
A Stochastic Gradient Method with an Exponential
Convergence Rate for Finite Training Sets

Supplementary Material

Nicolas Le Roux
SIERRA Project-Team

INRIA - ENS
Paris, France

nicolas@le-roux.name

Mark Schmidt
SIERRA Project-Team

INRIA - ENS
Paris, France

mark.schmidt@inria.fr

Francis Bach
SIERRA Project-Team

INRIA - ENS
Paris, France

francis.bach@ens.fr

In this supplementary material, we present

• A: a comparison of the convergence rates of primal and dual FG and coordinate-wise methods
to the rate of SAG for `2-regularized least squares in terms of effective passes through the data.
• B: additional experimental results on test errors, additional data sets, and searching for the best

step-size.
• C: proofs of the two propositions.

A Comparison of convergence rates

We consider the `2-regularized least squares problem

minimize
x∈Rp

g(x) :=
λ

2
‖x‖2 + 1

2n

n∑
i=1

(aTi x− bi)2,

where to apply SG methods and SAG we can use

fi(x) :=
λ

2
‖x‖2 + 1

2
(aTi x− bi)2.

If we use b to denote a vector containing the values bi and A to denote a matrix withs rows ai, we
can re-write this problem as

minimize
x∈Rp

λ

2
‖x‖2 + 1

2n
‖Ax− b‖2.

The Fenchel dual of this problem is

minimize
y∈Rn

d(y) :=
n

2
‖y‖2 + 1

2λ
y>AA>y + y>b.

We can obtain the primal variables from the dual variables by the formula x = (−1/λ)A>y. Con-
vergence rates of different primal and dual algorithms are often expressed in terms of the following
Lipschitz constants:

Lg = λ+Mσ/n (Lipschitz constant of g′)

Lig = λ+Mi (Lipschitz constant for all f ′i)

Ljg = λ+Mj/n (Lipschitz constant of all g′j)

Ld = n+Mσ/λ (Lipschitz constant of d′)

Lid = n+Mi/λ (Lipschitz constant of all d′i)

1

Here, we use Mσ to denote the maximum eigenvalue of A>A, Mi to denote the maxi-
mum squared row-norm maxi{‖ai‖2}, and Mj to denote the maximum squared column-norm
maxj{

∑n
i=1(ai)

2
j}. We use g′j to refer to element of j of g′, and similarly for d′i. The conver-

gence rates will also depend on the primal and dual strong-convexity constants:

µg = λ+mσ/n (Strong-convexity constant of g)

µd = n+m′σ/λ (Strong-convexity constant of d)

Here, mσ is the minimum eigenvalue of A>A, and m′σ is the minimum eigenvalue of AA>.

A.1 Full Gradient Methods

Using a similar argument to [1, Theorem 2.1.15], if we use the basic FG method with a step size of
1/Lg , then (f(xk)− f(x∗)) converges to zero with rate(

1− µg
Lg

)2

=

(
1− λ+mσ/n

λ+Mσ/n

)2

=

(
1− nλ+mσ

nλ+Mσ

)2

≤ exp

(
−2nλ+mσ

nλ+Mσ

)
.

while a larger step-size of 2/(Lg + µg) gives a faster rate of(
1− µg + µg

Lg + µg

)2

=

(
1− nλ+mσ

nλ+ (Mσ +mσ)/2

)2

≤ exp

(
−2 nλ+mσ

nλ+ (Mσ +mσ)/2

)
,

where the speed improvement is determined by the size of mσ .

If we use the basic FG method on the dual problem with a step size of 1/Ld, then (d(xk)− d(x∗))
converges to zero with rate(

1− µd
Ld

)2

=

(
1− n+m′σ/λ

n+Mσ/λ

)2

=

(
1− nλ+m′σ

nλ+Mσ

)2

≤ exp

(
−2nλ+m′σ

nλ+Mσ

)
.

and with a step-size of 2/(Ld + µd) the rate is(
1− µd + µd

Ld + µd

)2

=

(
1− nλ+m′σ

nλ+ (Mσ +m′σ)/2

)2

≤ exp

(
−2 nλ+m′σ

nλ+ (Mσ +m′σ)/2

)
.

Thus, whether we can solve the primal or dual method faster depends on mσ and m′σ . In the over-
determined case where A has independent columns, a primal method should be preferred. In the
under-determined case where A has independent rows, we can solve the dual more efficiently. How-
ever, we note that a convergence rate on the dual objective does not necessarily yield a corresponding
rate in the primal objective. IfA is invertible, or it has neither independent columns nor independent
rows, then mσ = m′σ = 0 and there is no difference between the primal and dual rates.

The AFG method achieves a faster rate. Applied to the primal with a step-size of 1/Lg it has a rate
of [1, Theorem 2.2.2](

1−
√
µg
Lg

)
=

(
1−

√
λ+mσ/n

λ+Mσ/n

)
=

(
1−

√
nλ+mσ

nλ+Mσ

)
≤ exp

(
−
√
nλ+mσ

nλ+Mσ

)
,

and applied to the dual with a step-size of 1/Ld is has a rate of(
1−

√
µd
Ld

)
=

(
1−

√
n+m′σλ

n+Mσ/λ

)
=

(
1−

√
nλ+m′σ
nλ+Mσ

)
≤ exp

(
−
√
nλ+m′σ
nλ+Mσ

)
.

A.2 Coordinate-Descent Methods

The cost of applying one iteration of an FG method is O(np). For this same cost we could apply
p iterations of a coordinate descent method to the primal, assuming that selecting the coordinate to
update has a cost of O(1). If we select coordinates uniformly at random, then the convergence rate
for p iterations of coordinate descent with a step-size of 1/Ljg is [2, Theorem 2](

1− µg

pLjg

)p
=

(
1− λ+mσ/n

p(λ+Mj/n)

)p
=

(
1− nλ+mσ

p(nλ+Mj)

)p
≤ exp

(
−nλ+mσ

nλ+Mj

)
.

2

Here, we see that applying a coordinate-descent method can be much more efficient than an FG
method if Mj << Mσ . This can happen, for example, when the number of variables p is much
larger than the number of examples n. Further, it is possible for coordinate descent to be faster than
the AFG method if the difference between Mσ and Mj is sufficiently large.

For the O(np) cost of one iteration of the FG method, we could alternately perform n iterations of
coordinate descent on the dual problem. With a step size of 1/Lid this would obtain a rate on the
dual objective of(

1− µd
nLid

)n
=

(
1− n+m′σ/λ

n(n+Mi/λ)

)n
=

(
1− nλ+m′σ

n(nλ+Mi)

)n
≤ exp

(
−nλ+m′σ
nλ+Mi

)
,

which will be faster than the dual FG method if Mi << Mσ . This can happen, for example, when
the number of examples n is much larger than the number of variables p. The difference between
the primal and dual coordinate methods depends on Mi compared to Mj and mσ compared to m′σ .

A.3 Stochastic Average Gradient

For the O(np) cost of one iteration of the FG method, we can perform n iterations of SAG. With a
step size of 1/2nLg , performing n iterations of the SAG algorithm has a rate of(

1− µg
8nLig

)n
=

(
1− λ+mσ/n

8n(λ+Mi)

)n
=

(
1− nλ+mσ

8n(nλ+ nMi)

)n
≤ exp

(
−1

8

nλ+mσ

nλ+ nMi

)
,

This is most similar to the rate obtained with the dual coordinate descent method, but is likely to
be slower because of the n term scaling Mi. However, the difference will be decreased for over-
determined problems when mσ >> m′σ .

Under the condition n > 8Lig/µg = 8(λ+Mi)/(λ+mσ/n), with a step size of 1/2nµg performing
n iterations of the SAG algorithm has a rate of(

1− 1

8n

)n
=

(
1− nλ

8n(nλ)

)n
≤ exp

(
−1

8

)
.

Note that depending on the constants this may or may not not be faster than coordinate descent
methods. However, if we consider the typical case where mσ = m′σ = 0 with Mi = O(p) and
Mj = O(n), then if we have n = 8(λ+Mi)/λ we obtain(

1− 1

8n

)n
=

(
1− λ

64(λ+Mi)

)n
=

(
1− nλ

64n(λ+Mi)

)n
≤ exp

(
− 1

64

nλ

λ+Mi

)
,

Despite the constant of 64 (which is likely to be highly sub-optimal), from these rates we see that
SAG outperforms coordinate descent methods when n is sufficiently large.

B Additional experimental results

B.1 Test errors

In Figure 1, we report test errors (after thresholding the predictors at zero to obtain a binary la-
bel). Here, we see that SAG is typically among the fastest methods to reach the final test error,
though in the case of the covertype data the ESG method achieves a lower test-error despite its poor
optimization performance.

B.2 Additional data sets

In Figure 2, we report results for the quantum (n = 50000, p = 78) data set obtained from the KDD
Cup 2004 website1, and on the sido data set (n = 12678, p = 4932) obtained from the Causality
Workbench website.2 We make the following observations from these results:

1http://osmot.cs.cornell.edu/kddcup
2http://www.causality.inf.ethz.ch/home.php

3

0 5 10 15 20 25

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Effective Passes

Te
st

 E
rr

o
r

Steepest

AFG

L−BFGS

pegasos

RDA

ESG

NOSG

SAG−C

SAG−LS

0 5 10 15 20 25

0.04

0.041

0.042

0.043

0.044

0.045

0.046

0.047

0.048

0.049

0.05

Effective Passes

Te
st

 E
rr

o
r

Steepest

AFG

L−BFGS

pegasos

RDA

ESG

NOSG

SAG−C

SAG−LS

0 5 10 15 20 25

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

Effective Passes

Te
st

 E
rr

o
r

Steepest

AFG

L−BFGS

pegasos

RDA

ESG

NOSG

SAG−C

SAG−LS

Figure 1: Test errors. From left to right, the protein, rcv1 and covertype data sets.

quantum : On this data set the two variants of SAG perform dramatically better than the best com-
peting methods in terms of optimizing the objective, and also outperform the competing
methods in terms of reaching the optimal test loss. On this data set, the SG methods (pega-
sos and RDA) again perform poorly.

sido : The SAG method, particularly with the line-search, is again the most effective method
at decreasing the objective function. However, based on the test loss, a regularization
parameter of λ = 1/n appears to be small and the method is over-fitting. The SG methods
again performed poorly on this data set.

0 5 10 15 20 25

10
−8

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

Steepest

AFG

L−BFGS

pegasos

RDA

ESG

NOSG

SAG−C

SAG−LS

0 5 10 15 20 25

1.4

1.45

1.5

1.55

1.6

1.65

1.7

x 10
4

Effective Passes

Te
st

 L
o

g
is

ti
c

 L
o

ss

Steepest

AFG

L−BFGS

pegasos

RDA

ESG

NOSG

SAG−C

SAG−LS

0 5 10 15 20 25

0.3

0.32

0.34

0.36

0.38

0.4

Effective Passes

Te
st

 E
rr

o
r

Steepest

AFG

L−BFGS

pegasos

RDA

ESG

NOSG

SAG−C

SAG−LS

0 5 10 15 20 25

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

Steepest

AFG

L−BFGS

pegasos

RDA

ESG

NOSG

SAG−C

SAG−LS

0 5 10 15 20 25

1000

1500

2000

2500

3000

3500

4000

Effective Passes

Te
st

 L
o

g
is

ti
c

 L
o

ss

Steepest

AFG

L−BFGS

pegasos

RDA

ESG

NOSG

SAG−C

SAG−LS

0 5 10 15 20 25

0.03

0.031

0.032

0.033

0.034

0.035

0.036

0.037

0.038

0.039

0.04

Effective Passes

Te
st

 E
rr

o
r

Steepest

AFG

L−BFGS

pegasos

RDA

ESG

NOSG

SAG−C

SAG−LS

Figure 2: quantum and sido (bottom) data sets. From left to right: training loss, testing loss, and
testing error.

B.3 Searching for best step-sizes

In this series of experiments, we sought to test whether SG methods with a very carefully chosen
step size would be competitive with the SAG iterations. In particular, we compared the following
variety of basic FG and SG methods.

1. FG: The full gradient method described by iteration (3) of the main paper.
2. AFG: The accelerated full gradient method of Nesterov, where iterations of (3) are inter-

leaved with an extrapolation step.

4

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

FG (1.0e−04)

AFG (1.0e−05)

L−BFGS

Peg (1.0e+00/kλ)

SG (1.0e−03)

ASG (1.0e−02)

IAG (1.0e−04)

SAG (1.0e−02)

SAG−LS

0 10 20 30 40 50

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v

e
 m

in
u

s
O

p
ti
m

u
m

FG (1.0e−04)

AFG (1.0e−03)

L−BFGS

Peg (1.0e+00/kλ)

SG (1.0e−01)

ASG (1.0e+00)

IAG (1.0e−03)

SAG (1.0e+02)

SAG−LS

0 10 20 30 40 50

10
−6

10
−4

10
−2

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

FG (1.0e−06)

AFG (1.0e−06)

L−BFGS

Peg (1.0e−01/kλ)

SG (1.0e−05)

ASG (1.0e−03)

IAG (1.0e−05)

SAG (1.0e−03)

SAG−LS

0 10 20 30 40 50

10
−10

10
−5

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

FG (1.0e−05)

AFG (1.0e−05)

L−BFGS

Peg (1.0e−01/kλ)

SG (1.0e−04)

ASG (1.0e−03)

IAG (1.0e−05)

SAG (1.0e−03)

SAG−LS

0 10 20 30 40 50

10
−4

10
−3

10
−2

10
−1

10
0

Effective Passes

O
b

je
c

ti
v
e

 m
in

u
s

O
p

ti
m

u
m

FG (1.0e−05)

AFG (1.0e−05)

L−BFGS

Peg (1.0e+00/kλ)

SG (1.0e−02)

ASG (1.0e−02)

IAG (1.0e−05)

SAG (1.0e−02)

SAG−LS

Figure 3: Comparison of optimization strategies that choose the best step-size in hindsight. In the
top row are the protein (left), rcv1 (center), and covertype (right) data sets. In the bottom row are
the quantum and sido data sets.

3. peg: The pegasos algorithm of [3], but where we multiply the step size by a constant.

4. SG: The stochastic gradient method described by iteration (4) of the main paper, where we
use a constant step-size.

5. ASG: The stochastic gradient method described by iteration (4) of the main paper, where
we use a constant step size and average the iterates.3

6. IAG: The incremental aggregated gradient method of [4] described by iteration (5) in the
main paper but with a cyclic choice of ik.

7. SAG: The proposed stochastic average gradient method described by iteration (5) in the
main paper.

For all of the above methods, we optimized over the full data set and we chose the step size that
gave the best performance among powers of 10. We compare these methods to each other and to
the L-BFGS and the SAG-LS algorithms from the main paper in Figure 3, which also shows the
selected step sizes. In this experiment we see that using a constant or nearly constant step size
within SG methods and using averaging tends to perform much better than the basic SG method
implemented by pegasos. This makes sense because SG methods with a constant step size have a
linear convergence rate when far from the solution. However, the performance is still typically not
comparable to that of the SAG iterations, which achieve a linear convergence rate even when close
to the solution. We note that the performance and step sizes of the FG and IAG methods are quite
similar, while the SAG method chooses much larger step sizes and has much better performance.
Finally, the proposed line-search seems to perform as well or better than choosing the optimal fixed
step-size in hind sight.

C Proofs of the propositions

We present here the proofs of Propositions 1 and 2.

3We have also compared to a variety of other SG methods, such as SG with momentum, SG with gradient
averaging, accelerated SG, and using SG but delaying averaging until after the first effective pass. However,
none of these SG methods performed better than the ASG method above so we omit them to keep the plots
simple.

5

Proposition 1 With a step size of αk = 1
2nL , the SAG iterations satisfy for k ≥ 1 that

E
[
‖xk − x∗‖2

]
6
(
1− µ

8Ln

)k [
3‖x0 − x∗‖2 +

9σ2

4L2

]
.

Proposition 2 If µL > 8
n , with a step size of αk = 1

2nµ the SAG iterations satisfy for k > n that

E
[
g(xk)− g(x∗)

]
6 C

(
1− 1

8n

)k
,

with C =

[
16L

3n
‖x0 − x∗‖2 + 4σ2

3nµ

(
8 log

(
1 +

µn

4L

)
+ 1
)]

.

C.1 Problem set-up and notations

We use g = 1
n

∑n
i=1 fi to denote a µ−strongly convex function, where the functions fi, i = 1, . . . , n

are convex functions from Rp to R with L-Lipschitz continuous gradients. Let us denote by x∗ the
unique minimizer of g.

For k > 1, the stochastic average gradient algorithm performs the recursion

xk = xk−1 − α

n

n∑
i=1

yki ,

where an ik is selected in {1, . . . , n} uniformly at random and we set

yki =

{
f ′i(x

k−1) if i = ik,
yk−1i otherwise.

Denoting zki a random variable which takes the value 1 − 1
n with probability 1

n and − 1
n otherwise

(thus with zero expectation), this is equivalent to

yki =

(
1− 1

n

)
yk−1i +

1

n
f ′i(x

k−1) + zki
[
f ′i(x

k−1)− yk−1i

]
xk = xk−1 − α

n

n∑
i=1

[(
1− 1

n

)
yk−1i +

1

n
f ′i(x

k−1) + zki
[
f ′i(x

k−1)− yk−1i

]]
= xk−1 − α

n

[(
1− 1

n

)
e>yk−1 + g′(xk−1) + (zk)>

[
f ′(xk−1)− yk−1

]]
,

with

e =

 I
...
I

 ∈ Rnp×p, f ′(x) =

 f ′1(x)
...

f ′n(x)

 ∈ Rnp, zk =

 zk1 I
...
zknI

 ∈ Rnp×p.

Using this definition of zk, we have E[(zk)(zk)>] = 1
nI −

1
n2 ee

>. Note that, for a given k, the
variables zk1 , . . . , z

k
n are not independent.

We also use the notation

θk =

yk1
...
ykn
xk

 ∈ R(n+1)p, θ∗ =

f ′1(x

∗)
...

f ′n(x
∗)

x∗

 ∈ R(n+1)p .

Finally, if M is a tp× tp matrix and m is a tp× p matrix, then:

• diag(M) is the tp×pmatrix being the concatenation of the t (p×p)-blocks on the diagonal
of M ;

• Diag(m) is the tp × tp block-diagonal matrix whose (p × p)-blocks on the diagonal are
equal to the (p× p)-blocks of m.

6

C.2 Outline of the proofs

Each Proposition will be proved in multiple steps.

1. We shall find a Lyapunov function Q from R(n+1)p to R such that the sequence EQ(θk)
decreases at a linear rate.

2. We shall prove that Q(θk) dominates ‖xk − x∗‖2 (in the case of Proposition 2) or g(xk)−
g(x∗) (in the case of Proposition 2) by a constant for all k.

3. In the case of Proposition 2, we show how using one pass of stochastic gradient as the
initialization provides the desired result.

Throughout the proofs, Fk will denote the σ-field of information up to (and including time k), i.e.,
Fk is the σ-field generated by z1, . . . , zk.

C.3 Convergence results for stochastic gradient descent

The constant in both our bounds depends on the initialization chosen. While this does not affect the
linear convergence of the algorithm, the bound we obtain for the first few passes through the data is
the O(1/k) rate one would get using stochastic gradient descent, but with a constant proportional
to n. This problem can be alleviated for the second bound by running stochastic gradient descent
for a few iterations before running the SAG algorithm. In this section, we provide bounds for the
stochastic gradient descent algorithm which will prove useful for the SAG algorithm.

The assumptions made in this section about the functions fi and the function g are the same as the
ones used for SAG. To get initial values for x0 and y0, we will do one pass of standard stochastic
gradient.

We denote by σ2 = 1
n

∑n
i=1 ‖f ′i(x∗)‖2 the variance of the gradients at the optimum. We will use

the following recursion:
x̃k = x̃k−1 − γkf ′ik

(
x̃k−1

)
.

Denoting δk = E‖x̃k − x∗‖2, we have (following [5])

δk 6 δk−1 − 2γk(1− γkL)E
[
g′(x̃k−1)>(x̃k−1 − x∗)

]
+ 2γ2kσ

2 .

Indeed, we have

‖x̃k − x∗‖2 = ‖x̃k−1 − x∗‖2 − 2γkf
′
ik
(x̃k−1)>(x̃k−1 − x∗) + γ2k‖f ′ik(x̃

k−1)‖2

6 ‖x̃k−1 − x∗‖2 − 2γkf
′
ik
(x̃k−1)>(x̃k−1 − x∗) + 2γ2k‖f ′ik(x

∗)‖2 + 2γ2k‖f ′ik(x̃
k−1)− f ′ik(x

∗)‖2

6 ‖x̃k−1 − x∗‖2 − 2γkf
′
ik
(x̃k−1)>(x̃k−1 − x∗) + 2γ2k‖f ′ik(x

∗)‖2

+ 2Lγ2k(f
′
ik
(x̃k−1)− f ′ik(x

∗))>(x̃k−1 − x∗) .
By taking expectations, we get

E
[
‖x̃k − x∗‖2|Fk−1

]
6 ‖x̃k−1 − x∗‖2 − 2γkg

′(x̃k−1)>(x̃k−1 − x∗) + 2γ2kσ
2 + 2Lγ2kg

′(x̃k−1)>(x̃k−1 − x∗)
E
[
‖x̃k − x∗‖2

]
6 E

[
‖x̃k−1 − x∗‖2

]
− 2γk(1− γkL)E

[
g′(x̃k−1)>(x̃k−1 − x∗)

]
+ 2γ2kσ

2

Thus, if we take

γk =
1

2L+ µ
2 k

,

we have γk 6 2γk(1− γkL) and

δk 6 δk−1 − γkE
[
g′(x̃k−1)>(xk−1 − x∗)

]
+ 2γ2kσ

2

6 δk−1 − γk
[
E
[
g(xk−1)− g(x∗)

]
+
µ

2
δk−1

]
+ 2γ2kσ

2 using the strong convexity of g

Eg(xk−1)− g(x∗) 6 − 1

γk
δk +

(
1

γk
− µ

2

)
δk−1 + 2γkσ

2

6 −
(
2L+

µ

2
k
)
δk +

(
2L+

µ

2
(k − 1)

)
δk−1 + 2γkσ

2 .

7

Averaging from i = 0 to k − 1 and using the convexity of g, we have

1

k

k−1∑
i=0

Eg(xk−1)− g(x∗) 6 2L

k
δ0 +

2σ2

k

k∑
i=1

γi

Eg

(
1

k

k−1∑
i=0

xi

)
− g(x∗) 6 2L

k
δ0 +

2σ2

k

k∑
i=1

γi

6
2L

k
‖x0 − x∗‖2 + 2σ2

k

k∑
i=1

1

2L+ µ
2 i

6
2L

k
L‖x0 − x∗‖2 + 2σ2

k

∫ k

0

1

2L+ µ
2 t
dt

6
2L

k
‖x0 − x∗‖2 + 4σ2

kµ
log

(
1 +

µk

4L

)
.

C.4 Important lemma

In both proofs, our Lyapunov function contains a quadratic term

R(θk) = (θk − θ∗)>
(

A b
b> c

)
(θk − θ∗) for some values of A, b and c. The lemma be-

low computes the value of R(θk) in terms of elements of θk−1.

Lemma 1 If P =

(
A b
b> c

)
, for A ∈ Rnp×np, b ∈ Rnp×p and c ∈ Rp×p, then

E
[
(θk − θ∗)>

(
A b
b> c

)
(θk − θ∗)

∣∣∣∣Fk−1]
= (yk−1 − f ′(x∗))>

[(
1− 2

n

)
S +

1

n
Diag(diag(S))

]
(yk−1 − f ′(x∗))

+
1

n
(f ′(xk−1)− f ′(x∗))>Diag(diag(S))(f ′(xk−1)− f ′(x∗))

+
2

n
(yk−1 − f ′(x∗))> [S −Diag(diag(S))] (f ′(xk−1)− f ′(x∗))

+ 2

(
1− 1

n

)
(yk−1 − f ′(x∗))>

[
b− α

n
ec
]
(xk−1 − x∗)

+
2

n
(f ′(xk−1)− f ′(x∗))>

[
b− α

n
ec
]
(xk−1 − x∗)

+ (xk−1 − x∗)>c(xk−1 − x∗) ,
with

S = A− α

n
be> − α

n
eb> +

α2

n2
ece> .

Note that for square n × n matrix, diag(M) denotes a vector of size n composed of the diagonal
of M , while for a vector m of dimension n, Diag(m) is the n × n diagonal matrix with m on
its diagonal. Thus Diag(diag(M)) is a diagonal matrix with the diagonal elements of M on its
diagonal, and diag(Diag(m)) = m.

Proof Throughout the proof, we will use the equality g′(x) = e>f ′(x)/n. Moreover, all conditional
expectations of linear functions of zk will be equal to zero.

We have

E
[
(θk − θ∗)>

(
A b
b> c

)
(θk − θ∗)

∣∣∣∣Fk−1]
= E

[
(yk − f ′(x∗))>A(yk − f ′(x∗)) + 2(yk − f ′(x∗))>b(xk − x∗) + (xk − x∗)>c(xk − x∗)|Fk−1

]
.

(1)

8

The first term (within the expectation) on the right-hand side of Eq. (1) is equal to

(yk − f ′(x∗))>A(yk − f ′(x∗)) =
(
1− 1

n

)2

(yk−1 − f ′(x∗))>A(yk−1 − f ′(x∗))

+
1

n2
(f ′(xk−1)− f ′(x∗))>A(f ′(xk−1)− f ′(x∗))

+ [Diag(zk)(f ′(xk−1)− yk−1)]>A[Diag(zk)(f ′(xk−1)− yk−1)]

+
2

n

(
1− 1

n

)
(yk−1 − f ′(x∗))>A(f ′(xk−1)− f ′(x∗)) .

The only random term (given Fk−1) is the third one whose expectation is equal to

E
[
[Diag(zk)(f ′(xk−1)− yk−1)]>A[Diag(zk)(f ′(xk−1)− yk−1)]|Fk−1

]
=

1

n
(f ′(xk−1)− yk−1)>

[
Diag(diag(A))− 1

n
A

]
(f ′(xk−1)− yk−1) .

The second term (within the expectation) on the right-hand side of Eq. (1) is equal to

(yk − f ′(x∗))>b(xk − x∗) =
(
1− 1

n

)
(yk−1 − f ′(x∗))>b(xk−1 − x∗)

+
1

n
(f ′(xk−1)− f ′(x∗))>b(xk−1 − x∗)

− α

n

(
1− 1

n

)2

(yk−1 − f ′(x∗))>be>(yk−1 − f ′(x∗))

− α

n

1

n

(
1− 1

n

)
(f ′(xk−1)− f ′(x∗))>be>(yk−1 − f ′(x∗))

− α

n

1

n

(
1− 1

n

)
(yk−1 − f ′(x∗))>be>(f ′(xk−1)− f ′(x∗))

− α

n

1

n2
(f ′(xk−1)− f ′(x∗))>be>(f ′(xk−1)− f ′(x∗))

− α

n
[Diag(zk)(f ′(xk−1)− yk−1)]>b(zk)>

[
(f ′(xk−1)− yk−1)

]
The only random term (given Fk−1) is the last one whose expectation is equal to

E
[
[Diag(zk)(f ′(xk−1)− yk−1)]>b(zk)>

[
(f ′(xk−1)− yk−1)

]
|Fk−1

]
=

1

n
(f ′(xk−1)− yk−1)>

(
Diag(diag(be>)− 1

n
be>
)
(f ′(xk−1)− yk−1) .

The last term on the right-hand side of Eq. (1) is equal to

(xk − x∗)>c(xk − x∗) = (xk−1 − x∗)>c(xk−1 − x∗)

+
α2

n2

(
1− 1

n

)2

(yk−1 − f ′(x∗))>ece>(yk−1 − f ′(x∗))

+
α2

n2
1

n2
(f ′(xk−1)− f ′(x∗))>ece>(f ′(xk−1)− f ′(x∗))

− 2α

n

(
1− 1

n

)
(xk−1 − x∗)>ce>(yk−1 − f ′(x∗))

− 2α

n

1

n
(xk−1 − x∗)>ce>(f ′(xk−1)− f ′(x∗))

+
2α2

n2
1

n

(
1− 1

n

)
(yk−1 − f ′(x∗))>ece>(f ′(xk−1)− f ′(x∗))

+
α2

n2
[
(zk)>(f ′(xk−1)− yk−1)

]>
c
[
(zk)>(f ′(xk−1)− yk−1)

]
.

9

The only random term (given Fk−1) is the last one whose expectation is equal to

E
[[
(zk)>(f ′(xk−1)− yk−1)

]>
c
[
(zk)>(f ′(xk−1)− yk−1)

]
|Fk−1

]
=

1

n
(f ′(xk−1)− yk−1)>

[
Diag(diag(ece>))− 1

n
ece>

]
(f ′(xk−1)− yk−1) .

Summing all these terms together, we get the following result:

E
[
(θk − θ∗)>

(
A b
b> c

)
(θk − θ∗)

∣∣∣∣Fk−1]
=

(
1− 1

n

)2

(yk−1 − f ′(x∗))>S(yk−1 − f ′(x∗))

+
1

n2
(f ′(xk−1)− f ′(x∗))>S(f ′(xk−1)− f ′(x∗))

+
1

n
(f ′(xk−1)− yk−1)>

[
Diag(diag(S))− 1

n
S

]
(f ′(xk−1)− yk−1)

+
2

n

(
1− 1

n

)
(yk−1 − f ′(x∗))>S(f ′(xk−1)− f ′(x∗))

+ 2

(
1− 1

n

)
(yk−1 − f ′(x∗))>

[
b− α

n
ec
]
(xk−1 − x∗)

+
2

n
(f ′(xk−1)− f ′(x∗))>

[
b− α

n
ec
]
(xk−1 − x∗)

+ (xk−1 − x∗)>c(xk−1 − x∗)

with S = A− α
n be
> − α

neb
> + α2

n2 ece
> = A− bc−1b> + (b− α

nec)c
−1(b− α

nec)
>.

Rewriting f ′(xk−1)− yk−1 = (f ′(xk−1)− f ′(x∗))− (yk−1 − f ′(x∗)), we have

f ′(xk−1)− yk−1)>
[
Diag(diag(S))− 1

n
S

]
(f ′(xk−1)− yk−1)

= (f ′(xk−1)− f ′(x∗))>
[
Diag(diag(S))− 1

n
S

]
(f ′(xk−1)− f ′(x∗))

+ (yk−1 − f ′(x∗))>
[
Diag(diag(S))− 1

n
S

]
(yk−1 − f ′(x∗))

− 2(yk−1 − f ′(x∗))>
[
Diag(diag(S))− 1

n
S

]
(f ′(xk−1)− f ′(x∗)).

Hence, the sum may be rewritten as

E
[
(θk − θ∗)>

(
A b
b> c

)
(θk − θ∗)

∣∣∣∣Fk−1]
= (yk−1 − f ′(x∗))>

[(
1− 2

n

)
S +

1

n
Diag(diag(S))

]
(yk−1 − f ′(x∗))

+
1

n
(f ′(xk−1)− f ′(x∗))>Diag(diag(S))(f ′(xk−1)− f ′(x∗))

+
2

n
(yk−1 − f ′(x∗))> [S −Diag(diag(S))] (f ′(xk−1)− f ′(x∗))

+ 2

(
1− 1

n

)
(yk−1 − f ′(x∗))>

[
b− α

n
ec
]
(xk−1 − x∗)

+
2

n
(f ′(xk−1)− f ′(x∗))>

[
b− α

n
ec
]
(xk−1 − x∗)

+ (xk−1 − x∗)>c(xk−1 − x∗)

10

This concludes the proof.

C.5 Analysis for α = 1
2nL

We now prove Proposition 1, providing a bound for the convergence rate of the SAG algorithm in
the case of a small step size, α = 1

2nL .

Proof

Step 1 - Linear convergence of the Lyapunov function

In this case, our Lyapunov function is quadratic, i.e.,

Q(θk) = (θk − θ∗)>
(

A b
b> c

)
(θk − θ∗) .

We consider

A = 3nα2I +
α2

n
(
1

n
− 2)ee>

b = −α(1− 1

n
)e

c = I

S = 3nα2I

b− α

n
ec = −αe .

The goal will be to prove that E[Q(θk)|Fk−1] − (1 − δ)Q(θk−1) is negative for some δ > 0. This
will be achieved by bounding all the terms by a term depending on g′(xk−1)>(xk−1 − x∗) whose
positivity is guaranteed by the convexity of g.

We have, with our definition of A, b and c:

S −Diag(diag(S)) = 3nα2I − 3nα2I = 0

e>(f ′(xk−1)− f ′(x∗)) = n[g′(xk−1)− g′(x∗)] = ng′(xk−1) .

11

This leads to (using the lemma of the previous section):

E[Q(θk)|Fk−1] = E
[
(θk − θ∗)>

(
A b
b> c

)
(θk − θ∗)

∣∣∣∣Fk−1]
=

(
1− 1

n

)
3nα2(yk−1 − f ′(x∗))>(yk−1 − f ′(x∗))

+ (xk−1 − x∗)>(xk−1 − x∗)− 2α

n
(xk−1 − x∗)>e>(f ′(xk−1)− f ′(x∗))

+ 3α2(f ′(xk−1)− f ′(x∗))>(f ′(xk−1)− f ′(x∗))

− 2α

(
1− 1

n

)
(yk−1 − f ′(x∗))>e(xk−1 − x∗)

=

(
1− 1

n

)
3nα2(yk−1 − f ′(x∗))>(yk−1 − f ′(x∗))

+ (xk−1 − x∗)>(xk−1 − x∗)− 2α(xk−1 − x∗)>g′(xk−1)
+ 3α2(f ′(xk−1)− f ′(x∗))>(f ′(xk−1)− f ′(x∗))

− 2α

(
1− 1

n

)
(yk−1 − f ′(x∗))>e(xk−1 − x∗)

6

(
1− 1

n

)
3nα2(yk−1 − f ′(x∗))>(yk−1 − f ′(x∗))

+ (xk−1 − x∗)>(xk−1 − x∗)− 2α(xk−1 − x∗)>g′(xk−1)
+ 3α2nL(xk−1 − x∗)>g′(xk−1)

− 2α

(
1− 1

n

)
(yk−1 − f ′(x∗))>e(xk−1 − x∗) .

The third line is obtained using the Lipschitz property of the gradient, that is

(f ′(xk−1)− f ′(x∗))>(f ′(xk−1)− f ′(x∗)) =
n∑
i=1

‖f ′i(xk−1)− f ′i(x∗)‖2

6
n∑
i=1

L(f ′i(x
k−1)− f ′i(x∗))>(xk−1 − x∗)

= nL(g′(xk−1)− g′(x∗))>(xk−1 − x∗) ,

where the inequality in the second line stems from [1, Theorem 2.1.5].

We have

(1− δ)Q(θk−1) = (1− δ)(θk−1 − θ∗)>
(

A b
b> c

)
(θk−1 − θ∗)

= (1− δ)(yk−1 − f ′(x∗))>
[
3nα2I +

α2

n

(
1

n
− 2

)
ee>

]
(yk−1 − f ′(x∗))

+ (1− δ)(xk−1 − x∗)>(xk−1 − x∗)

− 2α(1− δ)
(
1− 1

n

)
(yk−1 − f ′(x∗))>e(xk−1 − x∗) .

12

The difference is then:

E[Q(θk)|Fk−1]− (1− δ)Q(θk−1)

6 (yk−1 − f ′(x∗))>
[
3nα2

(
δ − 1

n

)
I + (1− δ)α

2

n

(
2− 1

n

)
ee>

]
(yk−1 − f ′(x∗))

+ δ(xk−1 − x∗)>(xk−1 − x∗)
− (2α− 3α2nL)(xk−1 − x∗)>g′(xk−1)

− 2αδ

(
1− 1

n

)
(yk−1 − f ′(x∗))>e(xk−1 − x∗).

Note that for any symmetric negative definite matrix M and for any vectors s and t we have

(s+
1

2
M−1t)>M(s+

1

2
M−1t) 6 0,

and thus that
s>Ms+ s>t 6 −1

4
t>M−1t .

Using this fact with

M =

[
3nα2

(
δ − 1

n

)
I + (1− δ)α

2

n

(
2− 1

n

)
ee>

]
=

[
3nα2

(
δ − 1

n

)(
I − ee>

n

)
+ α2

(
3nδ − 1− 2δ +

δ − 1

n

)
ee>

n

]
s = yk−1 − f ′(x∗)

t = −2αδ
(
1− 1

n

)
e(xk−1 − x∗) ,

we have

(yk−1 − f ′(x∗))>
[
3nα2

(
δ − 1

n

)
I + (1− δ)α

2

n

(
2− 1

n

)
ee>

]
(yk−1 − f ′(x∗))

− 2αδ

(
1− 1

n

)
(yk−1 − f ′(x∗))>e(xk−1 − x∗)

6 −α2δ2
(
1− 1

n

)2

(xk−1 − x∗)>e>
[
3nα2

(
δ − 1

n

)(
I − ee>

n

)
+α2

(
3nδ − 1− 2δ +

δ − 1

n

)
ee>

n

]−1
e(xk−1 − x∗)

= −
α2δ2

(
1− 1

n

)2
n

α2
[
3nδ − 1− 2δ + δ−1

n

]‖xk−1 − x∗‖2
= −

δ2
(
1− 1

n

)2
n

3nδ − 1− 2δ + δ−1
n

‖xk−1 − x∗‖2 .

A sufficient condition for M to be negative definite is to have δ 6 1
3n .

The bound then becomes

E[Q(θk)|Fk−1]− (1− δ)Q(θk−1) 6 −(2α− 3α2nL)(xk−1 − x∗)>g′(xk−1)

+

(
δ −

δ2
(
1− 1

n

)2[
3nδ − 1− 2δ + δ−1

n

]n) ‖xk−1 − x∗‖2 .
We now use the strong convexity of g to get the inequality

‖xk−1 − x∗‖2 6
1

µ
(xk−1 − x∗)>g′(xk−1) .

13

This yields the final bound

E[Q(θk)|Fk−1]− (1− δ)Q(θk−1) 6 −

(
2α− 3α2nL+

δ2
(
1− 1

n

)2[
3nδ − 1− 2δ + δ−1

n

] n
µ
− δ

µ

)
(xk−1 − x∗)>g′(xk−1).

Since we know that (xk−1 − x∗)>g′(xk−1) is positive, due to the convexity of g, we need to prove

that

(
2α− 3α2nL+

δ2
(
1− 1

n

)2[
3nδ − 1− 2δ + δ−1

n

] n
µ
− δ

µ

)
is positive.

Using δ = µ
8nL and α = 1

2nL gives

2α− 3α2nL+
δ2
(
1− 1

n

)2[
3nδ − 1− 2δ + δ−1

n

] n
µ
− δ

µ
=

1

nL
− 3

4nL
− 1

8nL
−

δ2
(
1− 1

n

)2 n
µ

1− 3nδ + 2δ + 1−δ
n

>
1

8nL
−

δ2 nµ
1− 3nδ

=
1

8nL
−

µ
64nL2

1− 3µ
8L

>
1

8nL
−

µ
64nL2

1− 3
8

=
1

8nL
− µ

40nL2

=
1

8nL
− 1

40nL
> 0 .

Hence,
E[Q(θk)|Fk−1]− (1− δ)Q(θk−1) 6 0 .

We can then take a full expectation on both sides to obtain:

EQ(θk)− (1− δ)EQ(θk−1) 6 0 .

Since Q is a non-negative function (we show below that it dominates a non-negative function), this
results proves the linear convergence of the sequence EQ(θk) with rate 1− δ. We have

EQ(θk) 6
(
1− µ

8nL

)k
Q(θ0) .

Step 2 - Domination of ‖xk − x∗‖2 by Q(θk)

We now need to prove that Q(θk) dominates ‖xk − x∗‖2. If P −
(

0 0
0 1

3I

)
is positive definite,

then Q(θk) > 1
3‖x

k − x∗‖2.

We shall use the Schur complement condition for positive definiteness. Since A is positive definite,
the other condition to verify is 2

3I − b
>A−1b � 0.

2

3
I − α2

(
1− 1

n

)2

e>
[(

3nα2 +
α2

n
− 2α2

)
ee>

n

]−1
e =

2

3
I −

n
(
1− 1

n

)2
3n+ 1

n − 2

ee>

n

� 2

3
I − n

3n− 2

ee>

n

� 0 for n > 2 ,

and so P dominates
(

0 0
0 1

3I

)
.

14

This yields

E‖xk − x∗‖2 6 3EQ(θk)

6 3
(
1− µ

8nL

)k
Q(θ0) .

We have

Q(θ0) = 3nα2
∑
i

‖y0i − f ′i(x∗)‖2 +
(1− 2n)α

n2

∥∥∥∥∥∑
i

y0i

∥∥∥∥∥
2

− 2α

(
1− 1

n

)
(x0 − x∗)>

(∑
i

y0i

)
+ ‖x0 − x∗‖2

=
3

4nL2

∑
i

‖y0i − f ′i(x∗)‖2 +
(1− 2n)

2n3L

∥∥∥∥∥∑
i

y0i

∥∥∥∥∥
2

− n− 1

n2L
(x0 − x∗)>

(∑
i

y0i

)
+ ‖x0 − x∗‖2 .

Initializing all the y0i to 0, we get

Q(θ0) =
3σ2

4L2
+ ‖x0 − x∗‖2 ,

and

E‖xk − x∗‖2 6
(
1− µ

8nL

)k (9σ2

4L2
+ 3‖x0 − x∗‖2

)
.

C.6 Analysis for α = 1
2nµ

Step 1 - Linear convergence of the Lyapunov function

We now prove Proposition 2, providing a bound for the convergence rate of the SAG algorithm in
the case of a small step size, α = 1

2nµ .

We shall use the following Lyapunov function:

Q(θk) = 2g
(
xk +

α

n
e>yk

)
− 2g(x∗) + (θk − θ∗)>

(
A b
b> c

)
(θk − θ∗) ,

with

A =
ηα

n
I +

α

n
(1− 2ν)ee>

b = −νe
c = 0 .

This yields

S =
ηα

n
I +

α

n
ee>

Diag(diag(S)) =
(1 + η)α

n
I

S −Diag(diag(S)) =
α

n
(ee> − I)(

1− 2

n

)
S +

1

n
Diag(diag(S)) =

(
1− 2

n

)[ηα
n
I +

α

n
ee>

]
+

1

n

(1 + η)α

n
I =

(
1− 2

n

)
α

n
ee> +

(
η − η − 1

n

)
α

n
I .

15

We have

E[Q(θk)|Fk−1]− (1− δ)Q(θk−1)

= 2g(xk−1)− 2g(x∗)− 2(1− δ)g
(
xk−1 +

α

n
e>yk−1

)
+ 2(1− δ)g(x∗)

+ (yk−1 − f ′(x∗))>
[(

1− 2

n

)
α

n
ee> +

(
η − η − 1

n

)
α

n
I − (1− δ)ηα

n
I

−(1− δ)α
n
(1− 2ν)ee>

]
(yk−1 − f ′(x∗))

− 2ν

n
(xk−1 − x∗)>e>(f ′(xk−1)− f ′(x∗))

+
(1 + η)α

n2
(f ′(xk−1)− f ′(x∗))>(f ′(xk−1)− f ′(x∗))

+
2α

n2
(yk−1 − f ′(x∗))>

[
ee> − I

]
(f ′(xk−1)− f ′(x∗))

+ 2

(
1

n
− δ
)
ν(yk−1 − f ′(x∗))>e(xk−1 − x∗).

Our goal will now be to express all the quantities in terms of (xk−1−x∗)>g′(xk−1) whose positivity
is guaranteed by the convexity of g.

Using the convexity of g, we have

−2(1− δ)g
(
xk−1 +

α

n
e>yk−1

)
6 −2(1− δ)

[
g(xk−1) +

α

n
g′(xk−1)e>yk−1

]
.

Using the Lipschitz property of the gradients of fi, we have

(f ′(xk−1)− f ′(x∗))>(f ′(xk−1)− f ′(x∗)) =
n∑
i=1

‖f ′i(xk−1)− f ′i(x∗)‖2

6
n∑
i=1

L(f ′i(x
k−1)− f ′i(x∗))>(xk−1 − x∗)

= nL(g′(xk−1)− g′(x∗))>(xk−1 − x∗) .

Using e>[f ′(xk−1)− f ′(x∗)] = ng′(xk−1), we have

−2ν

n
(xk−1 − x∗)>e>(f ′(xk−1)− f ′(x∗)) = −2ν(xk−1 − x∗)>g′(xk−1)

2α

n2
(yk−1 − f ′(x∗))>ee>(f ′(xk−1)− f ′(x∗)) = 2α

n
(yk−1 − f ′(x∗))>eg′(xk−1) .

Reassembling all the terms together, we get

E[Q(θk)|Fk−1]− (1− δ)Q(θk−1)

6 2δ[g(xk−1)− g(x∗)] + 2δα

n
g′(xk−1)e>yk−1

+ (yk−1 − f ′(x∗))>
[(

1− 2

n

)
α

n
ee> +

(
η − η − 1

n

)
α

n
I − (1− δ)ηα

n
I−

(1− δ)α
n
(1− 2ν)ee>

]
(yk−1 − f ′(x∗))

−
(
2ν − (1 + η)αL

n

)
(xk−1 − x∗)>g′(xk−1)

− 2α

n2
(yk−1 − f ′(x∗))>

(
f ′(xk−1)− f ′(x∗))

+ 2

(
1

n
− δ
)
ν(yk−1 − f ′(x∗))>e(xk−1 − x∗).

16

Using the convexity of g gives

2δ[g(xk−1)− g(x∗)] 6 2δ[xk−1 − x∗]>g′(xk−1) ,

and, consequently,

E[Q(θk)|Fk−1]− (1− δ)Q(θk−1)

6 2δ[(xk−1)− (x∗)]>g′(xk−1) +
2δα

n
g′(xk−1)e>yk−1

+ (yk−1 − f ′(x∗))>
[(

1− 2

n

)
α

n
ee> +

(
η − η − 1

n

)
α

n
I

−(1− δ)ηα
n
I − (1− δ)α

n
(1− 2ν)ee>

]
(yk−1 − f ′(x∗))

−
(
2ν − (1 + η)αL

n

)
(xk−1 − x∗)>g′(xk−1)

− 2α

n2
(yk−1 − f ′(x∗))>

(
f ′(xk−1)− f ′(x∗))

+ 2

(
1

n
− δ
)
ν(yk−1 − f ′(x∗))>e(xk−1 − x∗) .

If we regroup all the terms in [(xk−1) − (x∗)]>g′(xk−1) together, and all the terms in (yk−1 −
f ′(x∗))> together, we get

E[Q(θk)|Fk−1]− (1− δ)Q(θk−1)

6
α

n
(yk−1 − f ′(x∗))>

[(
δη − η − 1

n

)
I +

(
δ − 2

n
+ 2ν(1− δ)

)
ee>

]
(yk−1 − f ′(x∗))

−
(
2ν − 2δ − (1 + η)αL

n

)
(xk−1 − x∗)>g′(xk−1)

+ 2(yk−1 − f ′(x∗))>
[
− α

n2
(f ′(xk−1)− f ′(x∗)) + (

1

n
− δ)νe(xk−1 − x∗) + δα

n
eg′(xk−1)

]
.

Let us rewrite this as

E[Q(θk)|Fk−1]− (1− δ)Q(θk−1)

6 (yk−1 − f ′(x∗))>
(
τy,II + τy,e

ee>

n

)
(yk−1 − f ′(x∗))

+ τx,g(x
k−1 − x∗)>g′(xk−1)

+ (yk−1 − f ′(x∗))>
[
τy,f (f

′(xk−1)− f ′(x∗)) + τy,xe(x
k−1 − x∗) + τy,geg

′(xk−1)
]

with

τy,I =
α

n

(
δη − η − 1

n

)
τy,e = α

(
δ − 2

n
+ 2ν(1− δ)

)
τx,g = −(2ν − 2δ − (1 + η)αL

n
)

τy,f = −2α

n2

τy,x = 2

(
1

n
− δ
)
ν

τy,g =
2δα

n
.

17

Assuming that τy,I and τy,e are negative, we have by completing the square that

(yk−1 − f ′(x∗))>
(
τy,II + τy,e

ee>

n

)
(yk−1 − f ′(x∗))

+ (yk−1 − f ′(x∗))>
(
τy,f (f

′(xk−1)− f ′(x∗)) + τy,xe(x
k−1 − x∗) + τy,geg

′(xk−1)
)

6 −1

4

(
τy,f (f

′(xk−1)− f ′(x∗)) + τy,xe(x
k−1 − x∗) + τy,geg

′(xk−1)
)>(1

τy,I

(
I − ee>

n

)
+

1

τy,I + τy,e

ee>

n

)
(
τy,f (f

′(xk−1)− f ′(x∗)) + τy,xe(x
k−1 − x∗) + τy,geg

′(xk−1)
)

= −1

4

τ2y,f
τy,I
‖f ′(xk−1)− f ′(x∗)‖2 − 1

4
τ2y,fn‖g′(xk−1)‖2

(
1

τy,I + τy,e
− 1

τy,I

)
− 1

4

τ2y,xn

τy,I + τy,e
‖xk−1 − x∗‖2 − 1

4

τ2y,gn

τy,I + τy,e
‖g′(xk−1)‖2

− 1

2

τy,fτy,xn

τy,I + τy,e
(xk−1 − x∗)>g′(xk−1)− 1

2

τy,fτy,gn

τy,I + τy,e
‖g′(xk−1)‖2 − 1

2

τy,gτy,xn

τy,I + τy,e
(xk−1 − x∗)>g′(xk−1) ,

where we used the fact that (f ′(xk−1)− f ′(x∗))>e = g′(xk−1). After reorganization of the terms,
we obtain

E[Q(θk)|Fk−1]− (1− δ)Q(θk−1) 6

[
τx,g −

nτy,x
2(τy,I + τy,e)

(τy,f + τy,g)

]
(xk−1 − x∗)>g′(xk−1)

−

[
1

4
τ2y,fn

(
1

τy,I + τy,e
− 1

τy,I

)
+

1

4

τ2y,gn

τy,I + τy,e
+

1

2

τy,fτy,gn

τy,I + τy,e

]
‖g′(xk−1)‖2

− 1

4

τ2y,f
τy,I
‖f ′(xk−1)− f ′(x∗)‖2 − 1

4

τ2y,xn

τy,I + τy,e
‖xk−1 − x∗‖2 .

We now use the strong convexity of the function to get the following inequalities:

‖f ′(xk−1)− f ′(x∗)‖2 6 Ln(xk−1 − x∗)>g′(xk−1)

‖xk−1 − x∗‖2 6
1

µ
(xk−1 − x∗)>g′(xk−1) .

Finally, we have

E[Q(θk)|Fk−1]− (1− δ)Q(θk−1)

6

[
τx,g −

nτy,x
2(τy,I + τy,e)

(τy,f + τy,g)−
Ln

4

τ2y,f
τy,I
− 1

4µ

τ2y,xn

τy,I + τy,e

]
(xk−1 − x∗)>g′(xk−1)

−

[
1

4
τ2y,fn

(
1

τy,I + τy,e
− 1

τy,I

)
+

1

4

τ2y,gn

τy,I + τy,e
+

1

2

τy,fτy,gn

τy,I + τy,e

]
‖g′(xk−1)‖2 .

18

If we choose δ = δ̃
n with δ̃ 6 1

2 , ν = 1
2n , η = 2 and α = 1

2nµ , we get

τy,I =
1

2n2µ

(
2δ̃

n
− 1

n

)
= −1− 2δ̃

2n3µ
6 0

τy,e =
1

2nµ

(
δ̃

n
− 2

n
+

1

n

(
1− δ̃

n

))
= − 1

2n2µ

(
1− δ̃ + δ̃

n

)
6 0

τx,g = −

(
1

n
− 2δ̃

n
− 3L

2n2µ

)
=

3L

2n2µ
− 1− 2δ̃

n

τy,f = − 1

n3µ

τy,x =
1− δ̃
n2

τy,g =
δ̃

n3µ
.

Thus,

τx,g −
nτy,x

2(τy,I + τy,e)
(τy,f + τy,g)−

Ln

4

τ2y,f
τy,I
− 1

4µ

τ2y,xn

τy,I + τy,e

6
3L

2n2µ
− 1− 2δ̃

n
−

1−δ̃
2n

2δ̃−1
n3µ

τy,I + τy,e
+
Ln

4

1
n6µ2

1−2δ̃
2n3µ

− 1

4µ

(1−δ̃)2
n3

τy,I + τy,e

=
L

n2µ

[
3

2
+

1

2(1− 2δ̃)

]
− 1− 2δ̃

n
− 1

µn3(τy,I + τy,e)

[
(1− δ̃)2

4
+

(1− δ̃)(2δ̃ − 1)

2n

]

6
L

n2µ

2− 3δ̃

1− 2δ̃
− 1− 2δ̃

n
+

1

µn3
(

1−2δ̃
2n3µ + 1

2n2µ

(
1− δ̃ + δ̃

n

)) (1− δ̃)2

4

=
L

n2µ

2− 3δ̃

1− 2δ̃
− 1− 2δ̃

n
+

(1− δ̃)2

2− 4δ̃ + 2n− 2nδ̃ + 2δ̃

=
L

n2µ

2− 3δ̃

1− 2δ̃
− 1− 2δ̃

n
+

1− δ̃
2(1 + n)

6
L

n2µ

1− 3δ̃

1− 2δ̃
− 1− 2δ̃

n
+

1− δ̃
2n

=
L

n2µ

2− 3δ̃

1− 2δ̃
− 1− 3δ̃

2n
.

This quantity is negative for δ̃ 6 1
3 and µ

L > 4−6δ̃
n(1−2δ̃)(1−3δ̃)

. If we choose δ̃ = 1
8 , then it is sufficient

to have nµ
L > 8.

To finish the proof, we need to prove the positivity of the factor of ‖g′(xk−1)‖2.

1

4
τ2y,fn

(
1

τy,I + τy,e
− 1

τy,I

)
+

1

4

τ2y,gn

τy,I + τy,e
+

1

2

τy,fτy,gn

τy,I + τy,e
=
n

4

1

τy,I + τy,e
(τy,f + τy,g)

2 − n

4

τ2y,f
τy,I

>
n

4

(τy,f + τy,g)
2

τy,I
− n

4

τ2y,f
τy,I

=
n

4τy,I
τy,g(2τy,f + τy,g)

> 0 .

19

Then, following the same argument as in the previous section, we have

EQ(θk) 6

(
1− 1

8n

)k
Q(θ0)

=

(
1− 1

8n

)k [
2(g(x0)− g(x∗)) + σ2

nµ

]
,

with σ2 = 1
n

∑
i ‖f ′i(x∗)‖2 the variance of the gradients at the optimum.

Step 2 - Domination of g(xk)− g(x∗) by Q(θk)

We now need to prove that Q(θk) dominates g(xk)− g(x∗).

Q(θk) = 2g
(
xk +

α

n
e>yk

)
− 2g(x∗) + (θk − θ∗)>

(
A b
b> c

)
(θk − θ∗)

= 2g
(
xk +

α

n
e>yk

)
− 2g(x∗) +

1

n2µ

∑
i

∥∥yki − f ′i(x∗)∥∥2 + n− 1

2n3µ
‖e>y‖2 − 1

n
(xk − x∗)>(e>yk)

> 2g(xk) +
2α

n
g′(xk)>(e>yk)− 2g(x∗)

+
1

n2µ

∑
i

∥∥∥∥ 1ne>yk + yki −
1

n
e>yk − f ′i(x∗)

∥∥∥∥2 + n− 1

2n3µ
‖e>y‖2 − 1

n
(xk − x∗)>(e>yk)

using the convexity of g and the fact that
∑
i

f ′i(x
∗) = 0

= 2g(xk)− 2g(x∗) +

(
2α

n
g′(xk)− 1

n
(xk − x∗)

)>
(e>yk)

+
1

n3µ
‖e>yk‖2 + 1

n2µ

∑
i

∥∥∥∥yki − 1

n
e>yk − f ′i(x∗)

∥∥∥∥2 + n− 1

2n3µ
‖e>y‖2

> 2g(xk)− 2g(x∗) +

(
2α

n
g′(xk)− 1

n
(xk − x∗)

)>
(e>yk) +

n+ 1

2n3µ
‖e>y‖2

by dropping some terms.

The quantity on the right-hand side is minimized for e>y = n3µ
n+1

(
1
n (x

k − x∗)− 2α
n g
′(xk)

)
. Hence,

we have

20

Q(θk) > 2g(xk)− 2g(x∗)− n3µ

2(n+ 1)

∥∥∥∥ 1n (xk − x∗)− 2α

n
g′(xk)

∥∥∥∥2
= 2g(xk)− 2g(x∗)− n3µ

2(n+ 1)

(
1

n2
‖xk − x∗‖2 + 4α2

n2
‖g′(xk)‖2 − 4α

n2
(xk − x∗)>g′(xk)

)
> 2g(xk)− 2g(x∗)− n3µ

2(n+ 1)

(
1

n2
‖xk − x∗‖2 + 4α2

n2
‖g′(xk)‖2

)
using the convexity of g

> 2g(xk)− 2g(x∗)− nµ

2(n+ 1)

(
1 +

L2

µ2n2

)
‖xk − x∗‖2

using the Lipschitz continuity of g′

> 2g(xk)− 2g(x∗)− nµ

2(n+ 1)

65

64
‖xk − x∗‖2 since

µ

L
>

8

n

> 2g(xk)− 2g(x∗)− n

(n+ 1)

65

64
(g(xk)− g(x∗))

>
63

64
(g(xk)− g(x∗))

>
6

7
(g(xk)− g(x∗)) .

We thus get

E
[
g(xk)− g(x∗)

]
6 2EQ(θk)

=

(
1− 1

8n

)k [
7

3
(g(x0)− g(x∗)) + 7σ2

6nµ

]
.

Step 3 - Initialization of x0 using stochastic gradient descent

During the first few iterations, we obtain theO(1/k) rate obtained using stochastic gradient descent,
but with a constant which is proportional to n. To circumvent this problem, we will first do n
iterations of stochastic gradient descent to initialize x0, which will be renamed xn to truly reflect
the number of iterations done.

Using the bound from section C.3, we have

Eg

(
1

n

n−1∑
i=0

x̃i

)
− g(x∗) 6 2L

n
‖x0 − x∗‖2 + 4σ2

nµ
log
(
1 +

µn

4L

)
.

And so, using xn = 1
n

∑n−1
i=0 x̃

i, we have for k > n

E
[
g(xk)− g(x∗)

]
6

(
1− 1

8n

)k−n [
14L

3n
‖x0 − x∗‖2 + 28σ2

3nµ
log
(
1 +

µn

4L

)
+

7σ2

6nµ

]
.

Since (
1− 1

8n

)−n
6

8

7
,

we get

E
[
g(xk)− g(x∗)

]
6

(
1− 1

8n

)k [
16L

3n
‖x0 − x∗‖2 + 32σ2

3nµ
log
(
1 +

µn

4L

)
+

4σ2

3nµ

]
.

21

References
[1] Y. Nesterov. Introductory lectures on convex optimization: A basic course. Springer, 2004.
[2] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.

CORE Discussion Paper, 2010.
[3] S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated sub-gradient solver for

svm. ICML, 2007.
[4] D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method with a

constant step size. SIAM Journal on Optimization, 18(1):29–51, 2007.
[5] F. Bach and E. Moulines. Non-asymptotic analysis of stochastic approximation algorithms for

machine learning. NIPS, 2011.

22

