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Abstract

The problem of estimation of entropy functionals of probability densities
has received much attention in the information theory, machine learning
and statistics communities. Kernel density plug-in estimators are simple,
easy to implement and widely used for estimation of entropy. However, for
large feature dimension d, kernel plug-in estimators suffer from the curse
of dimensionality: the MSE rate of convergence is glacially slow - of order
O(T−γ/d), where T is the number of samples, and γ > 0 is a rate para-
meter. In this paper, it is shown that for sufficiently smooth densities, an
ensemble of kernel plug-in estimators can be combined via a weighted con-
vex combination, such that the resulting weighted estimator has a superior
parametric MSE rate of convergence of order O(T−1). Furthermore, it is
shown that these optimal weights can be determined by solving a convex
optimization problem which does not require training data or knowledge of
the underlying density, and therefore can be performed offline. This novel
result is remarkable in that, while each of the individual kernel plug-in es-
timators belonging to the ensemble suffer from the curse of dimensionality,
by appropriate ensemble averaging we can achieve parametric convergence
rates.

1 Introduction

Non-linear entropy functionals of a multivariate density f of the form
∫

g(f(x), x)f(x)dx
arise in applications including machine learning, signal processing, mathematical statistics,
and statistical communication theory. Important examples of such functionals include Shan-
non and Rényi entropy. Entropy based applications include image registration and texture
classification, ICA, anomaly detection, data and image compression, testing of statistical
models and parameter estimation. For details and other applications, see, for example, Beir-
lant et al. [2] and Leonenko et al. [18]. In these applications, the functional of interest must
be estimated empirically from sample realizations of the underlying densities. Several estim-
ators of entropy measures have been proposed for general multivariate densities f . These
include consistent estimators based on histograms [10, 2], kernel density plug-in estimators,
entropic graphs [5, 20], gap estimators [24] and nearest neighbor distances [8, 18, 19].

Kernel density plug-in estimators [1, 6, 11, 15, 12] are simple, easy to implement, computa-
tionally fast and therefore widely used for estimation of entropy [2, 23, 14, 4, 13]. However,
these estimators suffer from mean squared error (MSE) rates which typically grow with
feature dimension d as O(T−γ/d), where T is the number of samples and γ is a positive rate
parameter.
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In this paper, we propose a novel weighted ensemble kernel density plug-in estimator

of entropy Ĝw, that achieves parametric MSE rates of O(T−1) when the feature dens-

ity is smooth. The estimator is constructed as a weighted convex combination Ĝw =
∑

l∈l̄ w(l)Ĝk(l) of individual kernel density plug-in estimators Ĝk(l) wrt the weights

{w(l); l ∈ l̄}. Here, l̄ is a vector of indices {l1, .., lL} and k(l) = l
√

T/2 is proportional

to the the volume of the kernel bins used in evaluating Ĝk(l). The individual kernel estim-

ators Ĝk(l) are similar to the data-split kernel estimator of Györfi and van der Muelen [11],

and have slow MSE rates of convergence of order O(T−1/1+d). Please refer to Section 2 for

the exact definition of Ĝk(l).

The principal result presented in this paper is as follows. It is shown that the weights
{w(l); l ∈ l̄} can be chosen so as to significantly improve the rate of MSE convergence

of the weighted estimator Ĝw. In fact our ensemble averaging method can improve MSE

convergence of Ĝw to the parametric rate O(T−1). These optimal weights can be determined
by solving a convex optimization problem. Furthermore, this optimization problem does not
involve any density-dependent parameters and can therefore be performed offline.

1.1 Related work

Ensemble based methods have been previously proposed in the context of classification. For
example, in both boosting [21] and multiple kernel learning [16] algorithms, lower complexity
weak learners are combined to produce classifiers with higher accuracy. Our work differs
from these methods in several ways. First and foremost, our proposed method performs
estimation rather than classification. An important consequence of this is that the weights
we use are data independent , while the weights in boosting and multiple kernel learning
must be estimated from training data since they depend on the unknown distribution.

Birge and Massart [3] show that for density f in a Holder smoothness class with s de-
rivatives, the minimax MSE rate for estimation of a smooth functional is T−2γ, where
γ = min{1/2, 4s/(4s+ d)}. This means that for s > 4/d, parametric rates are achievable.
The kernel estimators proposed in this paper require higher order smoothness conditions
on the density, i. e. the density must be s > d times differentiable. While there exist other
estimators [17, 7] that achieve parametric MSE rates of O(1/T ) when s > 4/d, these es-
timators are more difficult to implement than kernel density estimators, which are a staple
of many toolboxes in machine learning, pattern recognition, and statistics. The proposed
ensemble weighted estimator is a simple weighted combination of off-the-shelf kernel density
estimators.

1.2 Organization

The reminder of the paper is organized as follows. We formally describe the kernel plug-in
entropy estimators for entropy estimation in Section 2 and discuss the MSE convergence
properties of these estimators. In particular, we establish that these estimators have MSE
rate which decays as O(T−1/1+d). Next, we propose the weighted ensemble of kernel en-
tropy estimators in Section 3. Subsequently, we provide an MSE-optimal set of weights as
the solution to a convex optimization(3.4) and show that the resultant optimally weighted
estimator has a MSE of O(T−1). We present simulation results in Section 4 that illustrate
the superior performance of this ensemble entropy estimator in the context of (i) estimation
of the Panter-Dite distortion-rate factor [9] and (ii) testing the probability distribution of a
random sample. We conclude the paper in Section 5.

Notation

We will use bold face type to indicate random variables and random vectors and regular
type face for constants. We denote the expectation operator by the symbol E, the variance
operator as V[X] = E[(X− E[X])2], and the bias of an estimator by B.
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2 Entropy estimation

This paper focuses on the estimation of general non-linear functionals G(f) of d-dimensional
multivariate densities f with known support S = [a, b]d, where G(f) has the form

G(f) =

∫

g(f(x), x)f(x)dµ(x), (2.1)

for some smooth function g(f, x). Let B denote the boundary of S. Here, µ denotes the
Lebesgue measure and E denotes statistical expectation with respect to the density f . As-
sume that T = N +M i.i.d realizations of feature vectors {X1, . . . ,XN ,XN+1, . . . ,XN+M}
are available from the density f . In the sequel f will be called the feature density.

2.1 Plug-in estimators of entropy

A truncated kernel density estimator with uniform kernel is defined below. Our proposed
weighted ensemble method applies to other types of kernels as well but we specialize to
uniform kernels as it makes the derivations clearer. For integer 1 ≤ k ≤ M , define the
distance dk to be: dk = (k/M)1/d. Define the truncated kernel bin region for each X ∈ S
to be Sk(X) = {Y ∈ S : ||X − Y ||1 ≤ dk/2}, and the volume of the truncated kernel bins
to be Vk(X) =

∫

Sk(X)
dz. Note that when the smallest distance from X to S is greater

than dk, Vk(X) = ddk = k/M . Let lk(X) denotes the number of points falling in Sk(X):

lk(X) =
∑M

i=1 1{Xi∈Sk(X)}. The truncated kernel density estimator is defined as

f̂k(X) =
lk(X)

MVk(X)
. (2.2)

The plug-in estimator of the density functional is constructed using a data splitting ap-
proach as follows. The data is randomly subdivided into two parts {X1, . . . ,XN} and
{XN+1, . . . ,XN+M} of N and M points respectively. In the first stage, we estimate

the kernel density estimate f̂k at the N points {X1, . . . ,XN} using the M realizations
{XN+1, . . . ,XN+M}. Subsequently, we use the N samples {X1, . . . ,XN} to approximate
the functional G(f) and obtain the plug-in estimator:

Ĝk =
1

N

N
∑

i=1

g(f̂k(Xi),Xi). (2.3)

Also define a standard kernel density estimator with uniform kernel f̃k(X), which is identical

to f̂k(X) except that the volume Vk(X) is always set to be Vk(X) = k/M . Define

G̃k =
1

N

N
∑

i=1

g(f̃k(Xi),Xi). (2.4)

The estimator G̃k is identical to the estimator of Györfi and van der Muelen [11]. Observe

that the implementation of G̃k, unlike Ĝk, does not require knowledge about the support
of the density.

2.1.1 Assumptions

We make a number of technical assumptions that will allow us to obtain tight MSE con-
vergence rates for the kernel density estimators defined in above. These assumptions are
comparable to other rigorous treatments of entropy estimation. Please refer to Section
II, [2] for details. (A.0) : Assume that the kernel bandwidth satisfies k = k0M

β for any
rate constant 0 < β < 1, and assume that M , N and T are linearly related through the
proportionality constant αfrac with: 0 < αfrac < 1, M = αfracT and N = (1 − αfrac)T .
(A.1) : Let the feature density f be uniformly bounded away from 0 and upper bounded
on the set S, i.e., there exist constants ǫ0, ǫ∞ such that 0 < ǫ0 ≤ f(x) ≤ ǫ∞ < ∞ ∀x ∈ S.
(A.2): Assume that the density f has continuous partial derivatives of order d in the in-
terior of the set S, and that these derivatives are upper bounded. (A.3): Assume that the

3



function g(f, x) has max{λ, d} partial derivatives w.r.t. the argument f , where λ satisfies
the conditions λβ > 1. Denote the n-th partial derivative of g(f, x) wrt x by g(n)(f, x).
Also, let g′(f, x) := g(1)(f, x) and g′′(f, x) := g(2)(f, x). (A.4): Assume that the absolute
value of the functional g(f, x) and its partial derivatives are strictly bounded away from
∞ in the range ǫ0 < x < ǫ∞ for all y. (A.5): Let ǫ ∈ (0, 1) and δ ∈ (2/3, 1). Let C(M)
be a positive function satisfying the condition C(M) = O(exp(−Mβ(1−δ))). For some fixed
0 < ǫ < 1, define pl = (1 − ǫ)ǫ0 and pu = (1 + ǫ)ǫ∞. Assume that the following four condi-
tions are satisfied by h(f, x) = g(f, x), g(3)(f, x) and g(λ)(f, x) : (i) supx |h(0, x)| = G1 < ∞,
(ii) supf∈(pl,pu),x |h(f, x)| = G2/4 < ∞, (iii) supf∈(1/k,pu),x |h(f, x)|C(M) = G3 < ∞, and

(iv)E[supf∈(pl,2dM/k),x |h(f, x)|]C(M) = G4 < ∞.

2.1.2 Analysis of MSE

Under these assumptions, we have shown the following (please see [22] for the proof) :

Theorem 1. The bias of the plug-in estimators Ĝk, G̃k is given by

B(Ĝk) =
∑

i∈I

c1,i

(

k

M

)i/d

+
c2
k

+ o

(

1

k
+

k

M

)

B(G̃k) = c1

(

k

M

)1/d

+
c2
k

+ o

(

1

k
+

k

M

)

.

Theorem 2. The variance of the plug-in estimators Ĝk, G̃k is given by

V(Ĝk) = c4

(

1

N

)

+ c5

(

1

M

)

+ o

(

1

M
+

1

N

)

V(G̃k) = c4

(

1

N

)

+ c5

(

1

M

)

+ o

(

1

M
+

1

N

)

.

In the above expressions, c1,i, c1, c2, c4 and c5 are constants that depend only on g, f and
their partial derivatives, and I = {1, . . . , d}. In particular, the constants c1,i, c1, c2, c4 and
c5 are independent of k,N and M .

2.1.3 Optimal MSE rate

From Theorem 1, k → ∞ and k/M → 0 for the estimators Ĝk and G̃k to be unbiased.
Likewise from Theorem 2 N → ∞ and M → ∞ for the variance of the estimator to
converge to 0. We can optimize the choice of bandwidth k, and the data splitting proportions
N/(N +M), M/(N +M) for minimum M.S.E.

Minimizing the MSE over k is equivalent to minimizing the bias over k. The optimal choice
of k is given by kopt = O(M1/(1+d)), and the bias evaluated at kopt is O(M−1/(1+d)). Also

observe that the MSE of Ĝk and G̃k is dominated by the squared bias (O(M−2/(1+d))) as
contrasted to the variance (O(1/N + 1/M)). This implies that the asymptotic MSE rate of
convergence is invariant to selected proportionality constant αfrac. The optimal MSE for

the estimators Ĝk and G̃k is therefore achieved for the choice of k = O(M1/(1+d)), and is

given by O(T−2/(1+d)). In particular, observe that both Ĝk and G̃k have identical optimal
rates of MSE convergence. Our goal is to reduce the estimator MSE to O(T−1). We do so
by applying the method of weighted ensembles described next in section 3.

3 Ensemble estimators

For a positive integer L > d, choose l̄ = {l1, . . . , lL} to be a vector of distinct positive real

numbers. Define the mapping k(l) = l
√
M and let k̄ = {k(l); l ∈ l̄}. Observe that any k ∈ k̄

corresponds to the rate constant β = 0.5, and that N = Θ(T ) and M = Θ(T ). Define the
weighted ensemble estimator

Ĝw =
∑

l∈l̄

w(l)Ĝk(l). (3.1)
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Theorem 3. There exists a weight vector w∗ such that

E[(Ĝw∗ −G(f))2] = O(1/T ).

This weight vector can be found by solving a convex optimization. Furthermore, this op-
timal weight vector does not depend on the unknown feature density f or the samples
{X1, ..,XN+M}, and hence can be solved off-line.

Proof. For each i ∈ I, define γw(i) =
∑

l∈l̄ w(l)l
i/d. The bias of the ensemble estimator

follows from Theorem 1 and is given by

B[Ĝw] =
∑

i∈I

c1,iγw(i)M
−i/2d +O

(

1√
T

)

. (3.2)

Denote the covariance matrix of {Ĝk(l); l ∈ l̄} by ΣL. Let Σ̄L = ΣLT . Observe that by

(2.5) and the Cauchy-Schwarz inequality, the entries of Σ̄L are O(1). The variance of the

weighted estimator Ĝw can then be bound as follows:

V[Ĝw] = V





∑

l∈l̄

wlĜk(l)



 = w′ΣLw =
w′Σ̄Lw

T
≤ λmax(Σ̄L)||w||22

T
. (3.3)

We seek a weight vector w that (i) ensures that the bias of the weighted estimator is
O(T−1/2) and (ii) has low ℓ2 norm ||w||2 in order to limit the contribution of the variance
of the weighted estimator. To this end, let w∗ be the solution to the convex optimization
problem

minimize
w

||w||2

subject to
∑

l∈l̄

w(l) = 1,

|γw(i)| = 0, i ∈ I.

(3.4)

This problem is equivalent to minimizing ||w||2 subject to A0w = b, where A0 and b are
defined below. Let fIN : I → {1, .., I} be a bijective mapping. Let a0 be the vector of

ones: [1, 1..., 1]1×L; and let afIN (i), for i ∈ I be given by afIN (i) = [l
i/d
1 , .., l

i/d
L ]. Define

A0 = [a′0, a
′
1, ..., a

′
I ]

′, A1 = [a′1, ..., a
′
I ] and b = [1; 0; 0; ..; 0](I+1)×1. Observe that the entries

of A0 and b are O(1), and therefore the entries of the solution w∗ are O(1). Consequently,

by (3.2), the bias B[Ĝw∗] = O(1/
√
T ). Furthermore, the optimal minimum η(d) := ||w∗||2

is given by η(d) =
√

det(A1A′
1)/det(A0A′

0). By (6.4), the estimator variance V[Ĝw∗] is of
order O(η(d)/T ). This concludes the proof.

While we have illustrated the weighted ensemble method only in the context of kernel
estimators, this method can be applied to any general ensemble of estimators that satisfy
bias and variance conditions C .1 and C .2 in [22].

4 Experiments

We illustrate the superior performance of the proposed weighted ensemble estimator for two
applications: (i) estimation of the Panter-Dite rate distortion factor, and (ii) estimation of
entropy to test for randomness of a random sample.

4.1 Panter-Dite factor estimation

For a d-dimensional source with underlying density f , the Panter-Dite distortion-rate
distortion-rate function [9] for a q-dimensional vector quantizer with n levels of quantiz-
ation is given by δ(n) = n−2/q

∫

f q/(q+2)(x)dx. The Panter-Dite factor corresponds to the
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(b) Variation of MSE of Panter-Dite factor estimates as a function of di-
mension d. From the figure, we see that the MSE of the proposed weighted
estimator has the slowest rate of growth with increasing dimension d.

Figure 1: Variation of MSE of Panter-Dite factor estimates using standard kernel plug-in es-
timator [12], truncated kernel plug-in estimator (2.3), histogram plug-in estimator[11], k-NN
estimator [19], entropic graph estimator [6,21] and the weighted ensemble estimator (3.1).

functional G(f) with g(f, x) = n−2/qf−2/(q+2)I(f > 0) + I(f = 0), where I(.) is the indic-
ator function. The Panter-Dite factor is directly related to the Rényi α-entropy, for which
several other estimators have been proposed.

In our simulations we compare six different choices of functional estimators - the three
estimators previously introduced: (i) the standard kernel plug-in estimator Ĝk, (ii) the

boundary truncated plug-in estimator Ĝk and (iii) the weighted estimator Ĝw with optimal
weight w = w∗ given by (3.4), and in addition the following popular entropy estimators: (iv)
histogram plug-in estimator [10], (v) k-nearest neighbor (k-NN) entropy estimator [18] and

(vi) entropic k-NN graph estimator [5, 20]. For both G̃k and Ĝk, we select the bandwidth
parameter k as a function of M according to the optimal proportionality k = M1/(1+d) and
N = M = T/2. To illustrate the weighted estimator of the Panter-Dite factor we assume
that f is the d = 6 dimensional mixture density f(a, b, p, d) = pfβ(a, b, d) + (1 − p)fu(d);
where fβ(a, b, d) is a d-dimensional Beta density with parameters a = 6, b = 6, fu(d) is a
d-dimensional uniform density and the mixing ratio p is 0.8.

4.1.1 Variation of MSE with sample size T

The MSE results of these different estimators are shown in Fig. 1(a) as a function of sample

size T . It is clear from the figure that the proposed ensemble estimator Ĝw has significantly
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Figure 2: Entropy estimates using standard kernel plug-in estimator, truncated kernel plug-
in estimator and the weighted estimator, for random samples corresponding to hypothesis
H0 and H1. The weighted estimator provided better discrimination ability by suppressing
the bias, at the cost of some additional variance.

faster rate of convergence while the MSE of the rest of the estimators, including the truncated
kernel plug-in estimator, have similar, slow rates of convergence. It is therefore clear that the
proposed optimal ensemble averaging significantly accelerates the MSE convergence rate.

4.1.2 Variation of MSE with dimension d

The MSE results of these different estimators are shown in Fig. 1(b) as a function of di-
mension d, for fixed sample size T = 3000. For the standard kernel plug-in estimator and
truncated kernel plug-in estimator, the MSE varies exponentially with d as expected. The
MSE of the histogram and k-NN estimators increase at a similar rate, indicating that these
estimators suffer from the curse of dimensionality as well. The MSE of the weighted estim-
ator on the other hand increases at a slower rate, which is in agreement with our theory that
the MSE is O(η(d)/T ) and observing that η(d) is an increasing function of d. Also observe
that the MSE of the weighted estimator is significantly smaller than the MSE of the other
estimators for all dimensions d > 3.

4.2 Distribution testing

In this section, Shannon differential entropy is estimated using the function g(f, x) =
− log(f)I(f > 0) + I(f = 0) and used as a test statistic to test for the underlying probab-
ility distribution of a random sample. In particular, we draw 500 instances each of random
samples of size 103 from the probability distribution f(a, b, p, d), described in Sec. 4. 1, with
fixed d = 6, p = 0.75 for two sets of values of a, b under the null and alternate hypothesis,
H0 : a = a0, b = b0 versus H1 : a = a1, b = b1.

First, we fix a0 = b0 = 6 and a1 = b1 = 5. We note that the underlying density under the
null hypothesis f(6, 6, 0.75, 6) has greater curvature relative to f(5, 5, 0.75, 6) and therefore

has smaller entropy (randomness). The true entropy, and entropy estimates using G̃k, Ĝk

and Ĝw for the cases corresponding to each of the 500 instances of hypothesis H0 and H1

are shown in Fig. 2(a). From this figure, it is apparent that the weighted estimator provides
better discrimination ability by suppressing the bias, at the cost of some additional variance.

To demonstrate that the weighted estimator provides better discrimination, we plot the
histogram envelope of the entropy estimates using standard kernel plug-in estimator, trun-
cated kernel plug-in estimator and the weighted estimator for the cases corresponding to
the hypothesis H0 (color coded blue) and H1 (color coded red) in Fig. 2(b). Furthermore,
we quantitatively measure the discriminative ability of the different estimators using the
deflection statistic ds = |µ1 − µ0|/

√

σ2
0 + σ2

1 , where µ0 and σ0 (respectively µ1 and σ1) are

7



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False Positive rate

F
al

se
 N

eg
at

iv
e 

ra
te

 

 

Standard kernel plug−in estimator
Truncated kernel plug−in estimator
Weighted estimator

(a) ROC curves corresponding to entropy estim-
ates obtained using standard and truncated ker-
nel plug-in estimator and the weighted estimator.
The corresponding AUC are given by 0.9271,
0.9459 and 0.9619.

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

δ

A
re

a 
un

de
r 

R
O

C
 c

ur
ve

 

 

Neyman−Pearson test
Standard kernel plug−in estimate
Truncated kernel plug−in estimate
Weighted estimate

(b) Variation of AUC curves vs δ(= a0−a1, b0−
b1) corresponding to Neyman-Pearson omni-
scient test, entropy estimates using the standard
and truncated kernel plug-in estimator and the
weighted estimator.

Figure 3: Comparison of performance in terms of ROC for the distribution testing problem.
The weighted estimator uniformly outperforms the individual plug-in estimators.

the sample mean and standard deviation of the entropy estimates. The deflection statistic
was found to be 1.49, 1.60 and 1.89 for the standard kernel plug-in estimator, truncated
kernel plug-in estimator and the weighted estimator respectively. The receiver operating
curves (ROC) for this test using these three different estimators is shown in Fig. 3(a). The
corresponding area under the ROC curves (AUC) are given by 0.9271, 0.9459 and 0.9619.

In our final experiment, we fix a0 = b0 = 10 and set a1 = b1 = 10 − δ, draw 500 instances
each of random samples of size 5 × 103 under the null and alternate hypothesis, and plot
the AUC as δ varies from 0 to 1 in Fig. 3(b). For comparison, we also plot the AUC for the
Neyman-Pearson likelihood ratio test. The Neyman-Pearson likelihood ratio test, unlike
the Shannon entropy based tests, is an omniscient test that assumes knowledge of both
the underlying beta-uniform mixture parametric model of the density and the parameter
values a0, b0 and a1, b1 under the null and alternate hypothesis respectively. Figure 4 shows
that the weighted estimator uniformly and significantly outperforms the individual plug-in
estimators and is closest to the performance of the omniscient Neyman-Pearson likelihood
test. The relatively superior performance of the Neyman-Pearson likelihood test is due to
the fact that the weighted estimator is a nonparametric estimator that has marginally higher
variance (proportional to ||w∗||22) compared to the underlying parametric model for which
the Neyman-Pearson test statistic provides the most powerful test.

5 Conclusions

A novel method of weighted ensemble estimation was proposed in this paper. This method
combines slowly converging individual estimators to produce a new estimator with faster
MSE rate of convergence. In this paper, we applied weighted ensembles to improve the
MSE of a set of uniform kernel density estimators with different kernel width parameters.
We showed by theory and in simulation that that the improved ensemble estimator achieves
parametric MSE convergence rate O(T−1). The optimal weights are determined by solving
a convex optimization problem which does not require training data and can be performed
offline. The superior performance of the weighted ensemble entropy estimator was verified
in the context of two important problems: (i) estimation of the Panter-Dite factor and (ii)
non-parametric hypothesis testing.
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