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Abstract

This paper presents a kernel-based discriminative legqrfnamework on prob-
ability measures. Rather than relying on large collectiohsectorial training
examples, our framework learns using a collection of prdipalistributions
that have been constructed to meaningfully representitigaohata. By represent-
ing these probability distributions as mean embeddingkérréproducing kernel
Hilbert space (RKHS), we are able to apply many standardekdrased learning
techniques in straightforward fashion. To accomplish, tis construct a gener-
alization of the support vector machine (SVM) called a suppmasure machine
(SMM). Our analyses of SMMs provides several insights ilhtirt relationship
to traditional SVMs. Based on such insights, we propose #bflex8VM (Flex-
SVM) that places different kernel functions on each tragnaxample. Experi-
mental results on both synthetic and real-world data detremieshe effectiveness
of our proposed framework.

1 Introduction

Discriminative learning algorithms are typically trainfedm large collections of vectorial training
examples. In many classical learning problems, howevisraiiguably more appropriate to represent
training data not as individual data points, but as prolitgtalistributions. There are, in fact, multiple
reasons why probability distributions may be preferable.

Firstly, uncertain or missing data naturally arises in mapplications. For example, gene expres-
sion data obtained from the microarray experiments are knimabe very noisy due to various
sources of variabilities [1]. In order to reduce uncertgiand to allow for estimates of confidence
levels, experiments are often replicated. Unfortunataky feasibility of replicating the microarray
experiments is often inhibited by cost constraints, as asthe amount of available mRNA. To cope
with experimental uncertainty given a limited amount ofedéttis natural to represent each array as
a probability distribution that has been designed to apiprate the variability of gene expressions
across slides.

Probability distributions may be equally appropriate gies abundance of training data. In data-
rich disciplines such as neuroinformatics, climate infatics, and astronomy, a high throughput
experiment can easily generate a huge amount of data, teaalisignificant computational chal-
lenges in both time and space. Instead of scaling up onewifgpalgorithms, one can scale down
one’s dataset by constructing a smaller collection of iisttons which represents groups of similar
samples. Besides computational efficiency, aggregatistgtatcan potentially incorporate higher-
level information that represents the collective behawsfanultiple data points.
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Previous attempts have been made to learn from distritaifigncreating positive definite (p.d.)
kernels on probability measures. [d [2], the probabilitpgurct kernel (PPK) was proposed as a
generalized inner product between two input objects, wisich fact closely related to well-known
kernels such as the Bhattacharyya kerhel [3] and the expiahesgmmetrized Kullback-Leibler
(KL) divergencel[[4]. In[[5], an extension of a two-paramétamily of Hilbertian metrics of Topsge
was used to define Hilbertian kernels on probability measure[d], the semi-group kernels were
designed for objects with additive semi-group structuiehsas positive measures. Recentfly, [7] in-
troduced nonextensive information theoretic kernels abability measures based on new Jensen-
Shannon-type divergences. Although these kernels haweprsuccessful in many applications,
they are designed specifically for certain properties dfithistions and application domains. More-
over, there has been no attempt in making a connection tcetimels on corresponding input spaces.

The contributions of this paper can be summarized as folldvirst, we prove the representer the-
orem for a regularization framework over the space of praibaldistributions, which is a gener-
alization of regularization over the input space on which distributions are defined (Sectigh 2).
Second, a family of positive definite kernels on distribnids introduced (Sectidd 3). Based on
such kernels, a learning algorithm on probability measoadedsupport measure machit8MM)

is proposed. An SVM on the input space is provably a specig ofthe SMM. Third, the paper
presents the relations between sample-based and digirithased methods (Sectibh 4). If the dis-
tributions depend only on the locations in the input spaoe IMM particularly reduces to a more
flexible SVM that places different kernels on each data point

2 Regularization on probability distributions

Given a non-empty set’, let & denote the set of all probability measufon a measurable
space(X, A), whereA is ac-algebra of subsets of. The goal of this work is to learn a function
h: 2 — Y given a set of example paif§P;, y;)} 7, , whereP; € &2 andy; € Y. In other words,
we consider a supervised setting in which input trainingmgxas are probability distributions. In
this paper, we focus on the binary classification probleen, Y, = {+1, —1}.

In order to learn from distributions, we employ a compactespntation that not only preserves
necessary information of individual distributions, bus@permits efficient computations. That is,
we adopt a Hilbert space embedding to represent the distibas a mean function in an RKHS
[8,[9]. Formally, letH denote an RKHS of functiong : X — R, endowed with a reproducing

kernelk : X x X — R. The mean map fron¥” into H is defined as

w: P —-H, P— /X E(x,-)dP(x) . Q)

We assume that(x, -) is bounded for any: € X. It can be shown that, i is characteristic, the map
(@ is injective, i.e., all the information about the dibtrtion is preserved [10]. For ari, letting
up = p(P), we have the reproducing property

Ep[f] = (up, fla, VfEH . 2
That is, we can see the mean embeddingas a feature map associated with the keriel:
P x P — R, defined ask (P, Q) = (up, pg)n. Sincesup, ||k(x,-)||lx < oo, it also follows
that K(P,Q) = [[(k(z,-),k(z,))n dP(z) dQ(z) = [[ k(z,z)dP(x) dQ(z), where the second
equality follows from the reproducing property &f. It is immediate thaf( is a p.d. kernel on”?.

The following theorem shows that optimal solutions of aatli# class of regularization problems
involving distributions can be expressed as a finite lineanlzination of mean embeddings.

Theorem 1. Given training example§P;,y;) € & x R, i = 1,...,m, a strictly monotonically
increasing functior : [0, +oc) — R, and a loss functiorf : (Z x R?)™ — R U {+o0o}, any
f € H minimizing the regularized risk functional

l (Ph Y1, EIPH [f]a v u]va Ym» ]E]P’m [f]) + Q (”fH'H) (3)
admits a representation of the forfn=>""" | a;up, for somew; € R, i =1,...,m.
Theoren(ll clearly indicates how each distribution contdbuto the minimizer of[{3). Roughly

speaking, the coefficients; controls the contribution of the distributions through thean em-
beddingsup,. Furthermore, if we restrict” to a class of Dirac measurés on X and consider



the training se{ (4., v:)}™,, the functionall(B) reduces to the usual regularizatiorcfiomal [11]
m

and the solution reduces b= >, a;k(z;,-). Therefore, the standard representer theorem is
recovered as a particular case (see alsb [12] for more demrstats on representer theorem).

Note that, on the one hand, the minimization problgim (3)ffedint from minimizing the functional
Ep, ... Ep, l(x1,y1, f(21),- - s Tm, Um, [(xm))+Q(]| fl%) for the special case of the additive loss
£. Therefore, the solution of our regularization problemifeedent from what one would get in the
limit by training on an infinitely many points sampled frdf, ..., P,,. On the other hand, it is
also different from minimizing the functiond( My, y1, f(M1), ..., My, Y, f (M) + Q] f %)
whereM; = E,p, [z]. In a sense, our framework is something in between.

3 Kernels on probability distributions

As the mapl(l) is linear i, optimizing the functional{3) amounts to finding a functiar{ that
approximate well functions fron# to R in the function classF £ {P — [, gdP|P € £, g €
C(X)} whereC(X) is a class of bounded continuous functions¥nSinced,, € & foranyx € X,
it follows thatC'(X') C F C C(Z?) whereC(Z?) is a class of bounded continuous functions#n
endowed with the topology of weak convergence and the assacBoreb-algebra. The following
lemma states the relation between the RKH$1duced by the kerndl and the function clasg.

Lemma 2. Assuming thatt' is compact, the RKH%( induced by a kernek is dense inF if k
is universal, ie for every functioR € F and every: > 0 there exists a functiop € H with
suppe o | F(P fngP’I Se.

Proof. Assume thak is universal. Then, for every functighe C'(X") and every: > 0 there exists a
functiong € H induced byk with sup, ¢ v |f(z)—g(z)| < ¢ [13]. Hence, by Iinearity of, for every
F € F and every: > 0 there exists a functioh € H such thatuppe »|F(P) — [hdP| <e. N

Nonlinear kernels or”? can be defined in an analogous way to nonlinear kernel¥ doy treating
mean embeddingsr of P € & as its feature representation. First, assume that the ap (1
injective and let-, -) »» be an inner product o#’. By linearity, we haveéP, Q) 5 = (up, 1) (Cf.

[8] for more details). Then, the nonlinear kernels@hcan be defined a& (P, Q) = x(up, pg) =
(W(pp), ¥ (o)), Wherex is a p.d. kernel. As a result, many standard nonlinear kewwrek’ can
be used to define nonlinear kernels@has long as the kernel evaluation depends entirely on the in-
ner product g, 1g)x, €.9.,K (P, Q) = ({up, ug)# + c)¢. Although requiring more computational
effort, their practical use is simple and flexible. Speclficahe notion of p.d. kernels on distri-
butions proposed in this work is so generic that standardetéunctions can be reused to derive
kernels on distributions that are different from many otkeznel functions proposed specifically for
certain distributions.

It has been recently proved that the Gaussian RBF kernehdiyek (P, Q) = exp(—3|lup —
roll3), VP,Q € 2 is universal w.r.tC(£?) given thatX is compact and the map is injective
[14]. Despite its success in real-world applications, theoty of kernel-based classifiers beyond
the input spac&r’ C R, as also mentioned bl [114], is still incomplete. It is therefof theoretical
interest to consider more general classes of universakkeom probability distributions.

3.1 Support measure machines

This subsection extends SVMs to deal with probability distiions, leading tasupport measure
machinegSMMs). In its general form, an SMM amounts to solving an SVMIipem with the
expected kerneK (P,Q) = E,p_.~q[k(z, z)]. This kernel can be computed in closed-form for
certain classes of distributions and kernel&€xamples are given in Tallé 1.

Alternatively, one can approximate the ker&(P, Q) by the empirical estimate:

m

ZZ (@i, 25) (4)

Where]IADn and @m are empirical distributions oP and Q given random sampleéz;}?” , and
{#;}72,, respectively. A finite sample of size from a distributior? suffices (with high probability)

Kemp(Pm Qm =

3



Table 1: the analytic forms of expected kernels for difféi@oices of kernels and distributions.

Distributions Embedding kernel k(z, y) K(P;,P;) = (up,, up, )1

Arbitrary P(m; ¥)  Linear(z, y) mim; + d;tr 3
GaussianV(m; )  Gaussian RBExp(—Z[jz — y[|?)  exp(—1(m; —my) (S + 55 + 7D~ (m; — my))
/NS + % + 1]
GaussianV(m;¥) Polynomial degree 2(z,y) + 1)2  ({m;, m;) + 1)? +tr 2;%; +m] S;m; + TTL;-—EjTTL]‘
GaussianV(m;¥) Polynomial degree 8(z,y) + 1)3  ({(m;,m;) + 1)3 + 6m] £;5;m;
+3({mi,mj) + 1)(tr 2,25 +m]Sm; + 7n;r21mj)

to compute an approximation within an error@(m—%). Instead, if the sample set is sufficiently
large, one may choose to approximate the true distributjositnpler probabilistic models, e.g., a
mixture of Gaussians model, and choose a keknghose expected value admits an analytic form.
Storing only the parameters of probabilistic models mayessume space compared to storing all
data points.

Note that the standard SVM feature mafx) is usually nonlinear inc, whereagup is linear in P.
Thus, for an SMM, the first level kernglis used to obtain a vectorial representation of the measures
and the second level kern&l allows for a nonlinear algorithm on distributions. For dgrwe will

refer tok and K as theembedding kerneland thelevel-2 kernel respectively

4 Theoretical analyses

This section presents key theoretical aspects of the peapframework, which reveal important
connection between kernel-based learning algorithms esplace of distributions and on the input
space on which they are defined.

4.1 Risk deviation bound

Given a training sample (P;, y;)}™, drawn i.i.d. from some unknown probability distribu-
tion P on & x ), a loss function/ : R x R — R, and a function clasg\, the goal of
statistical learning is to find the functiofi € A that minimizes the expected risk functional
R(f) = [5 [+ Ly, f(x))dP(x) dP(P,y). SinceP is unknown, the empirical risRemp(f) =
LS [y €yi, f(2)) dP;(z) based on the training sample is considered instead. Fovtirer
the risk functional can be simplified further by considerigg. 1" Z%NR_ Uy, f(x;;)) based
onn samples;; drawn from eact?;.

Our framework, on the other hand, alleviates the problem liyimizing the risk functional
RU(f) = [y, Ep[f(x)]) dP(P,y) for f € H with corresponding empirical risk functional
Rem(f) = L 3" €(y;, Bp, [ f(x)]) (cf. the discussion at the end of Sectidn 2). It is often easie
to optimizeRREmy(f) as the expectation can be computed exactly for certain eh@tP; and .
Moreover, for universal, this simplification preserves all information of the distitions. Never-
theless, there is still a loss of information due to the losgfion/.

Due to the i.i.d. assumption, the analysis of the differenesveenk andR* can be simplified
w.l.0.g. to the analysis of the difference betwé&ii/(y, f(x))] andl(y, Ep[f(x)]) for a particular
distributionlP € 2. The theorem below provides a bound on the difference betligl (v, f(x))]

and/(y, Ep[f(x)]).

Theorem 3. Given an arbitrary probability distributior® with varianceo?, a Lipschitz continu-
ous functionf : R — R with constantC';, an arbitrary loss functio? : R x R — R that is
Lipschitz continuous in the second argument with constanit follows that|E.p[¢(y, f(x))] —
0y, Eqrs[f(x)])] < 2C,Cyo for anyy € R.

TheoreniB indicates that if the random variablés concentrated around its mean and the func-
tion f and/ are well-behaved, i.e., Lipschitz continuous, then the besviation|Ep[¢(y, f(x))] —
L(y,Ep[f(x)])| will be small. As a result, if this holds for any distributid in the training set
{(P;,y;)}™,, the true risk deviatiofiR — R*| is also expected to be small.



4.2 Flexible support vector machines

It turns out that, for certain choices of distributiofisthe linear SMM trained using(P;, v; )},
is equivalent to an SVM trained using some samgdles, y;)}7*, with an appropriate choice of
kernel function.

Lemma 4. Letk(z, z) be a bounded p.d. kernel on a measure space suchffhatz, 2)? dz dz <
o0, and g(z,Z) be a square integrable function such thay(z,z)dz < oo for all . Given
a sample{(P;,y;)}™, where eachP; is assumed to have a density given ¢y, z), the lin-
ear SMM is equivalent to the SVM on the training samfdle;, ;) }7, with kernel K (z, z) =
J[ k(z,2)g(z,%)g(z, 2) dz dz.

Note that the important assumption for this equivalenckasthe distribution®; differ only in their
location in the parameter space. This need not be the caﬁepmsaible applications of SMMs.

Furthermore, we havi, (z, z) = ( [ k(Z,)g(z, %) dZ, [ k(Z,-)g(z, 2) dZ),, . Thus, itis clear that
the feature map of depends not only on the kerniglbut also on the dens@(x, z). Consequently,

by virtue of Lemmd}4, the kerndt, allows the SVM to place different kernels at each data point.
We call this algorithm dlexible SVM(Flex-SVM).

Consider for example the linear SMM with Gaussian distitng\ (x1; 0% -1), ..., N (2.,; 02, - 1)
and Gaussian RBF kerng)> with bandwidth parameter. The convolution theorem of Gaussian
distributions implies that this SMM is equivalent to a fldgit5VM that places a data-dependent
kernelkg2+2,,? (z4,) on training example;;, i.e., a Gaussian RBF kernel with larger bandwidth.

5 Related works

The kernelK (P,Q) = (up, ug)x is in fact a special case of the Hilbertian metfi¢ [5], witle th
associated kernél (P, Q) = Ep g[k(x, )], and a generative mean map kernel (GMMK) proposed
by [15]. In the GMMK, the kernel between two objeat@ndy is defined vig, andp,,, which are
estimated probabilistic models ofandy, respectively. That is, a probabilistic moggl is learned

for each example and used as a surrogate to construct thel ketween those examples. The idea
of surrogate kernels has also been adopted by the Propahitiluct Kernel (PPK]]2]. In this case,
we haveK,( = [, p(x)°p'(x)? dz, which has been shown to be a special case of GMMK
whenp = 1 [@] Consequently, GMMK PPK wnb«p = 1, and our linear kernels are equivalent
when the embedding kernel igz, 2') = §(x — 2’). More recently, the empirical kerndll (4) was
employed in an unsupervised way for multi-task learningenagalize to a previously unseen task
[16]. In contrast, we treat the probability distributiomsa supervised way (cf. the regularized
functional [3)) and the kernel is not restricted to only thep@ical kernel.

The use of expected kernels in dealing with the uncertaimtyhé input data has a connection to
robust SVMs. For instance, a generalized form of the SVM_ifi jihicorporates the probabilistic
uncertainty into the maximization of the margin. This résih a second-order cone programming
(SOCP) that generalizes the standard SVM. In SOCP, one neexpgecify the parameter, that
reflects the probability of correctly classifying tfth training example. The parameteiis therefore
closely related to the parametey, which specifies the variance of the distribution centeteithex
ith example. [[18] showed the equivalence between SVMs usipgated kernels and SOCP when
7, = 0. When7; > 0, the mean and covariance of missing kernel entries have estwmated
explicitly, making the SOCP more involved for nonlineartels. Although achieving comparable
performance to the standard SVM with expected kernels, @@FSrequires a more computationally
extensive SOCP solver, as opposed to simple quadraticgroging (QP).

6 Experimental results

In the experiments, we primarily consider three differemirhing algorithms: ipVM is considered

as a baseline algorithm. iAugmented SVM (ASVM) is an SVM trained on augmented samples
drawn according to the distributiod®;},. The same number of examples are drawn from each
distribution. iii) SMM is distribution- based method that can be applied directlihe distributior(s

We used the LIBSVM implementation.
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Table 2: accuracies (%) of SMM on synthetic data with differeombinations of embedding and
level-2 kernels.

Embedding kernels
LIN POLY2 POLY3 RBF URBF

E% LIN 85.20+2.20 81.043.11 81.1&¢2.76 87.742.19 85.3%2.56
9c POLY 83.95:2.11 81.341.21 82.66:1.75 88.06:1.73 86.84-1.51
42 RBF 87.8@:1.96 73.123.29 78.28&2.19 89.65+1.37 86.86+1.88

6.1 Synthetic data

Firstly, we conducted a basic experiment that illustratésnalamental difference between SVM,
ASVM, and SMM. A binary classification problem of 7 Gaussiastributions with different means
and covariances was considered. We trained the SVM usingtbalmeans of the distributions,
ASVM with 30 virtual examples generated from each distiilmutand SMM using distributions as
training examples. A Gaussian RBF kernel witk= 0.25 was used for all algorithms.

Figure[Ia shows the resulting decision boundaries. Havémm brained only on means of the dis-
tributions, the SVM classifier tends to overemphasize tg@re with high densities and underrep-
resent the lower density regions. In contrast, the ASVM isenexpensive and sensitive to outliers,
especially when learning on heavy-tailed distributionse BMM treats each distribution as a train-
ing example and implicitly incorporates properties of thgributions, i.e., means and covariances,
into the classifier. Note that the SVM can be trained to a&\similar result to the SMM by
choosing an appropriate value foi(cf. Lemmd#). Nevertheless, this becomes more difficuhief t
training distributions are, for example, nonisotropic &ade different covariance matrices.

Secondly, we evaluate the performance of the SMM for diffemmbinations of embedding and
level-2 kernels. Two classes of synthetic Gaussian digtdhs onR'° were generated. The mean
parameters of the positive and negative distributions arenally distributed with means:™ =
(1,...,1)andm™ = (2,...,2) and identical covariance matr®® = 0.5 - I, respectively. The
covariance matrix for each distribution is generated atiogrto two Wishart distributions with
covariance matrices given bly* = 0.6 - I;p andX~ = 1.2 - I} with 10 degrees of freedom.
The training set consists of 500 distributions from the fiesiclass and 500 distributions from the
negative class. The test set consists of 200 distributidgtistihe same class proportion.

The kernels used in the experiment include linear kerneN)Lpolynomial kernel of degree 2
(POLY?2), polynomial kernel of degree 3 (POLY3), unnormatizGaussian RBF kernel (RBF), and
normalized Gaussian RBF kernel (NRBF). To fix parametereslof both kernel functions and
SMM, 10-fold cross-validation (10-CV) is performed on agaeter gridC' € {273,272 ... 27}

for SMM, bandwidth parameter € {1073,1072,...,10?} for Gaussian RBF kernels, and degree
parameter € {2,3,4,5,6} for polynomial kernels. The average accuracy aridstandard de-
viation for all kernel combinations over 30 repetitions ezported in Tabl€]2. Moreover, we also
investigate the sensitivity of kernel parameters for twmkécombinations: RBF-RBF and POLY-
RBF. In this case, we consider the bandwidth parameter {1073,1072,...,103} for Gaussian
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Figure 2: the performance of SVM, ASVM, and SMM Figure 4: accuracies of four different
algorithms on handwritten digits constructed using three techniques for natural scene categoriza-
basic transformations. tion.

RBF kernels and degree parameter {2, 3, ..., 8} for polynomial kernels. Figurielb depicts the
accuracy values and average accuracies for considereel kenations.

Table2 indicates that both embedding and level-2 kernelsnaportant for the performance of the
classifier. The embedding kernels tend to have more impétteopredictive performance compared
to the level-2 kernels. This conclusion also coincides withresults depicted in Figurellb.

6.2 Handwritten digit recognition

In this section, the proposed framework is applied to distions over equivalence classes of images
that are invariant to basic transformations, nametgling translation androtation. We consider
the handwritten digits obtained from the USPS dataset. &oh & x 16 image, the distribution
over the equivalence class of the transformations is détedrby a prior on parameters associated
with such transformations. Scaling and translation ararpetrized by the scale factds,, s,,) and
displacement§t,, t,,) along ther andy axes, respectively. The rotation is parametrized by aneangl
6. We adopt Gaussian distributions as prior distributiomslLiding/\V'([1, 1], 0.1-I5), N([0, 0], 5-I2),
andN (0; 7). For each image, the virtual examples are obtained by sagiplirameter values from
the distribution and applying the transformation accaogtin

Experiments are categorized into simple and difficult birdassification tasks. The former consists
of classifying digit 1 against digit 8 and digit 3 againstitiy The latter considers classifying digit 3
against digit 8 and digit 6 against digit 9. The initial date®r each task is constructed by randomly
selecting 100 examples from each class. Then, for each égamghe initial dataset, we generate
10, 20, and 30 virtual examples using the aforementionedfoamations to construct virtual data
sets consisting of 2,000, 4,000, and 6,000 examples, ridaglgc One third of examples in the
initial dataset are used as a test set. The original exanapéesxcluded from the virtual datasets.
The virtual examples are normalized such that their featatees are if0,1]. Then, to reduce
computational cost, principle component analysis (PCAeisormed to reduce the dimensionality
to 16. We compare the SVM on the initial dataset, the ASVM awintual datasets, and the SMM.
For SVM and ASVM, the Gaussian RBF kernel is used. For SMM, mpley the empirical kernel
(@) with Gaussian RBF kernel as a base kernel. The paranuétiénes algorithms are fixed by 10-CV
over parameter§' € {273,272, ..., 27} andy € {0.01,0.1,1}.

The results depicted in Figuré 2 clearly demonstrate thefiisof learning directly from the equiv-
alence classes of digits under basic transformafidnsmost cases, the SMM outperforms both the
SVM and the ASVM as the number of virtual examples increasésteover, Figuré 13 shows the
benefit of the SMM over the ASVM in term of computational Eost

2While the reported results were obtained using virtual examples with Gausaiameter distributions
(Sec[B.R), we got similar results using uniform distributions.

%The evaluation was made on a 64-bit desktop computer with@n@bre" 2 Duo CPU E8400 at
3.00GHz<2 and 4GB of memory.



6.3 Natural scene categorization

This section illustrates benefits of the nonlinear kernelsvben distributions for learning natural
scene categories in which the bag-of-word (BoW) representét used to represent images in the
dataset. Each image is represented as a collection of latelhes, each being a codeword from a
large vocabulary of codewords called codebook. Standaktl Bxpresentations encode each image
as a histogram that enumerates the occurrence probalfilityad patches detected in the image w.r.t.
those in the codebook. On the other hand, our setting refisesach image as a distribution over
these codewords. Thus, images of different scenes tendm&rate distinct set of patches. Based
on this representation, both the histogram and the locahpatcan be used in our framework.

We use the dataset presented_in [19]. According to theiltsssuost errors occurs among the four
indoor categories (830 images), namely, bedroom (174 is)atieing room (289 images), kitchen
(151 images), and office (216 images). Therefore, we willfoan these four categories. For each
category, we split the dataset randomly into two separaseo$@nages, 100 for training and the rest
for testing.

A codebook is formed from the training images of all categmriFirstly, interesting keypoints in the
image are randomly detected. Local patches are then gedezetordingly. After patch detection,
each patch is transformed into a 128-dim SIFT vec¢tor [20yeGihe collection of detected patches,
K-means clustering is performed over all local patches. dBauids are then defined as the centers
of the learned clusters. Then, each patch in an image is rdappee codeword and the image can
be represented by the histogram of the codewords. In additie also have ai/ x 128 matrix of
SIFT vectors wheré/ is the number of codewords.

We compare the performance of a Probabilistic Latent Samamalysis (pLSA) with the stan-
dard BoW representation, SVM, linear SMM (LSMM), and noekin SMM (NLSMM). For
SMM, we use the empirical embedding kernel with Gaussian R&se kernek: K (h; h;) =
SM S M hi(er)hj(cs)k(er, ¢s) whereh,; is the histogram of théth image and:, is the rth
SIFT vector. A Gaussian RBF kernel is also used as the lekelr2el for nonlinear SMM. For
the SVM, we adopt a Gaussian RBF kernel with-distance between the histogrars][21], i.e.,

K (hy, hy) = exp (—yx?(hi, hy)) wherex?(h;, h;) = M % The parameters of

the algorithms are fixed by 10-CV over parametérs {273,272,...,27} andy € {0.01,0.1,1}.
For NLSMM, we use the bestof LSMM in the base kernel and perform 10-CV to choegsaram-
eter only for the level-2 kernel. To deal with multiple cateigs, we adopt the pairwise approach
and voting scheme to categorize test images. The resultigingf4 illustrate the benefit of the
distribution-based framework. Understanding the contéx complex scene is challenging. Em-
ploying distribution-based methods provides an elegant @fautilizing higher-order statistics in
natural images that could not be captured by traditionalpdesiased methods.

7 Conclusions

This paper proposes a method for kernel-based discrimebtarning on probability distributions.
The trick is to embed distributions into an RKHS, resultingai simple and efficient learning al-
gorithm on distributions. A family of linear and nonlineagrkels on distributions allows one to
flexibly choose the kernel function that is suitable for tmelgpems at hand. Our analyses provide
insights into the relations between distribution-basethods and traditional sample-based meth-
ods, particularly the flexible SVM that allows the SVM to pdadifferent kernels on each training
example. The experimental results illustrate the benefiteasning from a pool of distributions,
compared to a pool of examples, both on synthetic and redBwlata.
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