Appendix

Proof of Lemma 3: Since, poi(\, i) = e 2\ /pl,
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Proof of Lemma 4: Let Q* = argming maxp D(P||Q), then Q*' satisfies D(P’||Q*') < R(P) forall P’ ¢ P. H
. The

>>

Proof of Lemma 5: Let P; and Q; be distributions achieving redundancy R(P 4) and R(Pgs
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Proof of Lemma 7: For 1 < i < T, let the distribution Q; = argming maxpep, D(P||Q) achieve the redundancy

bound R(P;), and Q = % ZiT:1 Q;Then for all ¢ and all a € A, Q(a) > Q;(a)/T, and hence for any P € P; U
Py...UPyp,

P(X) P(X)
Q(X) Qi(X)

Considering maximum over all distributions in P yields the desired result. ]

D(P||Q) :EXNP[IOg } < 1ogT+Ep{1og } <logT + R(P,).

Proof of Lemma 9: As mentioned in the proof sketch, we construct the distribution A* as follows. Pick any distribu-
tion A’ € Z, and let A* = Ule A%, where AT = {7 ,..., A], }is such that

% def def * * dcf Z
)\ 1 — )\‘7 2 — : )\ )\ — )\‘7 1y
.7

]mJ

for j =1,2,..., B. In other words, A* € Z, is obtained from an arbitrary A’ € 7, by making all the m; elements of
A’ equal to S A1 ;/m;, the average of the elements in A, for j = 1,2,..., B.

For any A € Z,, we analyze D(A|[A*). Let 3, be the profile generated by A; = {Aj1,...,Ajm,}. Since g =
P, U...o5 = f((@1,P2,---,Ppg)), a function of the B—tuple (@, P,,...,Pp). By independence of sampling,
(@1, P9y .-.,pp) is distributed as Ay x ... Ap. U

D(A||A*) < HA I HA* > D13 = ZEA {

SE Zlog(EA[ i)
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where the first inequality follows from Lemma (4), and the last from the concavity of the logarithms.

We bound each of the summands as follows. Let B; = {j1, 2, ., ftm, }, Where p; is generated by ;. Using
Equation (5), if @; = {41, 2, - - -, ftm, } then

Aj ( @] Z HpOI YRAOE ,LL[)
TESm; I=1
For A%, all the summands are identical, so A (Ej) = F(%;) [1,%, poi(X}, u). Hence,
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By the linearity of expectations and the independence of u’s,
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and since that ; is distributed )\; ;, invoking Lemma 3,
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where in the last inequality, we use \/\;* — /\’f,l| < Ajand /\; > )\-_. Combining the above inequalities, for all A € 7.,

D(AJ|A") Zlog(EA[ %, )D gZB: my
A3(%)) =N
So,
R(I)—ménjr\naxD(A||Q)<maxD AJ|A%) ijj. u

Proof of Lemma 14: We construct a map f from the set of profiles to £ and then show that forany A € £,if o ~ A
P(f(@) #A) <e. (6)
Let ® = {p1, pto, ...} be aprofile. Foreach j = 1,2,..., K, let
1 if 37 such that i = argmin |p; — A%
e { 0 otherwise. ’

In other words, for each multiplicity j; we set the coordinate x; to 1 if p; is closest to A]. LetT = z; ... zx. Let
¢ € C be the code with minimum Hamming distance from Z. Then,

f(®) = Ae.
Let ¢ € C. We now analyze Equation 6 for Az. Two adjacent A\*’s are separated by
AN =M= (2i+1)C > 2,/CNY. (7
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Let A} € Az be any element. Let Y; be a random variable that is 1 if the multiplicity p; generated by A} is closest to a
A%, J # i and O otherwise. Using the fact that the minimum distance of the code is a K, the probability of error is at

most the probability that > Y; > % So, forg ~ Az

aK
P(f(@)#Az) <P Yi>—].
1@ 24 <P (1= %)
Using Equation (7), an application of Chernoff bound,
A,
PY,=1)<P (Im — Al = 2‘) <e 9/
So,

E [Z YZ} < e CMK.

By Markov’s Inequality,

PF@) £ Ae) < 2

(67

thus proving the result. ]
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