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Figure 1: Illustration that maximum marginal decision is easier than marginal estimation if the
marginal distribution is far from 0.5. We assume we have observed N i.i.d. samples from a distri-
bution with p(x = 1) = µ. Top left: expected confidence of µ ≤ 0.5, i.e. decision z = 0. Other
plots: confidence that µ ∈ [µ− δ, µ+ δ] for δ = 0.1 (top right), δ = 0.05 (bottom left) and δ = 0.01
(bottom right). Note the differently scaled y-axis.
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Multi-label classification
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Figure 2: Results of adaptive pruning on RCV1 dataset for ε = 10−2, 10−5, 10−8 (left
to right). x-axis: regularization parameter C used for training, y-axis: ratio of itera-
tions/variables/factors/runtime used by adaptive sampling relative to 500 iterations Gibbs sampling.
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Figure 3: Results of adaptive pruning on YEAST dataset for ε = 10−2, 10−5, 10−8 (left
to right). x-axis: regularization parameter C used for training, y-axis: ratio of itera-
tions/variables/factors/runtime used by adaptive sampling relative to 500 iterations Gibbs sampling.
Beware that the scaling of the y-axis changes between columns.
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Image inpainting

input Gibbs ε=10−2 ε=10−5 ε=10−8

Figure 4: Example results of binary image inpainting on HECC dataset, images 1–13. Images
where the ε = 10−8 results is identical to Gibbs are cases where no decision became confident
enough within the time limit.
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input Gibbs ε=10−2 ε=10−5 ε=10−8

Figure 5: Example results of binary image inpainting on HECC dataset, images 14–26.
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input Gibbs ε=10−2 ε=10−5 ε=10−8

Figure 6: Example results of binary image inpainting on HECC dataset, images 26–39.
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input Gibbs ε=10−2 ε=10−5 ε=10−8

Figure 7: Example results of binary image inpainting on HECC dataset, images 40–52.
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input Gibbs ε=10−2 ε=10−5 ε=10−8

Figure 8: Example results of binary image inpainting on HECC dataset, images 53–65.
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input Gibbs ε=10−2 ε=10−5 ε=10−8

Figure 9: Example results of binary image inpainting on HECC dataset, images 66–78.

9



input Gibbs ε=10−2 ε=10−5 ε=10−8

Figure 10: Example results of binary image inpainting on HECC dataset, images 79–91.
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input Gibbs ε=10−2 ε=10−5 ε=10−8

Figure 11: Example results of binary image inpainting on HECC dataset, images 92-100.
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