Link Prediction in Graphs with Autoregressive

Features
Emile Richard Stéphane Gaiffas Nicolas Vayatis
CMLA UMR CNRS 8536, CMAP - Ecole Polytechnique CMLA UMR CNRS 8536,
ENS Cachan, France & LSTA - Université Paris 6 ENS Cachan, France
Abstract

In the paper, we consider the problem of link prediction in time-evolving graphs.
We assume that certain graph features, such as the node degree, follow a vector
autoregressive (VAR) model and we propose to use this information to improve
the accuracy of prediction. Our strategy involves a joint optimization procedure
over the space of adjacency matrices and VAR matrices which takes into account
both sparsity and low rank properties of the matrices. Oracle inequalities are de-
rived and illustrate the trade-offs in the choice of smoothing parameters when
modeling the joint effect of sparsity and low rank property. The estimate is com-
puted efficiently using proximal methods through a generalized forward-backward
agorithm.

1 Introduction

Forecasting systems behavior with multiple responses has been a challenging issue in many contexts
of applications such as collaborative filtering, financial markets, or bioinformatics, where responses
can be, respectively, movie ratings, stock prices, or activity of genes within a cell. Statistical model-
ing techniques have been widely investigated in the context of multivariate time series either in the
multiple linear regression setup [4] or with autoregressive models [23]. More recently, kernel-based
regularized methods have been developed for multitask learning [[7, 2l]. These approaches share the
use of the correlation structure among input variables to enrich the prediction on every single output.
Often, the correlation structure is assumed to be given or it is estimated separately. A discrete en-
coding of correlations between variables can be modeled as a graph so that learning the dependence
structure amounts to performing graph inference through the discovery of uncovered edges on the
graph. The latter problem is interesting per se and it is known as the problem of link prediction
where it is assumed that only a part of the graph is actually observed [[15, 9]. This situation occurs
in various applications such as recommender systems, social networks, or proteomics, and the ap-
propriate tools can be found among matrix completion techniques [21} 5, [1]]. In the realistic setup
of a time-evolving graph, matrix completion was also used and adapted to take into account the
dynamics of the features of the graph [[18]]. In this paper, we study the prediction problem where the
observation is a sequence of graphs adjacency matrices (A;)o<;<7 and the goal is to predict Ap.
This type of problem arises in applications such as recommender systems where, given informa-
tion on purchases made by some users, one would like to predict future purchases. In this context,
users and products can be modeled as the nodes of a bipartite graph, while purchases or clicks are
modeled as edges. In functional genomics and systems biology, estimating regulatory networks in
gene expression can be performed by modeling the data as graphs and fitting predictive models is
a natural way for estimating evolving networks in these contexts. A large variety of methods for
link prediction only consider predicting from a single static snapshot of the graph - this includes
heuristics [[15} 20], matrix factorization [13], diffusion [16], or probabilistic methods [22]. More
recently, some works have investigated using sequences of observations of the graph to improve the
prediction, such as using regression on features extracted from the graphs [18]], using matrix factor-
ization [14]], continuous-time regression [25]. Our main assumption is that the network effect is a



cause and a symptom at the same time, and therefore, the edges and the graph features should be
estimated simultaneously. We propose a regularized approach to predict the uncovered links and the
evolution of the graph features simultaneously. We provide oracle bounds under the assumption that
the noise sequence has subgaussian tails and we prove that our procedure achieves a trade-off in the
calibration of smoothing parameters which adjust with the sparsity and the rank of the unknown ad-
jacency matrix. The rest of this paper is organized as follows. In Section 2, we describe the general
setup of our work with the main assumptions and we formulate a regularized optimization problem
which aims at jointly estimating the autoregression parameters and predicting the graph. In Section
3, we provide technical results with oracle inequalities and other theoretical guarantees on the joint
estimation-prediction. Section 4 is devoted to the description of the numerical simulations which
illustrate our approach. We also provide an efficient algorithm for solving the optimization prob-
lem and show empirical results. The proof of the theoretical results are provided as supplementary
material in a separate document.

2 Estimation of low-rank graphs with autoregressive features

Our approach is based on the asumption that features can explain most of the information contained
in the graph, and that these features are evolving with time. We make the following assumptions
about the sequence (A;):>o of adjacency matrices of the graphs sequence.

Low-Rank. We assume that the matrices A; have low-rank. This reflects the presence of highly
connected groups of nodes such as communities in social networks, or product categories and groups
of loyal/fan users in a market place data, and is sometimes motivated by the small number of factors
that explain nodes interactions.

Autoregressive linear features. We assume to be given a linear map w : R**” — R? defined by

w(4) = ({90, 4), -+ (20 4) 1)

where (£2;)1<i<q is a set of n X n matrices. These matrices can be either deterministic or random in
our theoretical analysis, but we take them deterministic for the sake of simplicity. The vector time
series (w(A¢))¢>o0 has autoregressive dynamics, given by a VAR (Vector Auto-Regressive) model:

w(Ap1) = Wy w(Ay) + Niga, 2

where Wy € R4*? is a unknown sparse matrix and (IV;);>¢ is a sequence of noise vectors in R4,
An example of linear features is the degree (i.e. number of edges connected to each node, or the sum
of their weights if the edges are weighted), which is a measure of popularity in social and commerce
networks. Introducing

Xr_1 = (w(Ag),...,w(Ar_1))" and X7 = (w(A41),...,w(A7))",
which are both 7' x d matrices, we can write this model in a matrix form:
Xr = X7p-1Wo + Nr, (3)
where Ng = (Ny,...,Np)".

This assumes that the noise is driven by time-series dynamics (a martingale increment), where each
coordinates are independent (meaning that features are independently corrupted by noise), with a
sub-gaussian tail and variance uniformly bounded by a constant ¢2. In particular, no independence
assumption between the NNV, is required here.

Notations. The notations ||- ||, || - [|ps | |lcos || ||+ and || - ||op stand, respectively, for the Frobenius
norm, entry-wise £, norm, entry-wise £~ norm, trace-norm (or nuclear norm, given by the sum of the
singular values) and operator norm (the largest singular value). We denote by (A, B) = tr(A" B)
the Euclidean matrix product. A vector in R is always understood as a d x 1 matrix. We denote
by ||Allo the number of non-zero elements of A. The product A o B between two matrices with
matching dimensions stands for the Hadamard or entry-wise product between A and B. The matrix
| A| contains the absolute values of entries of A. The matrix (M) is the componentwise positive part
of the matrix M, and sign(M) is the sign matrix associated to M with the convention sign(0) = 0



If Aisan x n matrix with rank 7, we write its SVD as A = UXV T = 22:1 o'jujva where
Y = diag(oy,...,0,) is a r x r diagonal matrix containing the non-zero singular values of A in
decreasing order, and U = [uq,...,u,], V = [v1,...,v,] are n X r matrices with columns given by
the left and right singular vectors of A. The projection matrix onto the space spanned by the columns
(resp. rows) of A is given by Py = UU T (resp. P,y = VV'T). The operator P4 : R**" — R?x"
given by P4(B) = PyB + BPy — PyBPy is the projector onto the linear space spanned by the
matrices uix and yv,;'— for1 < j,k <randz,y € R™. The projector onto the orthogonal space is

given by P5(B) = (I — Py)B(I — Py). We also use the notation a VV b = max(a, b).

2.1 Joint prediction-estimation through penalized optimization

In order to reflect the autoregressive dynamics of the features, we use a least-squares goodness-of-
fit criterion that encourages the similarity between two feature vectors at successive time steps. In
order to induce sparsity in the estimator of W, we penalize this criterion using the /1 norm. This
leads to the following penalized objective function:

1
(W) = Xy = X WG + sl W,

where k£ > 0 is a smoothing parameter.

Now, for the prediction of A7, we propose to minimize a least-squares criterion penalized by the
combination of an #; norm and a trace-norm. This mixture of norms induces sparsity and a low-rank
of the adjacency matrix. Such a combination of ¢; and trace-norm was already studied in [8]] for the
matrix regression model, and in [[19] for the prediction of an adjacency matrix.

The objective function defined below exploits the fact that if W is close to Wy, then the features of
the next graph w(Az 1) should be close to W T w(Ar). Therefore, we consider

1
Jo(A,W) = <[lw(A) = WTw(Ar)|[F + ll Al + 7] Ally,

where 7,7 > 0 are smoothing parameters. The overall objective function is the sum of the two
partial objectives J; and J5, which is jointly convex with respect to A and W:

! 1
LAW) = =Xy = Xp WG+ £ W + < [lw(4) - WTw(AD)II3 + 7l AL+l Al @)

If we choose convex cones A C R™*™ and W C R%*?, our joint estimation-prediction procedure is
defined by
(A,W) e argmin L(AW). Q)
(A W)eAx W

It is natural to take W = R4*4 and A = (R, )™*" since there is no a priori on the values of the
feature matrix Wy, while the entries of the matrix Ar41 must be positive.

In the next section we propose oracle inequalities which prove that this procedure can estimate W)
and predict Ap, 1 at the same time.

2.2 Main result

The central contribution of our work is to bound the prediction error with high probability under the
following natural hypothesis on the noise process.

Assumption 1. We assume that (Ny)>o satisfies E[Ny|F,_1] = 0 for any t > 1 and that there is
o > 0 such that forany N\ e Rand j =1,...,dandt > 0:

E[SA(Nt)j ‘ft—l] S 602)\2/2-
Moreover, we assume that for each t > 0, the coordinates (Ni)1, . .., (N¢)q are independent.

The main result can be summarized as follows. The prediction error and the estimation error can be
simultaneously bounded by the sum of three terms that involve homogeneously (a) the sparsity, (b)
the rank of the adjacency matrix Ar1, and (c) the sparsity of the VAR model matrix Wj. The tight
bounds we obtain are similar to the bounds of the Lasso and are upper bounded by:



log d log n

||Wo||0 + Cy—— ||AT+1||0 + 03 rank AT+1 .

The positive constants Cl, Cy,C5 are proport10nal to the noise level o. The interplay between the
rank and sparsity constraints on Ap, 1 are reflected in the observation that the values of Cs and Cs
can be changed as long as their sum remains constant.

3 Oracle inequalities

In this section we give oracle inequalities for the mixed prediction-estimation error which is given,
for any A € R™™ and W € R%¥4, by

1 1
E(A,W)? = I = Wo) Tw(Ar) — w(A — Arpa)|l3 + F X2 (W = W)l (6)

It is important to have in mind that an upper-bound on £ implies upper-bounds on each of
its two components. It entails in particular an upper-bound on the feature estimation error

|Xr_1(W — Wp)||p that makes ||(W — W) Tw(Ar)||> smaller and consequently controls the
prediction error over the graph edges through ||w(A — Ar11)]|2.
The upper bounds on £ given below exhibit the dependence of the accuracy of estimation and pre-

diction on the number of features d, the number of edges n and the number 7" of observed graphs in
the sequence.

Let us recall Np = (Ny, ..., NT)—r and introduce the noise processes
1 1 &
E Z NT+1 j and == Zw At 1 N + LU(AT)NTJrl,
j=1 t:l

which are, respectlvely, n x n and d X d random matrices. The source of randomness comes from
the noise sequence (IN;);>o, see Assumptlonl 1] If these noise processes are controlled correctly, we
can prove the following oracle inequalities for procedure (3). The next result is an oracle inequality
of slow type (see for instance [3]]), that holds in full generality.

Theorem 1. Under Assumption let (fl, W) be given by (B) and suppose that
72 2a||M|lop, v 22(1—a)[[M|lec and k= 2[|E]w )

for some o € (0,1). Then, we have

2 < : 2
EAWY < |t Le(A W) 4 2r Al + 2] Al + 25 W |

For the proof of oracle inequalities of fast type, the restricted eigenvalue (RE) condition introduced
in [3] and [10, [11] is of importance. Restricted eigenvalue conditions are implied by, and in gen-
eral weaker than, the so-called incoherence or RIP (Restricted isometry property, [6]) assumptions,
which excludes, for instance, strong correlations between covariates in a linear regression model.
This condition is acknowledged to be one of the weakest to derive fast rates for the Lasso (see [24]]
for a comparison of conditions).

Matrix version of these assumptions are introduced in [[12]. Below is a version of the RE assumption
that fits in our context. First, we need to introduce the two restriction cones.

The first cone is related to the ||W||; term used in procedure (3). If W € R9*?, we denote by
Ow = sign(W) € {0,+1}7%9 the signed sparsity pattern of W and by O, € {0,1}4*? the
orthogonal sparsity pattern. For a fixed matrix W € R%*? and ¢ > 0, we introduce the cone

Ci(W,e) = { W e W - 05 o W'l < 0w o W] }.

This cone contains the matrices W' that have their largest entries in the sparsity pattern of W.

The second cone is related to mixture of the terms || A||. and || A||; in procedure (3)). Before defining
it, we need further notations and definitions.



For a fixed A € R™*™ and ¢, 5 > 0, we introduce the cone
Ca(A, ¢, 8) = {4 € A [PE(A)]|. + BIO% 0 Al < c([Pa(A)] + Bll©a 0 A1) }.

This cone consist of the matrices A’ with large entries close to that of A and that are “almost aligned”
with the row and column spaces of A. The parameter 3 quantifies the interplay between these too
notions.

Assumption 2 (Restricted Eigenvalue (RE)). For W € W and c > 0, we have

_; : ’ <L B ’ ’ )
m(W,e) = inf {u >0 O o Wllp < T Xy W, IV €Ci(W,0)}

For A € Aand c, > 0, we introduce
pa(A W, 8) = int {11 > 05 [Pa(A)r V€40 A < T IW Tw(Ar) — )
YW’ € CL(W,¢), VA" € Ca(A, e, 5)} . ®)

The RE assumption consists of assuming that the constants p; and uo are finite. Now we can state
the following Theorem that gives a fast oracle inequality for our procedure using RE.

Theorem 2. Under Assumptionand Assumption E] let (121, W) be given by (B) and suppose that
72 3al|M|lop, 72 3(1—a)[[M|lsc and k= 3[E]w ©)
for some o € (0, 1). Then, we have
25

~ 25
2 < : 2 2 2 2 2 2
EAWP< | inf &AW (A W) (77 rank( )17 Alo)+ g 2 (W)W o }

where (11 (W) = p1 (W, 5) and po(A, W) = ps(A, W, 5,v/7) (see Assumption|2).

The proofs of Theorems E] and [2] use tools introduced in [[12] and [3].

Note that the residual term from this oracle inequality mixes the notions of sparsity of A and W
via the terms rank(A), || A||o and ||W]|o. It says that our mixed penalization procedure provides an
optimal trade-off between fitting the data and complexity, measured by both sparsity and low-rank.
This is the first result of this nature to be found in literature.

In the next Theorem [3] we obtain convergence rates for the procedure () by combining Theorem 2]
with controls on the noise processes. We introduce

d 1 d

]

Vg e
j=1

1

2 _ T

Qo0p = ngﬁj L
j=1

v

d
9 1
)y VUQoo = EE :Qjoﬂj ’
op = )

T
1
o5 = jfllf)idai,j’ where 07 ; = (T ;Wj(At—l)Q +Wj(AT)2>,

which are the (observable) variance terms that naturally appear in the controls of the noise processes.
We introduce also

1
(r =2 max loglog (o2 vV —— Ve
T J=1ed g log w,j UU% ; )
which is a small (observable) technical term that comes out of our analysis of the noise process =.
This term is a small price to pay for the fact that no independence assumption is required on the
noise sequence (Ny);>o, but only a martingale increment structure with sub-gaussian tails.

Theorem 3. Consider the procedure (fl, W) given by () with smoothing parameters given by
2(x + log(2n))

d )
2(z + 2logn)

T = 3a0vq,op

v =3(1 - a)ovg,c

d b
ﬂ600w<\/26(x+21;gd+€T) N \/26(1:+2dlogd+€T)> '




Sor some « € (0,1) and fix a confidence level x > 0. Then, we have
1 1
2 . 2 -4
EAWP< | r {5(A, W)2 4+ C1||Wlo(z + 2log d + £r) (T + d2)

2(z + log(2n))
R

(xz +2logn)

2
+02||A||0 d +Cg rank(A)

where
Cy = 100ep1(W)?0°02, Oy =25u2(A, W) (1—a)?c?vd o, Cs = 25uz(4, W)2a202v?2’0p,
with a probability larger than 1 — 17e™%, where p1 and o are the same as in Theorem

The proof of Theorem [3] follows directly from Theorem [2] basic noise control results. In the next
Theorem, we propose more explicit upper bounds for both the indivivual estimation of W and the
prediction of Ap ;.

Theorem 4. Under the same assumptions as in Theorem 3| and the same choice of smoothing pa-
rameters, for any x > 0 the following inequalities hold with probability larger than 1 — 17e~":

o Feature prediction error:

1 A 25
THXT(W - Wo)llz < %Hzm(Wo)ZHWOHO

. 1 25
+ inf, {2 w(4) — w(Ara) I + Topa(A, W) (72 rank(4) + 42 4]l0)} - (10)

o VAR parameter estimation error:

W — Woll1 < 5k (Wo)2([Wollo

. 1 25
+6/[[Wollop1 (Wo) inf \/dllw(A) —w(Ar )3 + TgH2(A, Wo)? (72 rank(A4) +42[|Allo)

1
(1)

e Link prediction error:

[A=Arialle < 51 (Wo)?[Wollo+pa(Ar i1, Wo) (6+/rank Ag +5g VIIA7+1l0)

. 1 25
x inf, J l(A) = w(Ar )3 + Toa(A, Wo)2(r2 rank(4) + 42| Allo) . (12)

4 Algorithms and Numerical Experiments

4.1 Generalized forward-backward algorithm for minimizing £

We use the algorithm designed in [[L7]] for minimizing our objective function. Note that this algo-
rithm is preferable to the method introduced in [18] as it directly minimizes £ jointly in (.S, W)
rather than alternately minimizing in W and S.

Moreover we use the novel joint penalty from [19] that is more suited for estimating
graphs. The proximal operator for the trace norm is given by the shrinkage operation, if
Z = U diag(oy, -+ ,0,)V7T is the singular value decomposition of Z,

prOXTH-H*(Z) = Udlag((al — T)+)iVT.

Similarly, the proximal operator for the ¢;-norm is the soft thresholding operator defined by using
the entry-wise product of matrices denoted by o:

prOXw.Hl(Z) =sgn(Z)o (|Z] =)+

The algorithm converges under very mild conditions when the step size 6 is smaller than %, where
L is the operator norm of the joint quadratic loss:

1 1
®: (A W) = Xy = X WG + lw(4) = Wlw(Ar)|l -



Algorithm 1 Generalized Forward-Backward to Minimize £
Initialize A, Z1, Zo, W
repeat
Compute (G4,Gw) =Vaw®(A,W).
Compute Z; = proxyg,| ||, (24 — Z1 — 0G 4)
Compute Z2 = prOX20'Y||'H1 (2A — Z2 — GGA)
Set A = %(Zl + Zg)
Set W = prOXGKH-Hl(W — QGW)
until convergence
return (A, W) minimizing £

4.2 A generative model for graphs having linearly autoregressive features

Let V, € R™*" be a sparse matrix, VOT its pseudo-inverse such, that VOTVO =V VOTJr = I,. Fix two
sparse matrices Wy € R™" and Uy € R™*" . Now define the sequence of matrices (A;);>¢ for
t=1,2,--- by

U =U_1 Wy + N,
and

Ay = UV + M,
for i.i.d sparse noise matrices /V; and M, which means that for any pair of indices (¢, j), with high

probability (Ny);; = 0 and (M,); ; = 0. We define the linear feature map w(A) = AV,', and
point out that

1. The sequence (w(At)T> = (Ut + MtVoTT> follows the linear autoregressive relation
t t

w(A)T = w(A1) Wo+ Ny + MV, T

2. For any time index ¢, the matrix A; is close to U, V; that has rank at most r

3. The matrices A; and U, are both sparse by construction.

4.3 Empirical evaluation

We tested the presented methods on synthetic data generated as in section (#.2). In our experiments
the noise matrices M; and N; where built by soft-thresholding i.i.d. noise N'(0,0%). We took as
input 7' = 10 successive graph snapshots on n = 50 nodes graphs of rank » = 5. We used d = 10
linear features, and finally the noise level was set to o = .5. We compare our methods to standard
baselines in link prediction. We use the area under the ROC curve as the measure of performance
and report empirical results averaged over 50 runs with the corresponding confidence intervals in
figure [.3] The competitor methods are the nearest neighbors (NN) and static sparse and low-rank
estimation, that is the link prediction algorithm suggested in [[19]. The algorithm NN scores pairs
of nodes with the number of common friends between them, which is given by A2 when A is the
cumulative graph adjacency matrix Ay = Z;‘F:O A; and the static sparse and low-rank estimation
is obtained by minimizing the objective || X — Az ||% + 7|/ X ||« + /| X|1, and can be seen as the
closest static version of our method. The two methods autoregressive low-rank and static low-rank
are regularized using only the trace-norm, (corresponding to forcing v = 0) and are slightly inferior
to their sparse and low-rank rivals. Since the matrix Vj defining the linear map w is unknown we
consider the feature map w(A) = AV where Ax = UXV" is the SVD of Ay. The parameters 7
and +y are chosen by 10-fold cross validation for each of the methods separately.

4.4 Discussion

1. Comparison with the baselines. This experiment sharply shows the benefit of using a tem-
poral approach when one can handle the feature extraction task. The left-hand plot shows
that if few snapshots are available (1" < 4 in these experiments), then static approaches are
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Figure 1: Left: performance of algorithms in terms of Area Under the ROC Curve, average and
confidence intervals over 50 runs. Right: Phase transition diagram.

to be preferred, whereas feature autoregressive approaches outperform as soon as sufficient
number T graph snapshots are available (see phase transition). The decreasing performance
of static algorithms can be explained by the fact that they use as input a mixture of graphs
observed at different time steps. Knowing that at each time step the nodes have specific
latent factors, despite the slow evolution of the factors, adding the resulting graphs leads to
confuse the factors.

2. Phase transition. The right-hand figure is a phase transition diagram showing in which part
of rank and time domain the estimation is accurate and illustrates the interplay between
these two domain parameters.

3. Choice of the feature map w. In the current work we used the projection onto the vector
space of the top-r singular vectors of the cumulative adjacency matrix as the linear map w,
and this choice has shown empirical superiority to other choices. The question of choosing
the best measurement to summarize graph information as in compress sensing seems to
have both theoretical and application potential. Moreover, a deeper understanding of the
connections of our problem with compressed sensing, for the construction and theoretical
validation of the features mapping, is an important point that needs several developments.
One possible approach is based on multi-kernel learning, that should be considered in a
future work.

4. Generalization of the method. In this paper we consider only an autoregressive process of
order 1. For better prediction accuracy, one could consider mode general models, such as
vector ARMA models, and use model-selection techniques for the choice of the orders of
the model. A general modelling based on state-space model could be developed as well.
We presented a procedure for predicting graphs having linear autoregressive features. Our
approach can easily be generalized to non-linear prediction through kernel-based methods.
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