
Semiparametric Principal Component Analysis

Fang Han
Department of Biostatistics
Johns Hopkins University

Baltimore, MD 21210
fhan@jhsph.edu

Han Liu
Department of Operations Research

and Financial Engineering
Princeton University, NJ 08544
hanliu@princeton.edu

Abstract
We propose two new principal component analysis methods in this paper utilizing
a semiparametric model. The according methods are named Copula Component
Analysis (COCA) and Copula PCA. The semiparametric model assumes that, af-
ter unspecified marginally monotone transformations, the distributions are multi-
variate Gaussian. The COCA and Copula PCA accordingly estimate the leading
eigenvectors of the correlation and covariance matrices of the latent Gaussian dis-
tribution. The robust nonparametric rank-based correlation coefficient estimator,
Spearman’s rho, is exploited in estimation. We prove that, under suitable condi-
tions, although the marginal distributions can be arbitrarily continuous, the COCA
and Copula PCA estimators obtain fast estimation rates and are feature selection
consistent in the setting where the dimension is nearly exponentially large relative
to the sample size. Careful numerical experiments on the synthetic and real data
are conducted to back up the theoretical results. We also discuss the relationship
with the transelliptical component analysis proposed by Han and Liu (2012).

1 Introduction
The Principal Component Analysis (PCA) is introduced as follows. Given a random vector X ∈ Rd

with covariance matrix Σ and n independent observations of X , the PCA reduces the dimension of
the data by projecting the data onto a linear subspace spanned by the k leading eigenvectors of Σ,
such that the principal modes of variations are preserved. In practice, Σ is unknown and replaced by
the sample covariance S. By spectral decomposition, Σ =

∑d
j=1 ωjuju

T
j with eigenvalues ω1 ≥

. . . ≥ ωd and the corresponding orthornormal eigenvectors u1, . . . , ud. PCA aims at recovering the
first k eigenvectors u1, . . . , uk.

Although the PCA method as a procedure is model free, its theoretical and empirical performances
rely on the distributions. With regard to the empirical concern, the PCA’s geometric intuition is
coming from the major axes of the contours of constant probability of the Gaussian [10]. [5] show
that if X is multivariate Gaussian, then the distribution is centered about the principal component
axes and is therefore “self-consistent” [8]. We refer to [10] for more good properties that the PCA
enjoys under the Gaussian model, which we wish to preserve while designing its generalization.

With regard to the theoretical concern, firstly, the PCA generally fails to be consistent in high di-
mensional setting. Given û1 the dominant eigenvector of S, [9] show that the angle between û1

and u1 will not converge to 0, i.e. lim infn→∞ E∠(û1, u1) > 0, where we denote by ∠(û1, u1)
the angle between the estimated and the true leading eigenvectors. This key observation motivates
regularizing Σ, resulting in a series of methods with different formulations and algorithms. The sta-
tistical model is generally further specified such that u1 is sparse, namely supp(u1) := {j : u1j 6=
0} and card(supp(u1)) = s < n. The resulting estimator ũ1 is:

ũ1 = arg max
v∈Rd

vT Sv subject to ‖v‖2 = 1, card(supp(v)) ≤ s. (1.1)

To solve Equation (1.1), a variety of algorithms are proposed: greedy algorithms [3], lasso-type
methods including SCoTLASS [11], SPCA [25] and sPCA-rSVD [19], a number of power methods
[12, 23, 16], the biconvex algorithm PMD [21] and the semidefinite relaxation DSPCA [4]. Sec-
ondly, it is realized that the distribution where the data are drawn from needs to be specified, such
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that the estimator ũ1 converges to ū1 in a fast rate. [9, 1, 16, 18, 20] all establish their results under
a strong Gaussian or sub-Gaussian assumption in order to obtain a fast rate under certain conditions.

In this paper, we first explore the use of the PCA conducted on the correlation matrix Σ0 instead of
the covariance matrix Σ, and then propose a high dimensional semiparametric scale-invariant prin-
cipal component analysis method, named the Copula Component Analysis (COCA). In this paper,
the population version of the scale-invariant PCA is built as the estimator of the leading eigenvector
of the population correlation matrix Σ0. Secondly, to handle the non-Gaussian data, we general-
ize the distribution family from the Gaussian to the larger Nonparanormal family [15]. A random
variable X = (X1, . . . , Xd)T belongs to a Nonparanormal family if and only if there exists a set
of univariate monotone functions {f0

j }dj=1 such that (f0
1 (X1), . . . , f0

d (Xd))T is multivariate Gaus-
sian. The Nonparanormal can have arbitrary continuous marginal distributions and can be far away
from the sub-Gaussian family. Thirdly, to estimate Σ0 robustly and efficiently, instead of estimating
the normal score transformation functions {f̂0

j }dj=1 as [15] did, realizing that {f0
j }dj=1 preserve the

ranks of the data, we utilize the nonparametric correlation coefficient estimator, Spearman’s rho, to
estimate Σ0. [14, 22] prove that the corresponding estimators converge to Σ0 in a parametric rate.
In theory, we analyze the general case that X is following the Nonparanormal and θ1 is weakly
sparse, here θ1 is the leading eigenvector of Σ0. We obtain the estimation consistency of the COCA
estimator to θ1 using the Spearman’s rho correlation coefficient matrix. We prove that the estimation
consistency rates are close to the parametric rate under Gaussian assumption and the feature selec-
tion consistency can be achieved when d is nearly exponential to the sample size. In this paper, we
also propose a scale variant PCA procedure, named the Copula PCA. The Copula PCA estimates
the leading eigenvector of the latent covariance matrix Σ. To estimate the leading eigenvectors of
Σ, instead of Σ0, in a fast rate, we prove that extra conditions are required on the transformation
functions.

2 Background
We start with notations: Let M = [Mjk] ∈ Rd×d and v = (v1, ..., vd)T ∈ Rd. Let v’s subvector
with entries indexed by I be denoted by vI , M ’s submatrix with rows indexed by I and columns
indexed by J be denoted by MIJ . Let MI· and M·J be the submatrix of M with rows in I and
all columns, and the submatrix of M with columns in J and all rows. For 0 < q ≤ ∞, we
define the `q and `∞ vector norm as ‖v‖q := (

∑d
i=1 |vi|q)1/q and ‖v‖∞ := max1≤i≤d |vi|, and

‖v‖0 := card(supp(v))·‖v‖2. We define the matrix `max norm as the elementwise maximum value:
‖M‖max := max{|Mij |} and the `∞ norm as ‖M‖∞ := max1≤i≤m

∑n
j=1 |Mij |. Let Λj(M) be

the toppest j−th eigenvalue of M. In special, Λmin(M) := Λd(M) and Λmax(M) := Λ1(M) are
the smallest and largest eigenvalues of M . The vectorized matrix of M , denoted by vec(M), is
defined as: vec(M) := (MT

·1 , . . . ,MT
·d)T . Let Sd−1 := {v ∈ Rd : ‖v‖2 = 1} be the d-dimensional

`2 sphere. For any two vectors a, b ∈ Rd and any two squared matrices A,B ∈ Rd×d, denote the
inner product of a and b, A and B by 〈a, b〉 := aT b and 〈A,B〉 := Tr(AT B).

2.1 The Models of the PCA and Scale-invariant PCA

Let Σ0 be the correlation matrix of Σ, and by spectral decomposition, Σ =
∑d

j=1 ωjuju
T
j and Σ0 =∑d

j=1 λjθjθ
T
j . Here ω1 ≥ ω2 ≥ . . . ≥ ωd > 0 and λ1 ≥ λ2 ≥ . . . ≥ λd > 0 are the eigenvalues

of Σ and Σ0, with u1, . . . , ud and θ1, . . . , θd the corresponding orthonormal eigenvectors. The next
proposition claims that the estimators {û1, . . . , ûd} and {θ̂1, . . . , θ̂d}, the eigenvectors of the sample
covariance and correlation matrices S and S0, are the MLEs of {u1, . . . , ud} and {θ1, . . . , θd}:
Proposition 2.1. Let x1 . . . xn ∼ N(µ,Σ) and Σ0 be the correlation matrix of Σ. Then the esti-
mators of PCA, {û1, . . . , ûd}, and the estimators of the scale-invariant PCA, {θ̂1, . . . , θ̂d}, are the
MLEs of {u1, . . . , ud} and {θ1, . . . , θd}.
Proof. Use Theorem 11.3.1 in [2] and the functional invariance property of the MLE.
Proposition 2.2. For any 1 ≤ i ≤ d, we have supp(ui) = supp(θi) and sign(uij) =
sign(θij), ∀ 1 ≤ j ≤ d.

Proof. For 1 ≤ i ≤ d, ui = (θi1/σ1, θi2/σ2, . . . , θid/σd), where (σ2
1 , . . . , σ2

d)T := diag(Σ).

It is easy to observe that the scale-invariant PCA is a safe procedure for dimension reduction when
variables are measured in different scales. Although there seems no theoretical advantage of scale-
invariant PCA over the PCA under the Gaussian model, in this paper we will show that under a more
general Nonparanormal (or Gaussian Copula) model, the scale-invariant PCA will pose much less
conditions to make the estimator achieve good theoretical performance.
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2.2 The Nonparanormal
We first introduce two definitions of the Nonparanormal separately defined in [15] and [14].
Definition 2.1 [15]. A random variable X = (X1, ..., Xd)T with population marginal means and
standard deviations µ = (µ1, . . . , µd)T and σ = (σ1. . . . , σd)T is said to follow a Nonparanormal
distribution NPNd(µ, Σ, f) if and only if there exists a set of univariate monotone transformations
f = {fj}dj=1 such that: f(X) = (f1(X1), ..., fd(Xd))T ∼ N(µ, Σ), and σ2

j = Σjj , j = 1, . . . , d.

Definition 2.2 [14]. Let f0 = {f0
j }dj=1 be a set of monotone univariate functions and Σ0 ∈ Rd×d

be a positive definite correlation matrix with diag(Σ0) = 1. We say that a d dimensional random
variable X = (X1, . . . , Xd)T follows a Nonparanormal distribution, i.e. X ∼ NPNd(Σ0, f0), if
f0(X) := (f0

1 (X1), . . . , f0
d (Xd))T ∼ N(0,Σ0).

The following lemma proves that two definitions of the Nonparanormal are equivalent.
Lemma 2.1. A random variable X ∼ NPNd(Σ0, f0) if and only if there exist µ = (µ1, . . . , µd)T ,
Σ = [Σjk] ∈ Rd×d such that for any 1 ≤ j, k ≤ d, E(Xj) = µj , Var(Xj) = Σjj and Σ0

jk =
Σjk√

Σjj ·Σkk

, and a set of monotone univariate functions f = {fj}dj=1 such that X ∼ NPNd(µ,Σ, f).

Proof. Using the connection that fj(x) = µj + σjf
0
j (x), for j ∈ {1, 2 . . . , d}.

Lemma 2.1 guarantees that the Nonparanormal is defined properly. Definition 2.2 is more appealing
because it emphasizes the correlation and hence matches the spirit of the Copula. However, Defini-
tion 2.1 enjoys notational simplicity in analyzing the Copula-based LDA and PCA approaches.

2.3 Spearman’s rho Correlation and Covariance Matrices
Given n data points x1, . . . , xn ∈ Rd, where xi = (xi1, . . . , xid)T , we denote by µ̂j :=
1
n

∑n
i=1 xij and σ̂j =

√
1
n

∑n
i=1(xij − µ̂j)2, the marginal sample means and standard devi-

ations. Because the Nonparanormal distribution preserves the rank of the data, it is natural to use the
nonparametric rank-based correlation coefficient estimator, Spearman’s rho, to estimate the latent
correlation. In detail, let rij be the rank of xij among x1j , . . . , xnj and r̄j := 1

n

∑n
i=1 rij = n+1

2 ,
we consider the following statistics: ρ̂jk =

∑n
i=1(rij−r̄j)(rik−r̄k)√∑n

i=1(rij−r̄j)2·
∑n

i=1(rik−r̄k)2
, and the correlation ma-

trix estimator: R̂jk = 2 sin(π
6 ρ̂jk). The Lemma 2.2, coming from [14], claims that the estimation

can reach the parametric rate.
Lemma 2.2 ([14]). When x1, . . . , xn ∼i.i.d NPNd(Σ0, f0), for any n ≥ 21

log d + 2,

P

(
‖R̂− Σ0‖max ≤ 8π

√
log d

n

)
≥ 1− 2/d2. (2.1)

We denote by R̂ := [R̂jk] the Spearman’s rho correlation coefficient matrix. In the following let
Ŝ := [Ŝjk] = [σ̂j σ̂kR̂jk] be the Spearman’s rho covariance matrix.

3 Methods
In Figure 1, we randomly generate 10,000 samples from three different types of Nonparanormal
distributions. We suppose that X ∼ NPN2(Σ0, f0). Here we set Σ0 =

(
1 0.5

0.5 1
)

and trans-

formation functions as follows: (A) f0
1 (x) = x3 and f0

2 (x) = x1/3; (B) f0
1 (x) = sign(x)x2 and

f0
2 (x) = x3; (C) f0

1 (x) = f0
2 (x) = Φ−1(x). It can be observed that there does not exist a nice

geometric explanation now. For example, researchers might wish to conduct PCA separately on
different clusters in (A) and (B). For (C), the data look very noisy and a nice major axis might be
considered not existing.
However, under the Nonparanormal model and realizing that there is a latent Gaussian distribution
behind, the geometric intuition of the PCA naturally comes back. In the next section, we will present
the model of the COCA and Copula PCA motivated from this observation.

3.1 COCA Model
We firstly present the model of the Copula Component Analysis (COCA) method, where the idea
of scale-invariant PCA is exploited and we wish to estimate the leading eigenvector of the latent
correlation matrix. In particular, the following modelM0(q, Rq,Σ0, f0) is considered:

M0(q, Rq,Σ0, f0) :

{
x1, . . . , xn ∼i.i.d NPNd(Σ0, f0),

θ1 ∈ Sd−1 ∩ Bq(Rq),
(3.1)
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Figure 1: Scatter plots of three Nonparanormals, X ∼ NPN2(Σ0, f0). Here Σ0
12 = 0.5 and

the transformation functions have the form as follows: (A) f0
1 (x) = x3 and f0

2 (x) = x1/3; (B)
f0
1 (x) = sign(x)x2 and f0

2 (x) = x3; (C) f0
1 (x) = f0

2 (x) = Φ−1(x).

where θ1 is the leading eigenvectors of the latent correlation matrix Σ0 we are interested in estimat-
ing, 0 ≤ q ≤ 1 and the `q ball Bq(Rq) is defined as:

when q = 0, B0(R0) := {v ∈ Rd : card(supp(v)) ≤ R0}; (3.2)

when 0 < q ≤ 1, Bq(Rq) := {v ∈ Rd : ‖v‖qq ≤ Rq}. (3.3)

Inspired by the model M0(q, Rq,Σ0, f0), we consider the following COCA estimator θ̃1, which
maximizes the following equation with the constraint that θ̃1 ∈ Bq(Rq) for some 0 ≤ q ≤ 1:

θ̃1 = arg max
v∈Rd

vT R̂v, subject to v ∈ Sd−1 ∩ Bq(Rq). (3.4)

Here R̂ is the estimated Spearman’s rho correlation coefficient matrix. The corresponding COCA
estimator θ̃1 can be considered as a nonlinear dimensional reduction procedure and has the potential
to gain more flexibility compared with the classical PCA. In Section 4 we will establish the theo-
retical results on the COCA estimator and will show that it can estimate the latent true dominant
eigenvector θ1 in a fast rate and can achieve feature selection consistency.

3.1.1 Copula PCA Model
In contrast, we provide another model inspired from the classical PCA method, where we wish to
estimate the leading eigenvector of the latent covariance matrix. In particular, the following model
M(q, Rq,Σ, f) is considered:

M(q, Rq,Σ, f) :

{
x1, . . . , xn ∼i.i.d NPNd(0,Σ, f),

u1 ∈ Sd−1 ∩ Bq(Rq),
(3.5)

where u1 is the leading eigenvector of the covariance matrix Σ and it is what we are interested in
estimating. The corresponding Copula PCA estimator is:

ũ1 = arg max
v∈Rd

vT Ŝv, subject to v ∈ Sd−1 ∩ Bq(Rq), (3.6)

where Ŝ is the Spearman’s rho covariance coefficient matrix. This procedure is named the Copula
PCA. In Section 4, we will show that the Copula PCA requires a much stronger condition than
COCA to make ũ1 converge to u1 in a fast rate.
3.2 Algorithms
In this section we provide three sparse PCA algorithms, where the Spearman’s rho correlation and
covariance matrices R̂ and Ŝ can be directly plugged in to obtain sparse estimators.

Penalized Matrix Decomposition (PMD) is proposed by [21]. The main idea of the PMD is a bi-
convex optimization algorithm to the following problem: arg maxu,v uT Γ̂v, subject to ‖u‖22 ≤
1, ‖v‖22 ≤ 1, ‖u‖1 ≤ δ, ‖v‖1 ≤ δ. The COCA with PMD and Copula PCA with PMD are listed in
the following: (1) Input: A symmetric matrix Γ̂. Initialize v ∈ Sd−1; (2) Iterate until convergence:
(a) u← arg maxu∈Rd uT Γ̂v subject to ‖u‖1 ≤ δ and ‖u‖22 ≤ 1.(b) v ← arg maxv∈Rd uT Γ̂v subject
to ‖v‖1 ≤ δ and ‖v‖22 ≤ 1; (3) Output: v. Here Γ̂ is either R̂ or Ŝ, corresponding to the COCA with
PMD and Copula PCA with PMD. δ is the tuning parameter. [21] suggest using the first leading
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eigenvector of Γ̂ to be the initial value of v. The PMD can be considered as a solver to Equation
(3.4) and Equation (3.6) with q = 1.

The SPCA algorithm is proposed by [25]. The main idea of the SPCA algorithm is to exploit a
regression approach to PCA and then utilize lasso and elastic net [24] to calculate a sparse estimator
to the leading eigenvector. The COCA with SPCA and Copula PCA with SPCA are listed as follows:
(1) Input: A symmetric matrix Γ̂. Initialize u ∈ Sd−1. (2). Iterate until convergence: (a) v ←
arg minv∈Rd(u− v)T Γ̂(u− v) + δ1‖v‖22 + δ2‖v‖1; (b) u← Γ̂v/‖Γ̂v‖2. (3) Output: v/‖v‖2. Here
Γ̂ is either R̂ or Ŝ, corresponding to the COCA with SPCA and Copula PCA with SPCA. δ1 ∈ R
and δ2 ∈ R are two tuning parameters. [25] suggest using the first leading eigenvector of Γ̂ to be the
initial value of v. The SPCA can be considered as a solver to Equations (3.4) and (3.6) with q = 1.

The Truncated Power method (TPower) is proposed by [23]. The main idea is to utilize the power
method, but truncate the vector to a `0 ball in each iteration. Actually, TPower can be generalized
to a family of algorithms to solve Equation (3.4) when 0 ≤ q ≤ 1. We name it the `q Constraint
Truncated Power Method (qTPM). Especially, when q = 0, the algorithm qTPM coincides with
[23]’s method. The TPower can be considered as a general solver to Equation (3.4) and Equation
(3.6) with q ∈ [0, 1]. In detail, we utilize the classical power method, but in each iteration t we
project the intermediate vector xt to the intersection of the d-dimension sphere Sd−1 and the `q ball
with the radius R

1/q
q . Detailed algorithms are presented in the long version of this paper [6].

4 Theoretical Properties
In this section we provide the theoretical properties of the COCA and Copula PCA methods. Espe-
cially, we are interested in the high dimensional case when d > n.

4.1 Rank-based Correlation and Covariance Matrices Estimation
This section is devoted to the statement of our result on quantifying the convergence rate of R̂ to Σ0

and Ŝ to Σ. In particular, we establish the results on the `max convergence rates of the Spearman’s
rho correlation and covariance matrices to Σ and Σ0. For COCA, Lemma 2.2 is enough. For Copula
PCA, however, we still need to quantify the convergence rate of Ŝ to Σ.
Definition 4.1 Subgaussian Transformation Function Class. Let Z ∈ R be a random variable
following the standard Gaussian distribution. The Subgaussian Transformation Function Class
TF(K) is defined as the set of functions {g0 : R → R} which satisfies that: E|g0(Z)|m ≤
m!
2 Km, ∀m ∈ Z+.

Here it is easy to see that for any function g0 : R → R, if there exists a constant L < ∞ such that
g0(z) ≤ L or g′0(z) ≤ L or g′′0 (z) ≤ L, ∀ z ∈ R, then g0 ∈ TF(K) for some constant K.
Then we have the following result, which states that Σ can also be recovered in the parametric rate.
Lemma 4.1. When x1, . . . , xn ∼i.i.d NPNd(µ,Σ, f), 0 < 1/c0 < min

j
{σj} < max

j
{σj} < c0 <

∞, for some constant c0 and g := {gj = f−1
j }dj=1 satisfies for all j = 1, . . . ,K, g2

j ∈ TF (K)
where K <∞ is some constant, we have for any 1 ≤ j, k ≤ d, for any n ≥ 21

log d + 2,

P(|Ŝjk − Σjk| > t) ≤ 2 exp(−c1nt2), (4.1)
where c1 is a constant only depending on the choice of K.
Remark 4.1. The Lemma 4.1 claims that, under certain constraint on the transformation functions,
the latent covariance matrix Σ can be recovered using the Spearman’s rho covariance matrix. How-
ever, in this case, the marginal distributions of the Nonparanormal are required to be sub-gaussian
and cannot be arbitrarily continuous. This makes the Copula PCA a less favored method.

4.2 COCA and Copula PCA
This section is devoted to the statement of our main result on the upper bound of the estimated error
of the COCA estimator and Copula PCA estimator.

Theorem 4.1 (Upper bound for the COCA). Let θ̃1 be the global solution to Equation (3.4) and
the Model M0(q, Rq,Σ0, f0) holds. For any two vectors v1 ∈ Sd−1 and v2 ∈ Sd−1, let
| sin∠(v1, v2)| =

√
1− (vT

1 v2)2, then we have, for any n ≥ 21
log d + 2,

P

(
sin2 ∠(θ̃1, θ1) ≤ γqR

2
q

(
64π2

(λ1 − λ2)2
· log d

n

) 2−q
2
)
≥ 1− 1/d2, (4.2)
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where γq = 2 · I(q = 1) + 4 · I(q = 0) + (1 +
√

3)2 · I(0 < q < 1).

Proof. The key idea of the proof is to utilize the `max norm convergence result of R̂ to Σ0. Detailed
proofs are presented in the long version of this paper [6].
Generally, when Rq and λ1, λ2 do not scale with (n, d), the rate is OP

(
( log d

n )1−q/2
)

, which is the
parametric rate [16, 20, 18] obtain. When (n, d) goes to infinity, the two dominant eigenvalues λ1

and λ2 will typically go to infinity and will at least be away from zero. Hence, our rate shown in

Equation (4.2) is better than the seemingly more state-of-art rate: γqR
2
q

(
64π2λ2

1
(λ1−λ2)2

· log d
n

) 2−q
2

.

The COCA is significantly different from [20] and [18]’s results in the sense that: (1) In theory,
the Nonparanormal family can have arbitrary continuous marginal distributions, where a fast rate
cannot be obtained using the techniques built for either Gaussian or sub-Gaussian distributions;
(2) In methodology, we utilize the Spearman’s rho correlation coefficient matrix R̂ to estimate Σ0,
instead of using the sample correlation matrix S0. This procedure has been shown to lose little in
rate and will be much more robust under the Nonparanormal model. Given Theorem 4.1, we can
immediately obtain a feature selection consistency result.

Corollary 4.1 (Feature Selection Consistency of the COCA). Let θ̃1 be the global solution to
Equation (3.4) and the Model M0(0, R0,Σ0, f0) holds. Let Θ0 := supp(θ1) and Θ̂0 :=

supp(θ̃1). If we further have minj∈Θ0 |θ1j | ≥ 16
√

2R0π
λ1−λ2

√
log d

n , then for any n ≥ 21/ log d + 2,

P(Θ̂0 = Θ0) ≥ 1− 1/d2.

Similarly, we can give an upper bound for the estimation rate of the Copula PCA to the true leading
eigenvalue u1 of the latent covariance matrix Σ. The next theorem provides the detail result.
Theorem 4.2 (Upper bound for Copula PCA). Let ũ1 be the global solution to Equation (3.6) and
the ModelM(q, Rq,Σ, f) holds. If g := {gj = f−1

j }dj=1 satisfies g2
j ∈ TF (K) for all 1 ≤ j ≤ d,

and 0 < 1/c0 < min
j
{σj} < max

j
{σj} < c0 <∞, then we have, for any n ≥ 21/ log d + 2,

P

(
sin2 ∠(ũ1, u1) ≤ γqR

2
q

(
4

c1(ω1 − ω2)2
· log d

n

) 2−q
2
)
≥ 1− 1/d2,

where γq = 2 · I(q = 1) + 4 · I(q = 0) + (1 +
√

3)2 · I(0 < q < 1) and c1 is a constant defined in
Equation (4.1), only depending on K.
Corollary 4.2 (Feature Selection Consistency of the Copula PCA). Let ũ1 be the global solution
to Equation (3.6) and the ModelM(0, R0,Σ, f) holds. Let Θ := supp(u1) and Θ̂ := supp(ũ1).
If g := {gj = f−1

j }dj=1 satisfies g2
j ∈ TF (K) for all 1 ≤ j ≤ d, and 0 < 1/c0 < minj{σj} <

maxj{σj} < c0 < ∞, and we further have minj∈Θ |u1j | ≥ 4
√

2R0√
c1(ω1−ω2)

√
log d

n , then for any

n ≥ 21
log d + 2, P(Θ̂ = Θ) ≥ 1− 1

d2 .

5 Experiments
In this section we investigate the empirical usefulness of the COCA method. Three sparse PCA
algorithms are considered: PMD proposed by [21], SPCA proposed by [25] and Truncated Power
method (TPower) proposed by [23]. The following three methods are considered: (1) Pearson:
the classic high dimensional PCA using the Pearson sample correlation matrix; (2) Spearman:
the COCA using the Spearman’s rho correlation coefficient matrix; (3) Oracle: the classic high
dimensional PCA using the Pearson sample correlation matrix of the data from the latent Gaussian
(perfect without contaminations).
5.1 Numerical Simulations
In the simulation study we randomly sample n data points x1, . . . , xn from the Nonparanormal
distribution X ∼ NPNd(Σ0, f0). Here we consider the setup of d = 100. We follow the
same generating scheme as in [19, 23] and [7]. A covariance matrix Σ is firstly synthesized
through the eigenvalue decomposition, where the first two eigenvalues are given and the corre-
sponding eigenvectors are pre-specified to be sparse. In detail, we suppose that the first two dom-
inant eigenvectors of Σ, u1 and u2, are sparse in the sense that only the first s = 10 entries of
u1 and the second s = 10 entries of u2 are nonzero and set to be 1/

√
10. ω1 = 5, ω2 = 2,
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ω3 = . . . = ωd = 1. The remaining eigenvectors are chosen arbitrarily. The correlation matrix
Σ0 is accordingly generated from Σ, with λ1 = 4, λ2 = 2.5, λ3, . . . , λd ≤ 1 and the two domi-
nant eigenvectors sparse. To sample data from the Nonparanormal, we also need the transformation
functions: f0 = {f0

j }dj=1. Here two types of transformation functions are considered: (1) Linear
transformation (or no transformation): f0

linear = {h0, h0, . . . , h0}, where h0(x) := x; (2)
Nonlinear transformation: there exist five univariate monotone functions h1, h2, . . . , h5 : R→ R
and f0

nonlinear = {h1, h2, h3, h4, h5, h1, h2, h3, h4, h5, . . .}, where h−1
1 (x) := x, h−1

2 (x) :=
sign(x)|x|1/2√∫

|t|φ(t)dt
, h−1

3 (x) := x3√∫
t6φ(t)dt

, h−1
4 (x) := Φ(x)−

∫
Φ(t)φ(t)dt√∫

(Φ(y)−
∫

Φ(t)φ(t)dt)2φ(y)dy
, h−1

5 (x) :=
exp(x)−

∫
exp(t)φ(t)dt√∫

(exp(y)−
∫

exp(t)φ(t)dt)2φ(y)dy
. Here φ and Φ are defined to be the probability density and cu-

mulative distribution functions of the standard Gaussian. h1, . . . , h5 are defined such that for any
Z ∼ N(0, 1), E(h−1

j (Z)) = 0 and Var(h−1
j (Z)) = 1 ∀ j ∈ {1, . . . , 5}. We then generate

n = 100, 200 or 500 data points from:

[Scheme 1] X ∼ NPNd(Σ0, f0
linear) where f0

linear = {h0, h0, . . . , h0} and Σ0 is defined as above.

[Scheme 2] X ∼ NPNd(Σ0, f0
nonlinear) where f0

nonlinear = {h1, h2, h3, h4, h5, . . .}.
To evaluate the robustness of different methods, we adopt a similar data contamination procedure as
in [14]. Let r ∈ [0, 1) represents the proportion of samples being contaminated. For each dimension,
we randomly select bnrc entries and replace them with either 5 or -5 with equal probability. The
final data matrix we obtained is X ∈ Rn×d. The PMD, SPCA and TPower algorithms are then
employed on X to computer the estimated leading eigenvector θ̃1.

Under the Scheme 1 and Scheme 2 with different levels of contamination (r = 0 or 0.05), we
repeatedly generate the data matrix X for 1,000 times and compute the averaged False Positive Rates
and False Negative Rates using a path of tuning parameters δ. The feature selection performances
of different methods are then evaluated. The corresponding ROC curves are presented in Figure 2.
More quantitative results are provided in the long version of this paper [6]. It can be observed that
when r = 0 and X is exactly Gaussian, Pearson,Spearman and Oracle can all recover the sparsity
pattern perfectly. However, when r > 0, the performances of Pearson significantly decrease, while
Spearman is still very close to the Oracle. In Scheme 2, even when r = 0, Pearson cannot recover
the support set of θ1, while Spearman can still recover the sparsity pattern almost perfectly. When
r > 0, the performance of Spearman is still very close to the Oracle.

r = 0 r = 0.05 r = 0 r = 0.05 r = 0 r = 0.05
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Figure 2: ROC curves for the PMD, SPCA and Truncated Power method (the left two, the middle
two, the right two) with linear (no) and nonlinear transformation (top, bottom) and data contamina-
tion at different levels (r = 0, 0.05). Here n = 100 and d = 100.

5.2 Large-scale Genomic Data Analysis
In this section we investigate the performance of Spearman compared with the Pearson using
one of the largest microarray datasets [17]. In summary, we collect in all 13,182 publicly available
microarray samples from Affymetrixs HGU133a platform. The raw data contain 20,248 probes and
13,182 samples belonging to 2,711 tissue types (e.g., lung cancers, prostate cancer, brain tumor etc.).
There are at most 1,599 samples and at least 1 sample belonging to each tissue type. We merge the
probes corresponding to the same gene. There are remaining 12,713 genes and 13,182 samples. This
dataset is non-Gaussian (see the long version of this paper [6]). The main purpose of this experiment
is to compare the performance of the COCA with the classical high dimensional PCA. We utilize the
Truncated Power method proposed by [23] to achieve the sparse estimated dominant eigenvectors.
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We adopt the same idea of data-preprocessing as in [14]. In particular, we firstly remove the batch
effect by applying the surrogate variable analysis proposed by [13]. We then extract the top 2,000
genes with the highest marginal standard deviations. There are, accordingly, 2,000 genes left and the
data matrix we are focusing is 2, 000×13, 182. We then explore several tissue types with the largest
sample size: (1) Breast tumor, 1,599 samples; (2) B cell lymphoma, 213 samples; (3) Prostate tumor,
148 samples; (4) Wilms tumor, 143 samples.
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Figure 3: The scatter plots of the first two principal components of the dataset. The Spearman
versus Pearson are compared (top to bottom). b cell lymphoma, breast tumor, prostate tumor and
Wilms tumor are explored (from left to right). Each black point represents a sample and each red
point represents a sample belonging to the corresponding tissue type.

For each tissue type listed above, we apply the COCA (Spearman) and the classic high dimensional
PCA (Pearson) on the data belonging to this specific tissue type and obtain the first two dominant
sparse eigenvectors. Here we set R0 = 100 for both eigenvectors. For COCA, we do a normal score
transformation on the original dataset. We subsequently project the whole dataset to the first two
principal components using the obtained eigenvectors. The according 2-dimension visualization is
illustrated in Figure 3. In Figure 3 each black point represents a sample and each red point represents
a sample belonging to the corresponding tissue type. It can be observed that, in 2D plots learnt by
the COCA, the red points are averagely more dense and more close to the border of the sample
cluster. The first phenomenon indicates that the COCA has the potential to preserve more common
information shared by samples from the same tissue type. The second phenomenon indicates that
the COCA has the potential to differentiate samples from different tissue types more efficiently.

6 Discussion and Comparison with Related Work
A similar principal component analysis procedure is proposed by [7], in which they advocate the
use of the transformed Kendall’s tau correlation matrix (instead of the Spearman’s rho correlation
matrix as in the current paper) for estimating the sparse leading eigenvectors. Though both papers
are working on principal component analysis, the core ideas are quite different: Firstly, the analy-
sis in [7] is based on a different distribution family called transelliptical, while COCA and Copula
PCA are based on the Nonparanormal family. Secondly, by improving the modeling flexibility, in
[7] there does not exist a scale-variant variant since it is hard to quantify the transformation func-
tions. In contrast, by introducing the subgaussian transformation function family, the current paper
provides sufficient conditions for Copula PCA to achieve parametric rates. Thirdly, the method in
[7] cannot explicitly conduct data visualization, due to the fact that the latent elliptical distribution
is unspecified and accordingly they cannot accurately estimate the marginal transformations. For
Copula PCA, we are able to provide the projection visualization such as in the experiment part of
this paper. Moreover, via quantifying a sharp convergence rate in estimating the marginal transfor-
mations, we can provide the convergence rates in estimating the principal components. Due to space
limit, we refer to the longer version of this paper [6] for more details. Finally, we recommend using
the Spearman’s rho instead of the Kendall’s tau in estimating the correlation coefficients provided
that the Nonparanormal model holds. This is because Spearman’s rho is statistically more efficient
than Kendall’tau within the Nonparanormal family. This research was supported by NSF award
IIS-1116730.
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