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A Proof of Theorem 1

The marginal probability (14) is obtained by taking the expectation of (13) with respect to G. Note
however that (13) is a density, so to be totally precise here we need to work with the probability of
infinitesimal neighborhoods around the observations instead, which introduces significant notational
complexity. To keep the notation simple, we will work with densities, leaving it to the careful reader
to verify that the calculations indeed carry over to the case of probabilities.
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The gamma prior on G =
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is equivalent to a Poisson process prior on N =∑∞
j=1 δ(wj ,Xj) defined over the space R+ × X with mean intensity λ(w)h(x). Then,

=E

e− ∫
wN(dw,dx)

∑
`i Z`i

K∏
k=1

∞∑
j=1

wnk
j 1(Xj = X∗k)e

−wj
∑

`i(δ`ik−1)Z`i


Applying the Palm formula for Poisson processes to pull the k = 1 term out of the expectation,
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Now iteratively pull out terms k = 2, . . . ,K using the same idea, and we get:
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This completes the proof of Theorem 1.
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B Proof of Theorem 2

Let f : X→ R be measurable with respect to H . Then the characteristic functional of the posterior
G is given by:
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The proof is essentially obtained by calculating the numerator and denominator of (2). The denom-
inator is already given in Theorem 1. The numerator is obtained using the same technique with the
inclusion of the term e
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By the Lévy-Khintchine Theorem (using the fact that G has a Poisson process representation N ),
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Dividing the numerator (1) by the denominator (3), the characteristic functional of the posterior G
is:
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Since the characteristic functional is the product ofK+1 terms, we see that the posteriorG consists
of K + 1 independent components, one corresponding to the first term above (G∗), and the others
corresponding to the K terms in the product over k. Substituting the Lévy measure λ(w) for a
gamma process, we note that the first term shows that G∗ is a gamma process with updated inverse
scale τ∗. The kth term in the product shows that the corresponding component is an atom located
at X∗k with density (w∗k)

nke−w
∗
k

∑
`i δ`ikZ`iλ(w∗k); this is the density of the gamma distribution over

w∗k in Theorem 2. This completes the proof.

C Proof of Proposition 4

We have

P (Gt(X1k) = 0|wt−1,,k) = exp(−φt−1wt−1,k)

Assume that

P (Gt(X1k) = 0|wsk) = exp(−yt|swsk)
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then

P (Gt(X1k) = 0|ws−1,k) =
∫
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D Gibbs sampler for the dynamic nonparametric Plackett-Luce model

For ease of presentation, we assume that φt takes the same value φ at each time step. The Gibbs
sampler will iterate between the following steps

1. a. For t = 1, . . . , T , update Gt(X) given (Gt−1(X), α, φ)
b. For t = 1, . . . , T , update (ct, ct∗) given (wt, wt∗, wt+1, wt+1∗, φ, α)

2. a. Update α given (Z, φ)

b. For t = 1, . . . , T

Update wt∗ given (ct−1∗, Z, φ, α)

Update ct∗ given (wt∗, Z, φ, α)

3. For t = 1, . . . , T , update (wt, wt∗) given (ct−1, ct−1∗, ct, ct∗, Zt, α, φ)

4. For t = 1, . . . , T , update Zt given (wt, wt∗)

5. Update φ given w,w∗, α, φ

The steps are now fully described.

1.a) Sample (Gt(X)) given (α, φ)

We have
G1(X)|α ∼ Gamma(α, τ)

and for t = 1, . . . , T − 1
Gt+1(X) ∼ Gamma(α+Mt, τ + φ)

where Mt ∼Poisson(φGt(X)). The weights (wt, wt∗) are then appropriately rescaled.

1.b) Sample (c, c∗) given (w,w∗, φ, α)

Consider first the sampling of c1:T . We have, for t = 1, . . . , T and k = 1, . . . ,K

p(ctk|wtk, wt+1,k) ∝ p(ctk|wtk)p(wt+1,k|ctk)
where

p(ctk|wtk) = Poisson(ctk;φwtk)
and

p(wt+1,k|ctk) =
{
δ0(wt+1,k) if wtk = 0
Gamma(wt+1,k; ctk, τ + φ) if wtk > 0

Hence we can have the following MH update. If wt+1,k > 0, then we necessarily have ctk > 0. We
sample c∗tk ∼zPoisson(φwtk) where zPoisson(φwtk) denotes the zero-truncated Poisson distribution
and accept c∗tk w.p.

min

(
1,

Gamma(wt+1,k; c
∗
tk, τ + φ)

Gamma(wt+1,k; ctk, τ + φ)

)
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If wt+1,k = 0, we only have two possible moves: ctk = 0 or ctk = 1, given by the following
probabilities

P (ctk = 0|wt+1,k = 0, wtk) =
exp(−φwtk)

exp(−φwtk) + φwtk exp(−φwtk)(τ + φ)
=

1

1 + φwtk(τ + φ)

P (ctk = 1|wt+1,k = 0, wtk) =
φwtk exp(−φwtk)(τ + φ)

exp(−φwtk) + φwtk exp(−φwtk)(τ + φ)
=

φwtk(τ + φ)

1 + φwtk(τ + φ)

Note that the above Markov chain is not irreducible, as the probability is zero to go from a state
(ctk > 0, wt+1,k > 0) to a state (ctk = 0, wt+1,k = 0), even though the posterior probability of this
event is non zero in the case item k does not appear after time t. We can resolve that by the following
procedure, that uses a backward forward recursion.

Assume that item k does not appear after time step τ+k (the same procedure applies if item k does not
appear before time step τ−k ). Then we can sample jointly the whole sequence (wk,t, ck,t)t=τk+1,...,T

using the following backward forward recursion.

Let

xT =

m∑
k=1

ZTk (5)

and for t = T − 1, . . . , τ+k

xt =

m∑
k=1

Ztk +
φxt+1

1 + φ+ xt+1

We have, for k = 1, . . . ,K and t = τ+k

ctk|(Z, φ,wtk) ∼ Poisson
(

1 + φ

1 + φ+ xt
φwtk

)
(6)

wt+1,k|ctk, Z ∼ Gamma (ck,t, τ + φ+ xt+1) (7)

2.a) Sample α given (Z, φ)

We can sample from the full conditional which is given by

α|(Z, γ, φ) ∼ Gamma (a+K, b+ y1 + log(1 + x1)) (8)

where x1 and y1 are obtained with the following recursion

xT =

m∑
k=1

ZTk (9)

yT = 0 (10)

and for t = T − 1, . . . , 1

xt =

m∑
k=1

Ztk +
φxt+1

1 + φ+ xt+1

yt = yt+1 − log

(
1 + φ

1 + φ+ xt+1

)
.

2.b) Sample (c∗, w∗) given (Z, φ, α)
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We can sample from the full conditional which is given by

w1∗|(Z, φ, α) ∼ Gamma (α, τ + x1) (11)

where x1 is defined above. Then for t = 2, . . . , T , let

ct−1∗|(Z, φ, α,wt−1∗) ∼ Poisson
(

1 + φ

1 + φ+ xt
φwt−1∗

)
wt∗|ct−1∗, Z, α ∼ Gamma (α+ ct−1∗, τ + φ+ xt)

3) Sample (w,w∗) given (Z,α, c, c∗, φ)

For each time step t = 1, . . . , T

• For each item k = 1, . . . ,K, sample

wtk|ct−1,k, ctk, Zt ∼ Gamma

(
ntk + ct−1,k + ctk, τ + 2φ+

m∑
i=1

δtikZti

)
(12)

if ctk + ct−1,k + ntk > 0, otherwise, set wtk = 0. The occurence indicator δtik is defined
as

δtik =

{
0 if ∃j < i with Ytj = X∗k ;
1 otherwise.

(13)

• Sample the total mass

wt∗|ct∗, ct−1∗, Zt, α ∼ Gamma

(
α+ ct∗ + ct−1∗, τ + 2φ+

m∑
i=1

Zti

)
(14)

4) Sample Z given (w,w∗)

For t = 1, . . . , T and i = 1, . . .m, sample

Zti|w,w∗ ∼ Exp

(
wt∗ +

K∑
k=1

δtikwtk

)
(15)

5) Sample φ given w,w∗, α, φ

We sample φ using a MH step. Propose φ̃ = φ exp(σε) where σ > 0 and ε ∼ N (0, 1). And accept
it with probability

min

(
1,
p(φ̃)

p(φ)

φ̃

φ

T−1∏
t=1

[
p(wt+1∗|φ̃, wt∗)
p(wt+1∗|φ,wt∗)

K∏
k=1

p(wt+1,k|φ̃, wtk)
p(wt+1,k|φ,wtk)

])
(16)
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