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Here we give proof sketches of the theorems and propositions as well as some technical discussions.

Proof of Theorem 3.1. The proof is an application of the PAC-Bayes theorem (Theorem 2.1) and a
refinement of the proof of Theorem 2.2.

First observe that when considering distributions of homogeneous linear classifiers cw in Rd, we only
need to restrict ourselves in distributions of w on the (d− 1)-dimensional unit sphere Sd−1. For any
probability distribution π of vectors in Rd, let πp denote the corresponding probability distribution
on Sd−1 by projecting π from Rd to Sd−1.

Choose the prior distribution P of classifiers cw = sgn(< w, · >) corresponding to w ∼ Np(0, I),
i.e., the uniform distribution on Sd−1. Let the posterior distribution Q(µ, ŵ) be defined as in Theo-
rem 3.1. It is obvious that Q(µ, ŵ) of cw corresponds to the distribution of w ∼ Np(µŵ, I). Thus to
finish the proof we only need to show

KL(Np(µŵ, I)||Np(0, I)) ≤ d

2
ln(1 +

µ2

d
). (1)

Observe that for all σ > 0, we have

KL(Np(µŵ, I)||Np(0, I)) = KL(Np(µŵ, I)||Np(0, σ
2I))

≤ KL(N (µŵ, I)||N (0, σ2I)).

The last inequality holds according to the chain rule of the KL divergence [1]. Taking σ2 = 1 + µ2

d
completes the proof.

It is worth pointing out that (1) is almost a tight upper bound. Thus the dimensionality d in-
volved is intrinsic. Note that d

2 ln(1 + µ2

d ) ∼ d lnµ as µ → ∞. In fact we can show
KL(Np(µŵ, I)||Np(0, I)) ∼ (d− 1) lnµ.

To see this, let P = Np(0, I)), and Q = Np(µŵ, I). Since P is the uniform distribution on Sd−1,
we have KL(Q||P ) = ln 2πd/2

Γ(d/2) − h(Q), where h(Q) is the differential entropy of Q. So we only
need to show −h(Q) ∼ (d − 1) lnµ. Let v̂ ∈ Sd−1, and let cosα =< v̂, ŵ >. Let q(v̂) be the
density of Q. We have

q(v̂) =

∫ ∞

0

1

(2π)d/2
exp

(
−1

2

(
r2 + µ2 − 2rµ cosα

))
rd−1dr

=
exp(−µ2 sin2 α

2 )

(2π)d/2

∫ ∞

0

exp

(
1

2
(r − µ cosα)2

)
rd−1dr.

Let

In(t) =
1√
2π

∫ ∞

0

exp

(
1

2
(r − t)2

)
rd−1dr.
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Integration by parts yields a recursive formula

In(t) = tIn−1(t) + (n− 2)In−2(t).

Also we have I1(t) = Φ(t), and I2(t) =
e−

t2

2√
2π

+ tΦ(t). Some calculation yields

Id(t) =
e−

t2

2

√
2π

fd(t) + Φ(t)gd(t),

where fd(t) and gd(t) are polynomials of t with (d − 2) and (d − 1) degree both with the leading
coefficient being 1. Thus

q(v̂) =
e−

µ2

2

(2π)d/2
fd(µ cosα) +

exp(−µ2 sin2 α
2 )

(2π)
d−1
2

Φ(µ cosα)gd(µ cosα).

When µ is sufficiently large, the first term in above formula is clearly negligible. For the second
term, we only need to consider α ≤ µ−1/2, since otherwise the term is negligible. Thus∫

Sd−1

q(v̂) ln q(v̂)dΩ ∼
∫
Sd−1

q(v̂) ln

(
exp(−µ2 sin2 α

2 )

(2π)
d−1
2

Φ(µ cosα)(µ cosα)d−1

)
dΩ

∼ ln
µd−1

(2π)
d−1
2

+

∫
Sd−1,α≤µ−1/2

exp(−µ2α2

2 )

(2π)
d−1
2

µd−1

(
−µ2α2

2

)
dΩ.

Some calculations show that

−d− 1

2
≤
∫
Sd−1,α≤µ−1/2

exp(−µ2α2

2 )

(2π)
d−1
2

µd−1

(
−µ2α2

2

)
dΩ ≤ 0.

We obtain the results.

Proof of Proposition 3.2. Obvious since d
2 ln

(
1 + µ2

d

)
< µ2

2 for any d < ∞ and µ > 0; and as

d → ∞, d
2 ln

(
1 + µ2

d

)
→ µ2

2 .

Proof of Corollary 3.3. We will show that for every ϵ > 0 and every δ ≥ 2e−2nϵ2 , with probability
1− δ

erD(cw) ≤ erS(cw) +

√
d ln

(
1 +

(
2n
d

))
+ 1

2 ln
2(n+1)

δ

n
+ 4ϵ (2)

holds simultaneously for all homogeneous linear classifiers cw with w ∈ Rd satisfying

PD

(∣∣∣∣y · < w, x >

∥w∥∥x∥

∣∣∣∣ ≤ td3/2

n2

)
≤ ϵ, (3)

where t = 1
4Φ

−1
(ϵ). Setting ϵ = 1

4

(
d+lnn

n

)1/2
yields the result (assuming n > 5).

Set µ = 4n2

d3/2 in Theorem 3.1. Also let Q(µ, ŵ) be defined as in Theorem 3.1. By the simple fact
that

kl(erS(Q)||erD(Q)) ≥ 2 (erS(Q)− erD(Q))
2
,

we obtain from Theorem 3.1 that with probability 1− δ
2 for all ŵ ∈ Rd with ∥ŵ∥ = 1

erD(Q(µ, ŵ)) ≤ erS(Q(µ, ŵ)) +

√
d
(
ln(1 + 2n

d )
)
+ 1

2 ln
2(n+1)

δ

n
. (4)
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Let η = Φ−1(ϵ) and z = µy<ŵ,x>
∥x∥ , we have

erD(Q(µ, ŵ)) = EDΦ(z)

= PD(z ≤ η) · ED
(
Φ(z)|z ≤ η

)
+

PD(η < z ≤ 0) · ED
(
Φ(z)|η < z ≤ 0

)
+

PD(z > 0) · ED
(
Φ(z)|z > 0

)
≥ (erD(cŵ)− ϵ) · (1− ϵ)

≥ erD(cŵ)− 2ϵ. (5)

By the assumption of the theorem and the Chernoff bound, it is easy to see that with probability
1− δ

2 , where δ ≥ 2e−2nϵ2 ,

PS

(∣∣∣∣y · < ŵ, x >

∥x∥

∣∣∣∣ ≤ Φ
−1

(ϵ)d3/2

4n2

)
≤ 2ϵ.

Similarly we can also show that

erS(Q(µ, ŵ)) ≤ erS(cŵ) + 2ϵ. (6)

Combining (4), (5) and (6) with the union bound, the theorem follows.

Proof of Proposition 3.4. First it is easy to check that Pw∼Q

(
y<w,x>

∥x∥ ≤ θ
)
= Φ

(
µy<ŵ,x>

∥x∥ − θ
)

,
where Q is the abbreviation of Q(µ, ŵ) defined in Theorem 3.1. Also observe that for every θ

I[t ≤ 0] ≤ Φ(t− θ)

Φ(−θ)
.

Thus we have

erD(cŵ) = EDI

[
y
< ŵ, x >

∥x∥
≤ 0

]

≤ ED
Φ
(
µy<ŵ,x>

∥x∥ − θ
)

Φ(−θ)

=
1

Φ(θ)
Ew∼QPD

(
y
< w, x >

∥x∥
≤ θ

)
=

erD,θ(Q(µ, ŵ))

Φ(θ)

Proof of Proposition 3.5. Let ϵ = erD,θ(Q). We only need to show

ϵ+Φ(θ)− ϵ

Φ(θ)
≥ 0. (7)

Note that 1− Φ(θ) = Φ(θ). The LHS of (7) equals to Φ(θ)
[
1− ϵ

Φ(θ)

]
.

Finally, observe that if ϵ+Φ(θ) < 1, then ϵ < Φ(θ). The proposition follows.

Proof of Lemma 3.6. Due to the symmetry of Gaussian distribution N (µŵ, I), simple analysis
shows that Pw∼N (µŵ,I)

(
y <w,x>
∥w∥∥x∥ ≤ θ

)
is only a function of <ŵ,yx>

∥x∥ , θ, and µ. We denote this

function as F (µ, <ŵ,yx>
∥x∥ , θ).
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A slight modification of the proof of Proposition 3.4 yields

erD(cŵ) ≤
erND,θ (Q(µ, ŵ))

F (µ, 0, θ)
. (8)

Let û, v̂ to be two unit vectors satisfying < ŵ, û >= 0 and v̂ =
√
1− θ2û − θŵ. It’s not difficult to

show that for an arbitrary vector w:

< w, v̂ >≤ 0 ⇒ < w, û >

∥w∥
≤ θ

Thus we have:

F (µ, 0, θ) = Pw∼N (µŵ,I)

(
< w, û >

∥w∥
≤ θ

)
≥ Pw∼N (µŵ,I) (< w, v̂ >≤ 0)

= Φ (−µθ) = Φ (µθ) (9)

Combining (8) and (9) finishes the proof.

Proof of Proposition 3.7. Immediate.
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