin parameter and it’s fairly natural to wonder what influences, if any, the margin
parameter might exert on the solution and the performance of the model.

Denote the new objective by J`(U, V, θ) and we have the following observation:

J`(
√
`U,
√
`V, `θ) =

1

2

(
‖
√
`U‖2F + ‖

√
`V ‖2F

)
+ C

∑

ij∈I

L−1∑

r=1

h`
(
T rij(`θir − `UiV >j)

)

=
`

2

(
‖U‖2F + ‖V ‖2F

)
+ `C

∑

ij∈I

L−1∑

r=1

h
(
T rij(θir − UiV >j)

)

= `J(U, V, θ).

(45)

Therefore the original minimizer (Ũ , Ṽ , θ̃) of J , when scaled to (
√
`Ũ ,
√
`Ṽ , `θ̃), becomes the

minimizer of J` and what’s more, these 2 minimizers yield exactly the same prediction rating matrix.
That’s to say M3F is in a way invariant to the margin parameter, which is a desirable property.

Appendix C. A specific binary search solver

Here we propose a general binary search algorithm to solve problems of the following form:

min
x∈R

g(x) +
N∑

i=1

h`i(aix), (46)

where g(x) is a strictly convex function whose first-order derivative is continuous and easy to get,
h`(x) = max(0, `− x) the generalized hinge loss and ai ∈ R (ai 6= 0) the coefficients.

A first observation is that problem (46) is a strictly convex optimization problem of x and has thus a
unique optimal solution. Another reason why we’re interested in this specific kind of problem is that
it actually serves as the conditional subproblem to nearly all the optimization problems (including
SVM) that we’ll encounter when performing variational inference in PM3F models (as shown later
in Appendix D), and therefore naturally fits into the coordinate descent solver for these problems.

We cannot simply take the gradient of the objective function f(x) and set it to zero to get the optimal
x̂ due to the special form of hinge loss. Alternatively one starts with an initial x0, and update the
value with x(n+1) = g′−1(−∑i h

′(n)
i) where h′(n)

i is the subgradient of the hinge loss h`i(x) at
x(n)[19], and so on and so forth. However this iteration process does not guarantee a convergence.

13

Here we introduce an intuitive binary search algorithm that exactly solves problem (46). Actually
it is just a slightly varied version of what we did in B.3. We sort all the zero-crossings of the hinge
loss terms in ascending order so that zi1 ≤ zi2 ≤ · · · ≤ ziN where zi = `i/ai. Then it’s obvious
that the sequence

−∞, f ′−i1 , f
′+
i1
, . . . , f ′−iN , f

′+
iN
, +∞,

where f ′−ik and f ′+ik are the left and right derivatives of f at zik respectively:

f ′−ik = g′(zik) + h′−ik , h′−ik =

ik−1∑

j=1

− ajI(aj < 0)+
N∑

j=ik

− ajI(aj > 0) (47)

f ′+ik = g′(zik) + h′+ik , h′+ik =

ik∑

j=1

− ajI(aj < 0)+

N∑

j=ik+1

− ajI(aj > 0), (48)

is monotonically ascending and there must exist a unique k so that either f ′−ik < 0 < f ′+ik , which
indicates x̂ = zik , or f ′+ik < 0 < f ′−ik+1

, which indicates x̂ = g′−1(h′ik) ∈ (zik , zik+1
) where

h′ik = h′+ik = h′−ik+1
is the constant gradient of the hinge loss terms over section (zik , zik+1

).

The overall complexity of the algorithm is O(N logN) due to the sorting step.

Appendix D. Variational inference details

D.1 Inference in the iPM3F model

D.1.1 Solving for p(V)

Subproblem:
min
p(V)

KL(p(V)‖p0(V)) + C
∑

ij∈I
h`
(
YijZ̄iEp[Vj]>

)
, (49)

where Z̄i = Ep(Z)[Zi] = ψi.

Solution:

p(V) ∝ p0(V) exp




∑

ij∈I
ωijYijψiV

>
j



 . (50)

Note that p(V) remains an isotropic Gaussian

p(V) =

M∏

j=1

K∏

k=1

N (Vjk|Λjk, σ2), (51)

where Λjk =
∑
i|ij∈I ωijYijψik.

Dual:

max
ω

`
∑

ij∈I
ωij −

σ2

2

M∑

j=1

‖
∑

i, ij∈I
ωijYijψi‖2

s.t. ∀i, j ∈ I : 0 ≤ ωij ≤ C.

(52)

It’s obvious that the dual naturally decomposes into M independent box-constrained quadratic pro-
gramming subproblems, one for ωj each.

Equivalent primal: From either the solution or the dual above, one can easily prove that the primal
problem can actually be decomposed into M independent binary SVM problems, one for Λj each,
as follows,

min
Λj

1

2σ2
‖Λj‖2 + C

∑

i|ij∈I
h`
(
YijΛjψ

>
i

)
. (53)

And thus we can use some existing high-performance SVM solver (e.g. SVMstruct) to efficiently, and
in a parallel fashion, solve for p(V).

14

D.1.2 Solving for p(ν)

Since ν is marginalized before exerting any influence in the loss, this part is independent of the loss.

Subproblem:
min
p(ν)

KL(p(ν)p(Z)‖p0(ν, Z)) (54)

Solution: We adopt the same multivariate lower bound [2] to seek an approximate solution, which
is exactly the same as in [2].

γk1 = α+

K∑

κ=k

N∑

i=1

ψiκ +

K∑

κ=k+1

(
N −

N∑

i=1

ψiκ

)(
κ∑

i=k+1

qκi

)

γk2 = 1 +
K∑

κ=k

(
N −

N∑

i=1

ψiκ

)
qκk,

(55)

where the variational parameter qκ. = (qκ1, . . . , qκκ)> lies on a κ-simplex and

qκi ∝ q̃i = exp



ψ(γi2) +

i−1∑

j=1

ψ(γj1)−
i∑

j=1

ψ(γj1 + γj2)



 . (56)

Recurrent calculation: We may rearrange (55) to allow for a quick recurrent calculation as follows,

γk1 = α+

K∑

κ=k

P (κ) +

K∑

i=k+1

Q(i)

γk2 = 1 +Q(k),

(57)

where

P (κ) =
N∑

i=1

ψiκ

Q(i) =
K∑

κ=i

(N − P (κ)) qκi.

Furthermore, since qκi = Cκq̃i, Cκ being the normalization constant, we can even calculate Q(i)
(or Q(i)/q̃i actually) recurrently.

D.1.3 Solving for p(Z)

Subproblem:
min
p(Z)

KL(p(ν)p(Z)‖p0(ν, Z)) + C
∑

ij∈I
h`
(
YijEp[Zi]V̄ >j

)
, (58)

where V̄j = Ep(V)[Vj] = Λj and Ep[Zi] = ψi.

This is a convex optimization problem of ψ and it decomposes into N independent subproblems,
one for ψi each, as (after dropping irrelevant terms)

min
ψi

K∑

k=1

(
EZ [log p(Zik)]− Eν,Z [log p0(Zik|ν)]

)
+ C

∑

j|ij∈I
h`
(
YijψiΛ

>
j

)
, (59)

where
EZ [log p(Zik)] = ψik logψik + (1− ψik) log(1− ψik)

Eν,Z [log p0(Zik|ν)] = ψik

k∑

j=1

Eν [log νj] + (1− ψik)Eν [log(1−
k∏

j=1

νj)]

Eν [log νj] = ψ(γk1)− ψ(γk1 + γk2)

Eν [log(1−
k∏

j=1

νj)] ≥ Lνk,

15

where

Lνk = H(qk.) +
k∑

i=1

qkiψ(γi2) +
k−1∑

i=1




k∑

j=i+1

qkj


ψ(γi1)−

k∑

i=1




k∑

j=i

qkj


ψ(γi1 + γi2) (60)

is in turn the multivariate lower bound as in [2].

Solution: By use of the binary search algorithm introduced in Appendix C, we solve problem (59)
in a coordinate descent manner, with iteration number ever increasing during the learning process.

Recurrent calculation: Again we may rearrange Eq. (60) to allow for a quick recurrent calculation
of Lνk (or (Lνk + logCk)/Ck actually) as follows,

Lνk + logCk
Ck

=
k∑

i=1

q̃iψ(γi2) +
k∑

j=2

q̃j

j−1∑

i=1

ψ(γi1)−
k∑

j=1

q̃j

j∑

i=1

ψ(γi1 + γi2)−
k∑

i=1

q̃i log q̃i. (61)

Functional form: From subproblem (58) and the general MED solution under mean-field assump-
tions (33), we may easily obtain the functional form of p(Z) as

p(Z) ∝ exp



Eν [log p0(Z|ν)] +

∑

ij∈I
ωijYijZiΛ

>
j





∝
N∏

i=1

K∏

k=1

exp {ζikZik} ,

(62)

where

ζik =
k∑

j=1

Eν [log νj]− Eν [log(1−
k∏

j=1

νj)] +
∑

j|ij∈I
ωijYijΛjk

is a constant, and hence p(Z) is fully factorized. Furthermore, the fact that Z ∈ {0, 1}N×K is
a binary matrix naturally suggests a Bernoulli parametrization for its entries, which justifies our
pretreatment of p(Z) in Sec. 4.

D.1.4 Solving for p(θ)

Subproblem:

min
p(θ)

KL(p(θ)‖p0(θ)) + C
∑

ij∈I

L−1∑

r=1

h`
(
T rij(Ep[θir]− ψiΛ>j)

)
(63)

Solution:

p(θ) ∝ p0(θ) exp




∑

ij∈I

L−1∑

r=1

ωrijT
r
ijθir



 . (64)

Note that p(θ) remains an isotropic Gaussian

p(θ) =

N∏

i=1

L−1∏

r=1

N (θir|%ir, ς2), (65)

where %ir = ρr − ς2
∑
j|ij∈I ω

r
ijT

r
ij .

Equivalent Primal: As a result, we may decompose the original subproblem (63) into N × (L− 1)
independent sub-subproblems, one for θir each, as follows,

min
%ir

1

2ς2
(%ir − ρr)2 + C

∑

j|ij∈I
h`
(
T rij(%ir − ψiΛ>j)

)
. (66)

Note that as ς → +∞, the Gaussian distribution regresses to a uniform distribution and problem (66)
reduces accordingly to the non-probabilistically-formulated subproblem as is the case of M3F (B.3).
It’s clear that the binary search algorithm introduced in Appendix C directly applies here.

16

D.2 Inference in the iBPM3F model

D.2.1 Solving for p(V)

Subproblem:

min
p(V)

KL(p(V)p(µ,Ω)‖p0(V, µ,Ω)) +
∑

ij∈I
h`
(
YijψiEp[Vj]>

)
(67)

Solution:

p(V) ∝ exp





M∑

j=1

Eµ,Ω[log p0(Vj |µ,Ω)] +
∑

ij∈I
ωijYijψiV

>
j





∝
M∏

j=1

exp



−

1

2
VjE[Ω]V >j + E[µΩ]V >j +

∑

i|ij∈I
ωijYijψiV

>
j





(68)

factorizes into M Gaussian distributions, one on Vj each, parameterized as Vj ∼ N (Λj ,Ξ
−1),

where

Λj = µ̃+


 ∑

i|ij∈I
ωijYijψi


Ξ−1, µ̃ = E[µ], Ξ = E[Ω]. (69)

Note that we’ve made use of the equation E[µΩ] = E[µ]E[Ω] due to the fact that E[µ|Ω] = µ̃
does not depend on Ω, which will soon be shown in D.2.2 as p(µ,Ω) remains a Gaussian-Wishart
distribution.

Dual: Rewrite the decomposed primal of each p(Vj) as

min
p(Vj)

KL (p(Vj)‖p̃(Vj)) +
∑

i|ij∈I
h`
(
YijψiEp[Vj]>

)
, (70)

where p̃(Vj) ∝ exp {E[log p0(Vj |µ,Ω)]} ∝ N (µ̃,Ξ−1). Then it’s obvious from the general dual
form (30) that the dual takes the form of

max
ωj

`
∑

i|ij∈I
ωij −

1

2
Zj(ωj)Ξ−1Zj(ωj)> − µ̃Zj(ωj)>

s.t. ∀i|ij ∈ I : 0 ≤ ωij ≤ 1,

(71)

where Zj(ωj) =
∑
i|ij∈I ωijYijψi and the dual is again a box-constrained quadratic programming.

Equivalent primal: We rewrite the primal (70) by replacing p(Vj) and p̃(Vj) with their respective
parameterized Gaussian density, thus yielding

min
Λj

1

2
(Λj − µ̃)Ξ(Λj − µ̃)> +

∑

i|ij∈I
h`
(
YijψiΛ

>
j

)
. (72)

Now suppose Ξ = PP> (P � 0) and let Λ′j = (Λj − µ̃)P, and we have

min
Λ′j

1

2
‖Λ′j‖22 +

∑

i|ij∈I
h`ij

(
YijΛ

′
jP
−1ψ>i

)
, (73)

where `ij = ` − Yij µ̃ψ
>
i becomes the sample-specific margin. Now we may solve for Λ′j via a

slightly changed SVMstruct and get Λj = Λ′jP
−1 + µ̃.

D.2.2 Solving for p(µ,Ω)

Like solving for ν in iPM3F, this part is independent of the loss so we work on the KL-divergence
directly.

17

Subproblem:
min
p(µ,Ω)

KL(p(µ,Ω)p(V)‖p0(µ,Ω, V)) (74)

Solution:

p(µ,Ω) ∝ p0(µ,Ω) exp





M∑

j=1

EVj [log p0(Vj |µ,Ω)]



 , (75)

where

EVj [log p0(Vj |µ,Ω)] =− 1

2

(
EVj [(Vj − µ)Ω(Vj − µ)>]− log |Ω|

)
+ const.

=− 1

2

(
EVj [tr

(
(Vj − µ)>(Vj − µ)Ω

)
]− log |Ω|

)
+ const.

=− 1

2
tr
(
EVj [(Vj − Λj + Λj − µ)>(Vj − Λj + Λj − µ)]Ω

)

+
1

2
log |Ω|+ const. (recall that Vj ∼ N (Λj ,Ξ

−1))

=− 1

2

[
tr
([

Ξ−1 + (Λj − µ)>(Λj − µ)
]

Ω
)
− log |Ω|

]
+ const.

=− 1

2

[
(Λj − µ)Ω(Λj − µ)> + tr

(
Ξ−1Ω

)
− log |Ω|

]
+ const.

(76)

Recall the functional form of a Gaussian-Wishart density is

GW(µ,Ω|µ̃, β̃, W̃ , τ̃) = N (µ|µ̃, (β̃Ω)−1)W(Ω|W̃ , τ̃)

∝ exp

{
−1

2
(µ− µ̃)β̃Ω(µ− µ̃)>

}
|Ω| τ̃−K−1

2 exp

{
−1

2
tr
(
W̃−1Ω

)}

= |Ω| τ̃−K−1
2 exp

{
−1

2
β̃µΩµ> + β̃µ̃Ωµ> − 1

2
tr
((
β̃µ̃>µ̃+ W̃−1

)
Ω
)}

.

Then after substituting Eq. (76) into (75), we conclude, by observation, that

p(µ,Ω) = GW(µ̃, β̃, W̃ , τ̃)

where

τ̃ = τ0 +M (77)

β̃ = β0 +M (78)

µ̃ =
1

β̃


β0µ0 +

M∑

j=1

Λj


 (79)

W̃−1 = −β̃µ̃>µ̃+ β0µ
>
0 µ0 +W−1

0 +MΞ−1 +
M∑

j=1

Λ>j Λj . (80)

Incidentally, Ξ = E[Ω] = τ̃ W̃ .

D.2.3 KL-divergence

By use of the decomposition (34), we have

KL(p(V)p(µ,Ω)‖p0(V, µ,Ω)) = KL(p(V)‖p̃(V)) + KL(p(µ,Ω)‖p0(µ,Ω))

− log

∫
exp {Eµ,Ω[log p0(V |µ,Ω)]} dV ,

(81)

18

where KL(p(V)‖p̃(V)) is the KL-divergence between Gaussian distributions:

KL(p(V)‖p̃(V)) =
M∑

j=1

KL(N (Λj ,Ξ
−1)‖N (µ̃, (τ̃ W̃)−1))

=
M

2

(
τ̃ tr(W̃Ξ−1)− log

τ̃K |W̃ |
|Ξ| −K

)
+
τ̃

2

M∑

j=1

(Λj − µ̃)W̃ (Λj − µ̃)>;

(82)

KL(p(µ,Ω)‖p0(µ,Ω)) is the KL-divergence between Gaussian-Wishart distributions:

KL(p(µ,Ω)‖p0(µ,Ω)) = KL(GW(µ̃, β̃, W̃ , τ̃)‖GW(µ0, β0,W0, τ0))

= KL(p(Ω)‖p0(Ω)) + Ep(Ω)[KL(p(µ|Ω)‖p0(µ|Ω))]

= KL(W(W̃ , τ̃)‖W(W0, τ0))

+ Ep(Ω)[KL
(
N (µ̃, (β̃Ω)−1)‖N (µ0, (β0Ω)−1)

)
]

ww� breaking into parts

KL(W(W̃ , τ̃)‖W(W0, τ0)) =
τ̃ − τ0

2
EW(Ω|W̃ ,τ̃)[log |Ω|] + log

B(W̃ , τ̃)

B(W0, τ0)

− τ̃K

2
+
τ̃

2
tr
(
W−1

0 W̃
)

partition function: B(W, τ) =
(
|W |τ/22τK/2ΓK(τ/2)

)−1

multivariate Gamma function: ΓK(τ/2) = πK(K−1)/4
K∏

k=1

Γ

(
τ + 1− k

2

)

EW(Ω|W̃ ,τ̃)[log |Ω|] =
K∑

k=1

ψ

(
τ̃ + 1− k

2

)
+K log 2 + log |W̃ |

KL
(
N (µ̃, (β̃Ω)−1)‖N (µ0, (β0Ω)−1)

)
=

1

2

[
tr
(
β0Ω(β̃Ω)−1

)
+ (µ̃− µ0)β0Ω(µ̃− µ0)>

− log
(
|β0Ω|/|β̃Ω|

)
−K

]

=
1

2

[
Kβ0/β̃ + (µ̃− µ0)β0Ω(µ̃− µ0)>

−K log
(
β0/β̃

)
−K

]

ww� putting back together

KL(p(µ,Ω)‖p0(µ,Ω)) =
τ̃

2
tr
(
W−1

0 W̃
)
− τ0

2
log
(
|W̃ |/|W0|

)

+
1

2
(µ̃− µ0)β0τ̃ W̃ (µ̃− µ0)>

+ T (τ0, τ̃) + B
(
β0, β̃

)

T (τ0, τ̃) =

K∑

k=1

[
log Γ

(
τ0 + 1− k

2

)
− log Γ

(
τ̃ + 1− k

2

)]

+
τ̃ − τ0

2

K∑

k=1

ψ

(
τ̃ + 1− k

2

)
− τ̃K

2

B
(
β0, β̃

)
=
K

2

(
β0/β̃ − log

(
β0/β̃

)
− 1
)

, (83)

19

where T and B remain constant after the first update of (µ̃, β̃, W̃ , τ̃) according to Eq. (77) and (78)
and is thus dispensable given that we calculate the KL-divergence, a term in the objective, only as a
guidance to the convergence of the variational inference;

And we calculate the last log-integral term in Eq. (81) as follows:

log

∫
exp {Eµ,Ω[log p0(V |µ,Ω)]} dV = log

∫
exp





M∑

j=1

Eµ,Ω[log p0(Vj |µ,Ω)]



 dV

=

M∑

j=1

log

∫
exp{Eµ,Ω[log p0(Vj |µ,Ω)]}dVj

ww� breaking into parts

Eµ,Ω[log p0(Vj |µ,Ω)] = −1

2

{
Eµ,Ω[(Vj − µ)Ω(Vj − µ)>]− EΩ[log |Ω|] +K log(2π)

}

Eµ,Ω[(Vj − µ)Ω(Vj − µ)>] = VjE[Ω]V >j − 2E[µ]E[Ω]V >j + EΩ[Eµ|Ω[tr(µ>µΩ)]]

= τ̃VjW̃V >j − 2τ̃ µ̃W̃V >j + EΩ[µ̃Ωµ̃> +Kβ̃−1]

= τ̃(Vj − µ̃)W̃ (Vj − µ̃)> +Kβ̃−1

EΩ[log |Ω|] =
K∑

k=1

ψ

(
τ̃ + 1− k

2

)
+K log 2 + log |W̃ |

ww� putting back together
∫

exp{Eµ,Ω[log p0(Vj |µ,Ω)]}dVj =
(2π)

K
2

|τ̃ W̃ | 12
exp

{
−1

2

(
Kβ̃−1 − EΩ[log |Ω|] +K log(2π)

)}

log

∫
exp{Eµ,Ω[log p0(V |µ,Ω)]}dV = −M

2

(
Kβ̃−1 − EΩ[log |Ω|] + log(τ̃K |W̃ |)

)

= −M
2

(
Kβ̃−1 −

K∑

k=1

ψ

(
τ̃ + 1− k

2

)
+K log

τ̃

2

)
.

(84)

Note that the update rule of W̃ (80) when solving for p(µ,Ω) can also be derived by taking par-
tial derivative of the KL-divergence term (81) with respect to W̃ and setting it to zero (assuming
Eq. (77)∼(79) are already at hand).

20

