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Abstract

This paper presents a kernel-based discriminative learning framework on prob-
ability measures. Rather than relying on large collectionsof vectorial training
examples, our framework learns using a collection of probability distributions
that have been constructed to meaningfully represent training data. By represent-
ing these probability distributions as mean embeddings in the reproducing kernel
Hilbert space (RKHS), we are able to apply many standard kernel-based learning
techniques in straightforward fashion. To accomplish this, we construct a gener-
alization of the support vector machine (SVM) called a support measure machine
(SMM). Our analyses of SMMs provides several insights into their relationship
to traditional SVMs. Based on such insights, we propose a flexible SVM (Flex-
SVM) that places different kernel functions on each training example. Experi-
mental results on both synthetic and real-world data demonstrate the effectiveness
of our proposed framework.

1 Introduction

Discriminative learning algorithms are typically trainedfrom large collections of vectorial training
examples. In many classical learning problems, however, itis arguably more appropriate to represent
training data not as individual data points, but as probability distributions. There are, in fact, multiple
reasons why probability distributions may be preferable.

Firstly, uncertain or missing data naturally arises in manyapplications. For example, gene expres-
sion data obtained from the microarray experiments are known to be very noisy due to various
sources of variabilities [1]. In order to reduce uncertainty, and to allow for estimates of confidence
levels, experiments are often replicated. Unfortunately,the feasibility of replicating the microarray
experiments is often inhibited by cost constraints, as wellas the amount of available mRNA. To cope
with experimental uncertainty given a limited amount of data, it is natural to represent each array as
a probability distribution that has been designed to approximate the variability of gene expressions
across slides.

Probability distributions may be equally appropriate given an abundance of training data. In data-
rich disciplines such as neuroinformatics, climate informatics, and astronomy, a high throughput
experiment can easily generate a huge amount of data, leading to significant computational chal-
lenges in both time and space. Instead of scaling up one’s learning algorithms, one can scale down
one’s dataset by constructing a smaller collection of distributions which represents groups of similar
samples. Besides computational efficiency, aggregate statistics can potentially incorporate higher-
level information that represents the collective behaviorof multiple data points.
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Previous attempts have been made to learn from distributions by creating positive definite (p.d.)
kernels on probability measures. In [2], the probability product kernel (PPK) was proposed as a
generalized inner product between two input objects, whichis in fact closely related to well-known
kernels such as the Bhattacharyya kernel [3] and the exponential symmetrized Kullback-Leibler
(KL) divergence [4]. In [5], an extension of a two-parameterfamily of Hilbertian metrics of Topsøe
was used to define Hilbertian kernels on probability measures. In [6], the semi-group kernels were
designed for objects with additive semi-group structure such as positive measures. Recently, [7] in-
troduced nonextensive information theoretic kernels on probability measures based on new Jensen-
Shannon-type divergences. Although these kernels have proven successful in many applications,
they are designed specifically for certain properties of distributions and application domains. More-
over, there has been no attempt in making a connection to the kernels on corresponding input spaces.

The contributions of this paper can be summarized as follows. First, we prove the representer the-
orem for a regularization framework over the space of probability distributions, which is a gener-
alization of regularization over the input space on which the distributions are defined (Section 2).
Second, a family of positive definite kernels on distributions is introduced (Section 3). Based on
such kernels, a learning algorithm on probability measurescalledsupport measure machine(SMM)
is proposed. An SVM on the input space is provably a special case of the SMM. Third, the paper
presents the relations between sample-based and distribution-based methods (Section 4). If the dis-
tributions depend only on the locations in the input space, the SMM particularly reduces to a more
flexible SVM that places different kernels on each data point.

2 Regularization on probability distributions

Given a non-empty setX , let P denote the set of all probability measuresP on a measurable
space(X ,A), whereA is aσ-algebra of subsets ofX . The goal of this work is to learn a function
h : P → Y given a set of example pairs{(Pi, yi)}mi=1, wherePi ∈ P andyi ∈ Y. In other words,
we consider a supervised setting in which input training examples are probability distributions. In
this paper, we focus on the binary classification problem, i.e.,Y = {+1,−1}.

In order to learn from distributions, we employ a compact representation that not only preserves
necessary information of individual distributions, but also permits efficient computations. That is,
we adopt a Hilbert space embedding to represent the distribution as a mean function in an RKHS
[8, 9]. Formally, letH denote an RKHS of functionsf : X → R, endowed with a reproducing
kernelk : X × X → R. The mean map fromP intoH is defined as

µ : P → H, P 7−→

∫

X

k(x, ·) dP(x) . (1)

We assume thatk(x, ·) is bounded for anyx ∈ X . It can be shown that, ifk is characteristic, the map
(1) is injective, i.e., all the information about the distribution is preserved [10]. For anyP, letting
µP = µ(P), we have the reproducing property

EP[f ] = 〈µP, f〉H, ∀f ∈ H . (2)

That is, we can see the mean embeddingµP as a feature map associated with the kernelK :
P × P → R, defined asK(P,Q) = 〈µP, µQ〉H. Sincesupx ‖k(x, ·)‖H < ∞, it also follows
thatK(P,Q) =

∫∫
〈k(x, ·), k(z, ·)〉H dP(x) dQ(z) =

∫∫
k(x, z) dP(x) dQ(z), where the second

equality follows from the reproducing property ofH. It is immediate thatK is a p.d. kernel onP.

The following theorem shows that optimal solutions of a suitable class of regularization problems
involving distributions can be expressed as a finite linear combination of mean embeddings.

Theorem 1. Given training examples(Pi, yi) ∈ P × R, i = 1, . . . ,m, a strictly monotonically
increasing functionΩ : [0,+∞) → R, and a loss functionℓ : (P × R2)m → R ∪ {+∞}, any
f ∈ H minimizing the regularized risk functional

ℓ (P1, y1,EP1
[f ], . . . ,Pm, ym,EPm

[f ]) + Ω (‖f‖H) (3)

admits a representation of the formf =
∑m

i=1 αiµPi
for someαi ∈ R, i = 1, . . . ,m.

Theorem 1 clearly indicates how each distribution contributes to the minimizer of (3). Roughly
speaking, the coefficientsαi controls the contribution of the distributions through themean em-
beddingsµPi

. Furthermore, if we restrictP to a class of Dirac measuresδx on X and consider
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the training set{(δxi
, yi)}

m
i=1, the functional (3) reduces to the usual regularization functional [11]

and the solution reduces tof =
∑m

i=1 αik(xi, ·). Therefore, the standard representer theorem is
recovered as a particular case (see also [12] for more general results on representer theorem).

Note that, on the one hand, the minimization problem (3) is different from minimizing the functional
EP1

. . .EPm
ℓ(x1, y1, f(x1), . . . , xm, ym, f(xm))+Ω(‖f‖H) for the special case of the additive loss

ℓ. Therefore, the solution of our regularization problem is different from what one would get in the
limit by training on an infinitely many points sampled fromP1, . . . ,Pm. On the other hand, it is
also different from minimizing the functionalℓ(M1, y1, f(M1), . . . ,Mm, ym, f(Mm)) + Ω(‖f‖H)
whereMi = Ex∼Pi

[x]. In a sense, our framework is something in between.

3 Kernels on probability distributions

As the map (1) is linear inP, optimizing the functional (3) amounts to finding a functionin H that
approximate well functions fromP to R in the function classF , {P →

∫
X
g dP |P ∈ P, g ∈

C(X )} whereC(X ) is a class of bounded continuous functions onX . Sinceδx ∈ P for anyx ∈ X ,
it follows thatC(X ) ⊂ F ⊂ C(P) whereC(P) is a class of bounded continuous functions onP

endowed with the topology of weak convergence and the associated Borelσ-algebra. The following
lemma states the relation between the RKHSH induced by the kernelk and the function classF .

Lemma 2. Assuming thatX is compact, the RKHSH induced by a kernelk is dense inF if k
is universal, i.e., for every functionF ∈ F and everyε > 0 there exists a functiong ∈ H with
supP∈P |F (P)−

∫
g dP| ≤ ε.

Proof. Assume thatk is universal. Then, for every functionf ∈ C(X ) and everyε > 0 there exists a
functiong ∈ H induced byk with supx∈X |f(x)−g(x)| ≤ ε [13]. Hence, by linearity ofF , for every
F ∈ F and everyε > 0 there exists a functionh ∈ H such thatsupP∈P |F (P)−

∫
h dP| ≤ ε. �

Nonlinear kernels onP can be defined in an analogous way to nonlinear kernels onX , by treating
mean embeddingsµP of P ∈ P as its feature representation. First, assume that the map (1) is
injective and let〈·, ·〉P be an inner product onP. By linearity, we have〈P,Q〉P = 〈µP, µQ〉H (cf.
[8] for more details). Then, the nonlinear kernels onP can be defined asK(P,Q) = κ(µP, µQ) =
〈ψ(µP), ψ(µQ)〉Hκ

whereκ is a p.d. kernel. As a result, many standard nonlinear kernels onX can
be used to define nonlinear kernels onP as long as the kernel evaluation depends entirely on the in-
ner product〈µP, µQ〉H, e.g.,K(P,Q) = (〈µP, µQ〉H+ c)d. Although requiring more computational
effort, their practical use is simple and flexible. Specifically, the notion of p.d. kernels on distri-
butions proposed in this work is so generic that standard kernel functions can be reused to derive
kernels on distributions that are different from many otherkernel functions proposed specifically for
certain distributions.

It has been recently proved that the Gaussian RBF kernel given by K(P,Q) = exp(−γ
2 ‖µP −

µQ‖
2
H
), ∀P,Q ∈ P is universal w.r.tC(P) given thatX is compact and the mapµ is injective

[14]. Despite its success in real-world applications, the theory of kernel-based classifiers beyond
the input spaceX ⊂ Rd, as also mentioned by [14], is still incomplete. It is therefore of theoretical
interest to consider more general classes of universal kernels on probability distributions.

3.1 Support measure machines

This subsection extends SVMs to deal with probability distributions, leading tosupport measure
machines(SMMs). In its general form, an SMM amounts to solving an SVM problem with the
expected kernelK(P,Q) = Ex∼P,z∼Q[k(x, z)]. This kernel can be computed in closed-form for
certain classes of distributions and kernelsk. Examples are given in Table 1.

Alternatively, one can approximate the kernelK(P,Q) by the empirical estimate:

Kemp(P̂n, Q̂m) =
1

n ·m

n∑

i=1

m∑

j=1

k(xi, zj) (4)

where P̂n and Q̂m are empirical distributions ofP and Q given random samples{xi}ni=1 and
{zj}

m
j=1, respectively. A finite sample of sizem from a distributionP suffices (with high probability)
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Table 1: the analytic forms of expected kernels for different choices of kernels and distributions.

Distributions Embedding kernel k(x, y) K(Pi,Pj) = 〈µPi
, µPj

〉H

Arbitrary P(m; Σ) Linear〈x, y〉 mT

i mj + δij tr Σi

GaussianN (m; Σ) Gaussian RBFexp(−γ
2 ‖x− y‖2) exp(− 1

2 (mi −mj)
T(Σi +Σj + γ−1

I)−1(mi −mj))

/|γΣi + γΣj + I|
1

2

GaussianN (m; Σ) Polynomial degree 2(〈x, y〉+ 1)2 (〈mi,mj〉+ 1)2 + tr ΣiΣj +mT

i Σjmi +mT

j Σimj

GaussianN (m; Σ) Polynomial degree 3(〈x, y〉+ 1)3 (〈mi,mj〉+ 1)3 + 6mT

i ΣiΣjmj

+3(〈mi,mj〉+ 1)(tr ΣiΣj +mT

i Σjmi +mT

j Σimj)

to compute an approximation within an error ofO(m−
1

2 ). Instead, if the sample set is sufficiently
large, one may choose to approximate the true distribution by simpler probabilistic models, e.g., a
mixture of Gaussians model, and choose a kernelk whose expected value admits an analytic form.
Storing only the parameters of probabilistic models may save some space compared to storing all
data points.

Note that the standard SVM feature mapφ(x) is usually nonlinear inx, whereasµP is linear in P.
Thus, for an SMM, the first level kernelk is used to obtain a vectorial representation of the measures,
and the second level kernelK allows for a nonlinear algorithm on distributions. For clarity, we will
refer tok andK as theembedding kerneland thelevel-2 kernel, respectively

4 Theoretical analyses

This section presents key theoretical aspects of the proposed framework, which reveal important
connection between kernel-based learning algorithms on the space of distributions and on the input
space on which they are defined.

4.1 Risk deviation bound

Given a training sample{(Pi, yi)}
m
i=1 drawn i.i.d. from some unknown probability distribu-

tion P on P × Y, a loss functionℓ : R × R → R, and a function classΛ, the goal of
statistical learning is to find the functionf ∈ Λ that minimizes the expected risk functional
R(f) =

∫
P

∫
X
ℓ(y, f(x)) dP(x) dP(P, y). SinceP is unknown, the empirical riskRemp(f) =

1
m

∑m
i=1

∫
X
ℓ(yi, f(x)) dPi(x) based on the training sample is considered instead. Furthermore,

the risk functional can be simplified further by considering1
m·n

∑m
i=1

∑
xij∼Pi

ℓ(yi, f(xij)) based
onn samplesxij drawn from eachPi.

Our framework, on the other hand, alleviates the problem by minimizing the risk functional
Rµ(f) =

∫
P
ℓ(y,EP[f(x)]) dP(P, y) for f ∈ H with corresponding empirical risk functional

Rµ
emp(f) =

1
m

∑m
i=1 ℓ(yi,EPi

[f(x)]) (cf. the discussion at the end of Section 2). It is often easier
to optimizeRµ

emp(f) as the expectation can be computed exactly for certain choices ofPi andH.
Moreover, for universalH, this simplification preserves all information of the distributions. Never-
theless, there is still a loss of information due to the loss functionℓ.

Due to the i.i.d. assumption, the analysis of the differencebetweenR andRµ can be simplified
w.l.o.g. to the analysis of the difference betweenEP[ℓ(y, f(x))] andℓ(y,EP[f(x)]) for a particular
distributionP ∈ P. The theorem below provides a bound on the difference betweenEP[ℓ(y, f(x))]
andℓ(y,EP[f(x)]).

Theorem 3. Given an arbitrary probability distributionP with varianceσ2, a Lipschitz continu-
ous functionf : R → R with constantCf , an arbitrary loss functionℓ : R × R → R that is
Lipschitz continuous in the second argument with constantCℓ, it follows that|Ex∼P[ℓ(y, f(x))] −
ℓ(y,Ex∼P[f(x)])| ≤ 2CℓCfσ for anyy ∈ R.

Theorem 3 indicates that if the random variablex is concentrated around its mean and the func-
tion f andℓ are well-behaved, i.e., Lipschitz continuous, then the loss deviation|EP[ℓ(y, f(x))] −
ℓ(y,EP[f(x)])| will be small. As a result, if this holds for any distributionPi in the training set
{(Pi, yi)}

m
i=1, the true risk deviation|R −Rµ| is also expected to be small.
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4.2 Flexible support vector machines

It turns out that, for certain choices of distributionsP, the linear SMM trained using{(Pi, yi)}
m
i=1

is equivalent to an SVM trained using some samples{(xi, yi)}
m
i=1 with an appropriate choice of

kernel function.

Lemma 4. Letk(x, z) be a bounded p.d. kernel on a measure space such that
∫∫

k(x, z)2 dx dz <
∞, and g(x, x̃) be a square integrable function such that

∫
g(x, x̃) dx̃ < ∞ for all x. Given

a sample{(Pi, yi)}
m
i=1 where eachPi is assumed to have a density given byg(xi, x), the lin-

ear SMM is equivalent to the SVM on the training sample{(xi, yi)}
m
i=1 with kernelKg(x, z) =∫∫

k(x̃, z̃)g(x, x̃)g(z, z̃) dx̃ dz̃.

Note that the important assumption for this equivalence is that the distributionsPi differ only in their
location in the parameter space. This need not be the case in all possible applications of SMMs.

Furthermore, we haveKg(x, z) =
〈∫

k(x̃, ·)g(x, x̃) dx̃,
∫
k(z̃, ·)g(z, z̃) dz̃

〉
H

. Thus, it is clear that
the feature map ofx depends not only on the kernelk, but also on the densityg(x, x̃). Consequently,
by virtue of Lemma 4, the kernelKg allows the SVM to place different kernels at each data point.
We call this algorithm aflexible SVM(Flex-SVM).

Consider for example the linear SMM with Gaussian distributionsN (x1;σ
2
1 · I), . . . ,N (xm;σ2

m · I)
and Gaussian RBF kernelkσ2 with bandwidth parameterσ. The convolution theorem of Gaussian
distributions implies that this SMM is equivalent to a flexible SVM that places a data-dependent
kernelkσ2+2σ2

i
(xi, ·) on training examplexi, i.e., a Gaussian RBF kernel with larger bandwidth.

5 Related works

The kernelK(P,Q) = 〈µP, µQ〉H is in fact a special case of the Hilbertian metric [5], with the
associated kernelK(P,Q) = EP,Q[k(x, x̃)], and a generative mean map kernel (GMMK) proposed
by [15]. In the GMMK, the kernel between two objectsx andy is defined viâpx andp̂y, which are
estimated probabilistic models ofx andy, respectively. That is, a probabilistic modelp̂x is learned
for each example and used as a surrogate to construct the kernel between those examples. The idea
of surrogate kernels has also been adopted by the Probability Product Kernel (PPK) [2]. In this case,
we haveKρ(p, p

′) =
∫
X
p(x)ρp′(x)ρ dx, which has been shown to be a special case of GMMK

whenρ = 1 [15]. Consequently, GMMK, PPK withρ = 1, and our linear kernels are equivalent
when the embedding kernel isk(x, x′) = δ(x − x′). More recently, the empirical kernel (4) was
employed in an unsupervised way for multi-task learning to generalize to a previously unseen task
[16]. In contrast, we treat the probability distributions in a supervised way (cf. the regularized
functional (3)) and the kernel is not restricted to only the empirical kernel.

The use of expected kernels in dealing with the uncertainty in the input data has a connection to
robust SVMs. For instance, a generalized form of the SVM in [17] incorporates the probabilistic
uncertainty into the maximization of the margin. This results in a second-order cone programming
(SOCP) that generalizes the standard SVM. In SOCP, one needsto specify the parameterτi that
reflects the probability of correctly classifying theith training example. The parameterτi is therefore
closely related to the parameterσi, which specifies the variance of the distribution centered at the
ith example. [18] showed the equivalence between SVMs using expected kernels and SOCP when
τi = 0. Whenτi > 0, the mean and covariance of missing kernel entries have to beestimated
explicitly, making the SOCP more involved for nonlinear kernels. Although achieving comparable
performance to the standard SVM with expected kernels, the SOCP requires a more computationally
extensive SOCP solver, as opposed to simple quadratic programming (QP).

6 Experimental results

In the experiments, we primarily consider three different learning algorithms: i)SVM is considered
as a baseline algorithm. ii)Augmented SVM (ASVM) is an SVM trained on augmented samples
drawn according to the distributions{Pi}mi=1. The same number of examples are drawn from each
distribution. iii)SMM is distribution-based method that can be applied directly on the distributions1.

1We used the LIBSVM implementation.
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(a) decision boundaries.
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Figure 1: (a) the decision boundaries of SVM, ASVM, and SMM. (b) the heatmap plots of average
accuracies of SMM over 30 experiments using POLY-RBF (center) and RBF-RBF (right) kernel
combinations with the plots of average accuracies at different parameter values (left).

Table 2: accuracies (%) of SMM on synthetic data with different combinations of embedding and
level-2 kernels.

Embedding kernels
LIN POLY2 POLY3 RBF URBF

Le
ve

l-2
ke

rn
el

s LIN 85.20±2.20 81.04±3.11 81.10±2.76 87.74±2.19 85.39±2.56
POLY 83.95±2.11 81.34±1.21 82.66±1.75 88.06±1.73 86.84±1.51
RBF 87.80±1.96 73.12±3.29 78.28±2.19 89.65±1.37 86.86±1.88

6.1 Synthetic data

Firstly, we conducted a basic experiment that illustrates afundamental difference between SVM,
ASVM, and SMM. A binary classification problem of 7 Gaussian distributions with different means
and covariances was considered. We trained the SVM using only the means of the distributions,
ASVM with 30 virtual examples generated from each distribution, and SMM using distributions as
training examples. A Gaussian RBF kernel withγ = 0.25 was used for all algorithms.

Figure 1a shows the resulting decision boundaries. Having been trained only on means of the dis-
tributions, the SVM classifier tends to overemphasize the regions with high densities and underrep-
resent the lower density regions. In contrast, the ASVM is more expensive and sensitive to outliers,
especially when learning on heavy-tailed distributions. The SMM treats each distribution as a train-
ing example and implicitly incorporates properties of the distributions, i.e., means and covariances,
into the classifier. Note that the SVM can be trained to achieve a similar result to the SMM by
choosing an appropriate value forγ (cf. Lemma 4). Nevertheless, this becomes more difficult if the
training distributions are, for example, nonisotropic andhave different covariance matrices.

Secondly, we evaluate the performance of the SMM for different combinations of embedding and
level-2 kernels. Two classes of synthetic Gaussian distributions onR10 were generated. The mean
parameters of the positive and negative distributions are normally distributed with meansm+ =
(1, . . . , 1) andm− = (2, . . . , 2) and identical covariance matrixΣ = 0.5 · I10, respectively. The
covariance matrix for each distribution is generated according to two Wishart distributions with
covariance matrices given byΣ+ = 0.6 · I10 andΣ− = 1.2 · I10 with 10 degrees of freedom.
The training set consists of 500 distributions from the positive class and 500 distributions from the
negative class. The test set consists of 200 distributions with the same class proportion.

The kernels used in the experiment include linear kernel (LIN), polynomial kernel of degree 2
(POLY2), polynomial kernel of degree 3 (POLY3), unnormalized Gaussian RBF kernel (RBF), and
normalized Gaussian RBF kernel (NRBF). To fix parameter values of both kernel functions and
SMM, 10-fold cross-validation (10-CV) is performed on a parameter grid,C ∈ {2−3, 2−2, . . . , 27}
for SMM, bandwidth parameterγ ∈ {10−3, 10−2, . . . , 102} for Gaussian RBF kernels, and degree
parameterd ∈ {2, 3, 4, 5, 6} for polynomial kernels. The average accuracy and±1 standard de-
viation for all kernel combinations over 30 repetitions arereported in Table 2. Moreover, we also
investigate the sensitivity of kernel parameters for two kernel combinations: RBF-RBF and POLY-
RBF. In this case, we consider the bandwidth parameterγ = {10−3, 10−2, . . . , 103} for Gaussian
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Figure 2: the performance of SVM, ASVM, and SMM
algorithms on handwritten digits constructed using three
basic transformations.
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techniques for natural scene categoriza-
tion.

RBF kernels and degree parameterd = {2, 3, . . . , 8} for polynomial kernels. Figure 1b depicts the
accuracy values and average accuracies for considered kernel functions.

Table 2 indicates that both embedding and level-2 kernels are important for the performance of the
classifier. The embedding kernels tend to have more impact onthe predictive performance compared
to the level-2 kernels. This conclusion also coincides withthe results depicted in Figure 1b.

6.2 Handwritten digit recognition

In this section, the proposed framework is applied to distributions over equivalence classes of images
that are invariant to basic transformations, namely,scaling, translation, androtation. We consider
the handwritten digits obtained from the USPS dataset. For each16 × 16 image, the distribution
over the equivalence class of the transformations is determined by a prior on parameters associated
with such transformations. Scaling and translation are parametrized by the scale factors(sx, sy) and
displacements(tx, ty) along thex andy axes, respectively. The rotation is parametrized by an angle
θ. We adopt Gaussian distributions as prior distributions, includingN ([1, 1], 0.1·I2),N ([0, 0], 5·I2),
andN (0;π). For each image, the virtual examples are obtained by sampling parameter values from
the distribution and applying the transformation accordingly.

Experiments are categorized into simple and difficult binary classification tasks. The former consists
of classifying digit 1 against digit 8 and digit 3 against digit 4. The latter considers classifying digit 3
against digit 8 and digit 6 against digit 9. The initial dataset for each task is constructed by randomly
selecting 100 examples from each class. Then, for each example in the initial dataset, we generate
10, 20, and 30 virtual examples using the aforementioned transformations to construct virtual data
sets consisting of 2,000, 4,000, and 6,000 examples, respectively. One third of examples in the
initial dataset are used as a test set. The original examplesare excluded from the virtual datasets.
The virtual examples are normalized such that their featurevalues are in[0, 1]. Then, to reduce
computational cost, principle component analysis (PCA) isperformed to reduce the dimensionality
to 16. We compare the SVM on the initial dataset, the ASVM on the virtual datasets, and the SMM.
For SVM and ASVM, the Gaussian RBF kernel is used. For SMM, we employ the empirical kernel
(4) with Gaussian RBF kernel as a base kernel. The parametersof the algorithms are fixed by 10-CV
over parametersC ∈ {2−3, 2−2, . . . , 27} andγ ∈ {0.01, 0.1, 1}.

The results depicted in Figure 2 clearly demonstrate the benefits of learning directly from the equiv-
alence classes of digits under basic transformations2. In most cases, the SMM outperforms both the
SVM and the ASVM as the number of virtual examples increases.Moreover, Figure 3 shows the
benefit of the SMM over the ASVM in term of computational cost3.

2While the reported results were obtained using virtual examples with Gaussian parameter distributions
(Sec. 6.2), we got similar results using uniform distributions.

3The evaluation was made on a 64-bit desktop computer with IntelR© Core
TM

2 Duo CPU E8400 at
3.00GHz×2 and 4GB of memory.
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6.3 Natural scene categorization

This section illustrates benefits of the nonlinear kernels between distributions for learning natural
scene categories in which the bag-of-word (BoW) representation is used to represent images in the
dataset. Each image is represented as a collection of local patches, each being a codeword from a
large vocabulary of codewords called codebook. Standard BoW representations encode each image
as a histogram that enumerates the occurrence probability of local patches detected in the image w.r.t.
those in the codebook. On the other hand, our setting represents each image as a distribution over
these codewords. Thus, images of different scenes tends to generate distinct set of patches. Based
on this representation, both the histogram and the local patches can be used in our framework.

We use the dataset presented in [19]. According to their results, most errors occurs among the four
indoor categories (830 images), namely, bedroom (174 images), living room (289 images), kitchen
(151 images), and office (216 images). Therefore, we will focus on these four categories. For each
category, we split the dataset randomly into two separate sets of images, 100 for training and the rest
for testing.

A codebook is formed from the training images of all categories. Firstly, interesting keypoints in the
image are randomly detected. Local patches are then generated accordingly. After patch detection,
each patch is transformed into a 128-dim SIFT vector [20]. Given the collection of detected patches,
K-means clustering is performed over all local patches. Codewords are then defined as the centers
of the learned clusters. Then, each patch in an image is mapped to a codeword and the image can
be represented by the histogram of the codewords. In addition, we also have anM × 128 matrix of
SIFT vectors whereM is the number of codewords.

We compare the performance of a Probabilistic Latent Semantic Analysis (pLSA) with the stan-
dard BoW representation, SVM, linear SMM (LSMM), and nonlinear SMM (NLSMM). For
SMM, we use the empirical embedding kernel with Gaussian RBFbase kernelk: K(hi,hj) =∑M

r=1

∑M
s=1 hi(cr)hj(cs)k(cr, cs) wherehi is the histogram of theith image andcr is the rth

SIFT vector. A Gaussian RBF kernel is also used as the level-2kernel for nonlinear SMM. For
the SVM, we adopt a Gaussian RBF kernel withχ2-distance between the histograms [21], i.e.,

K(hi,hj) = exp
(
−γχ2(hi,hj)

)
whereχ2(hi,hj) =

∑M
r=1

(hi(cr)−hj(cr))
2

hi(cr)+hj(cr)
. The parameters of

the algorithms are fixed by 10-CV over parametersC ∈ {2−3, 2−2, . . . , 27} andγ ∈ {0.01, 0.1, 1}.
For NLSMM, we use the bestγ of LSMM in the base kernel and perform 10-CV to chooseγ param-
eter only for the level-2 kernel. To deal with multiple categories, we adopt the pairwise approach
and voting scheme to categorize test images. The results in Figure 4 illustrate the benefit of the
distribution-based framework. Understanding the contextof a complex scene is challenging. Em-
ploying distribution-based methods provides an elegant way of utilizing higher-order statistics in
natural images that could not be captured by traditional sample-based methods.

7 Conclusions

This paper proposes a method for kernel-based discriminative learning on probability distributions.
The trick is to embed distributions into an RKHS, resulting in a simple and efficient learning al-
gorithm on distributions. A family of linear and nonlinear kernels on distributions allows one to
flexibly choose the kernel function that is suitable for the problems at hand. Our analyses provide
insights into the relations between distribution-based methods and traditional sample-based meth-
ods, particularly the flexible SVM that allows the SVM to place different kernels on each training
example. The experimental results illustrate the benefits of learning from a pool of distributions,
compared to a pool of examples, both on synthetic and real-world data.
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