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1 Synthetic Data Result

We first demonstrate the empirical convergence properties of the D-PPCA. Note that the general
convergence properties are implied by the Augmented Lagrangian optimization algorithm. Addi-
tionally, in a distributed network setting the convergence will depend on the connectivity structure
of the network, which in turn depends on the spectral properties of its graph Laplacian. We gener-
ated 50 dimensional 100 random samples from A/(0,0.2 - I). We assigned 20 samples equally to
each node in a 5-nodes network connected with ring topology to find a 5 dimensional subspace. Our
convergence criterion is the relative change in objective of (1) and we stop when it is smaller than
107°. In real settings, one can monitor local parameter updates instead. We initialized parameters
with random values from a uniform distribution. Alternative choices of starting points may lead
to faster convergence. If not explicitly mentioned otherwise, all our results are averaged over 20
independent random initializations.

Fig. 1a shows the convergence curve of D-PPCA for various 7 values. As one can easily see, all n
values lead to convergence within 102 iterations. Moreover, the value they converge to is equivalent
to centralized solution meaning we can achive the same global solution using the distributed algo-
rithm. This behavior matches results reported in [1]. Fig. 1b shows convergence curve as a function
of the number of nodes in a network. In all cases, D-PPCA successfully converged within 10 it-
erations. Similar trends were observed with networks of more than 10 nodes. We also conducted
experiments to test the effects of network topology on the parameter convergence. Fig. 1c depicts
the result for three simple network types. In all cases we considered, D-PPCA reached near the
stationary point within only 10 iterations regardless of any of the aforementioned factors.

8000 10000 8000
X n=16 ' ~ Ring
(4] [ [}
= n=12 ch 8000 T:u Star‘
S 6000 . ---n=10 < < 6000 - --Chain )
é \‘\\" --n=8 é 6000 ‘é — Centralized
§ 4000 R — Centralized %’ ‘g’ 4000
o < 4000 2
2 2 2
© 2000 ° S 2000
2 .2 2000 2
Q2 Cer =) =)
o o (e}
o 0 0
10° 10° 10" 10° 10
iterations iterations iterations
(a) Impact of n (b) Impact of number of nodes (c) Impact of topologies

Figure 1: Convergence trends of D-PPCA.
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Figure 2: Average root mean squared error of reconstructions based on PPCA and D-PPCA results.

One of the main benefits of employing probabilistic formulation of PCA is the flexibility of allowing
missing values. Here, we consider two possibilities of missing values; the case when values missing
at random (MAR) and the case when values missing not at random (MNAR). In [2], it has been
shown that probabilistic formulations of PCA can deal with missing values, particularly well in
the MAR setting. The same conclusion holds for D-PPCA. As shown in Fig. 2a, D-PPCA can
effectively reconstruct the original measurement comparable to its centralized counterpart under
different amounts of missing values. This fact also holds for MNAR case although the error tends
to be slightly larger than in the MAR case.

2 Full Derivation of Distributed Probabilistic PCA

2.1 Quick Reference to Notations
e G = (V, E): Undirected connected graph with vertices in V and edges in E
e 7,7 € V: Node index
o ¢;; = (i,j) € E: Edge connecting node i and node j
e B; = {j;ei; € E}: Set of neighbor nodes directly connected to i-th node
e N,;: The number of samples collected in ¢-th node
e Z;,: n-th M x 1 dimensional latent variable at node ¢ where n = 1, ..., N;
e X;,: n-th D x 1 dimensional column vector at node ¢ where n = 1, ..., N;
e Z;,={zijp;n=1,..,N;}
o X; ={xjn;n=1,...,N;}
o W, 1, a;: Model parameters

2.2 Distributed Algorithm for Probabilistic PCA

In a distributed probabilistic model setting, we impose consensus constraints on parameters for each
node. With the introduction of auxiliary variables, we can assure that all parameters reach consensus
only by local optimizations. Using this idea, Forero, et al. proposed an iterative EM algorithm for
the Gaussian mixture model [3]. Using a similar approach, we derive an iterative EM algorithm for
PPCA. In the centralized setting, the local optimization problem using expectation on the complete
data log likelihood with respect to the posterior of the latent variable is
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where fz, = p(Z;|X;)'. If we impose the consensus constraints on this, the constrained local
optimization problem becomes

min —F(fz,, Wi, u;,a; 1
{fz;\Wi,pi,a;:i€V'} (fZ1 n ) ( )
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where p;;, @;;,;; are auxiliary variables. If we solve this local optimization problem, we also

solve global optimization since global optimization is simply the summation of local ones given
consensus constraints meet. The augmented Lagrangian of (1) is
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where ©; = {fz,, Wi, i, ai, pij, @ij, i3t € V. j € Bi} and { A}, {vijn}, {Bij} with k =
1,2 are the Lagrange multipliers. 7 is a positive scalar and || - || denotes the induced norm. We

cyclically minimize £(®;) over its parameters, then follow a gradient ascent step over the Lagrange
multipliers. The iterates, using ¢ as iteration index, are

fz(t+1) = arg miﬂﬁ(fLWi(t)v Hi(t),ai(t), pij(t), i (t), i (1)), 3
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'In the manuscript, we defined the optimization using marginal distribution to make it consistent with our
general distributed probabilistic model. However, one can optimize the expected value of the completed log
likelihood with respect to posterior as shown here.



Computing (3): Omitting ¢ notations, the first term of (2)
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is the only term dependent on fz,. Thus, if all other parameters and multipliers are fixed at the
t-th iteration, (3) can be computed using the expected values of the latent variables as we did in the
E-step of the centralized setting. By using the posterior distribution of the centralized PPCA ((4) in
the manuscript), we compute

Elzin] = L; "W (Xin — pi) (17)
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and we plug (17) and (18) into (16).

Computing (7)-(15): Auxiliary variables, p;;, ¢;;,;; are independent from (16). Thus (7)-(9) are
linear-quadratic optimization with respect to these variables and we can find a closed-form solution
for these variables. For (9), this yields
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Since the Lagrange multipliers, parameters and 7 are all zero or positive values, we get
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respectively. Plugging (20) into (10) and (11), (21) into (12) and (13), (19) into (14) and (15), we
get
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where Vi € V and j € B;. As in Appendix B of [3], we observe that at iteration ¢, X;;1(t + 1) =
Aijg(t + 1), Yij1 (t + 1) = '7ij2(t + 1), ﬁijl(t + 1) = Bij? (t + 1) if we assume initial value of each
Lagrange multiplier was set to zero. Thus, it suffices to find only one of the two. We define this one
value as Ay (t) == A1 (t) = Aija(t), vij () := ¥ij1 (t) = viz2(t) and Bi;(t) == Biji (t) = Bija ().
Moreover, if we define
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Computing (6): We tackle a; first. Omitting ¢ temporarily for notational brevity, the derivate of
L(®;) with respect to a; is
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where we temporarily suppressed the first summation term as Qg (f, W;(t + 1), pu;(t + 1), a;) for
clearer presentation. Putting ¢ back while plugging (19), the closed form solution of 1);;, into (31),
we get
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since B;;1(t —1) = B;;2(t —1) if we assume their initial values are zeros. Here again, we can further
simplify (32) using the following property.

Proposition 1. (Forero, et al. [3]) Given [3;;(0) = 0, B;;(t) = —p;i(t).

Proof. We have observed that 3;;1(0) = (;;2(0) =0 = f,;1(t) = Bij2(t) by applying induction
on (26) and (27). Thus, if we define 3;;(t) := 51 (t) = Bij2(t),
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Therefore, given 3;;(0) = 3;;(0) = 0, £;;(1) = —B;:(1). If we continue iterations,
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Setting this to zero while substituting Q,, (fz, W;(t + 1), p;(t + 1), a;) back into its original form
and simplifying for a;, we get
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as we omitted ¢ in z;, (¢t + 1), W;(¢ + 1) and p; (¢t + 1) for notational brevity. This is a quadratic
function of a; for which we can find an algebraic solution.



Computing (5): We cannot simply use the closed form solution of the centralized PPCA, i.e. u = .
We could use this result in the centralized setting but we cannot use it in the distributed model due
to the auxiliary variable constraints. Again, we omit ¢ temporarily for brevity.
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If we substitute the closed form solution of ¢;;, i.e. (21) into (34) while taking ¢ notations back, we
get
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if we define ; = ) ~;; and apply Proposition 1.
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Computing (4): We can apply the same approach to find the expression for W.
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as we define A; = ) \;; and apply Proposition 1.
Bi

The overall algorithm for the Distributed Probabilistic Principal Component Analysis (D-PPCA) is
summarized as Algorithm 1 in the manuscript.

3 Supplementary Video Description

3.1 Videos of Caltech Dataset

Under the directory named caltech, we provide videos of reconstructed 3D structures of all 3D
objects we used from the Caltech dataset [4]. In the video, red crosses at the center of the scene
are the estimated 3D structure. Green points are the input image points and magenta points are
reprojected image points.

3.2 Videos of Hopkins Dataset

Under the directory named hopkins, we provide videos of reconstructed 3D structures of 3D objects
we used from the Hopkins155 dataset [S]. We picked examples both from the calibration grids and
traffic videos. The filename is the ID number of the object. Objects 109 and 132 represent the
objects that yielded large subspace angles because their non rigid structure while others represent
the ones with small angles as mentioned in our manuscript.
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