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For convenience we begin by recalling the statement of our main result and the key assumptions
used in the proof.

Assumption 1 There exists a constant ν > 0 such that if (x, y) ∼ D, then |y| ≤ ν almost surely.

Assumption 2 There exist constants c, η > 0 such that Px∼DΣ
[|x| ≥ t] ≤ exp(−ct1+η) holds for

all t ≥ 0.

Theorem 1 Let Z be a sample formed by m i.i.d. examples generated from some distribution D
satisfying Assumptions 1 and 2. LetAZ be the WFA returned by algorithm HMCp,`+SM with p = 2
and loss function `(y, y′) = |y − y′|. Then, for any δ > 0, the following holds with probability at
least 1− δ for fZ = tν ◦ fAZ :

R(fZ) ≤ R̂Z(fZ) +O

(
ν4|P|2|S|3/2

τσ3ρπ

lnm

m1/3

√
ln

1

δ

)
.

1 Perturbation and stability tools

In this section, we list a series of known perturbation results for singular values, pseudo-inverses,
and singular vectors, and other stability results needed for the proofs given in this appendix.

Lemma 2 ([4]) Let A,B ∈ Rd1×d2 . Then, for any n ∈ [1,min{d1, d2}], the following inequality
holds: |σn(A)− σn(B)| ≤ ‖A−B‖.

Lemma 3 ([4]) Let A,B ∈ Rd1×d2 . Then the following upper bound holds for the norm of the
difference of the pseudo-inverses of matrices A and B:

‖A+ −B+‖ ≤ 1 +
√

5

2
max

{
‖A+‖2, ‖B+‖2

}
‖A−B‖

Lemma 4 ([5]) Let A ∈ Rd×d be symmetric positive semidefinite matrix and E ∈ Rd×d a sym-
metric matrix such that B = A + E is positive semidefinite. Fix n ≤ rank(A) and suppose that
‖E‖F ≤ (λn(A) − λn+1(A))/4. Then, writing Vn for the top n eigenvectors of A and Wn for
the top n eigenvectors of B, we have

‖Vn −Wn‖F ≤
4‖E‖F

λn(A)− λn+1(A)
. (1)

This last lemma will be most useful to us in the form given in this next corollary.
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Corollary 5 Let A,E ∈ Rd1×d2 and write B = A + E. Suppose n ≤ rank(A) and ‖E‖F ≤√
σn(A)2 − σn+1(A)2/4. If Vn,Wn contain the first n right singular vectors of A and B respec-

tively, then

‖Vn −Wn‖F ≤
8‖A‖F ‖E‖F + 4‖E‖2F
σn(A)2 − σn+1(A)2

.

Proof. Using that ‖A>A −B>B‖F ≤ 2‖A‖F ‖E‖F + ‖E‖2F and λn(A>A) = σn(A)2, we can
apply Lemma 4 to get the bound on ‖Vn −Wn‖F under the condition that ‖A>A −B>B‖F ≤
(σn(A)2 − σn+1(A)2)/4. To see that this last condition is satisfied, observe that for all x, y ≥ 0

one has
√

1 +
√

2
√
x+ y ≥

√
x+
√
y. Thus, we get

‖E‖F ≤
√
σn(A)2 − σn+1(A)2

4

≤
√
σn(A)2 − σn+1(A)2 +

√
4‖A‖2F − 2‖A‖F

2
√

1 +
√

2

≤
√

4‖A‖2F + σn(A)2 − σn+1(A)2 − 2‖A‖F
2

,

and this last inequality implies 2‖A‖F ‖E‖F + ‖E‖2F ≤ (σn(A)2 − σn+1(A)2)/4. 2

The next two results give useful extensions of McDiarmid’s inequality to deal with functions that do
not satisfy the bounded difference assumption almost surely [2].

Definition 6 Let X = (X1, . . . , Xm) be a random variable on a probability space Ωm. We say
that a function Φ: Ωm → R is strongly difference-bounded by (b, c, δ) if the following holds: there
exists a measurable subset E ⊆ Ωm with P[E] ≤ δ, such that

• if X and X ′ differ only by one coordinate and X /∈ E, then |Φ(X)− Φ(X ′)| ≤ c;

• for all X,X ′ that differ only by one coordinate |Φ(X)− Φ(X ′)| ≤ b.

Theorem 7 Let Φ be a function over a probability space Ωm that is strongly difference-bounded by
(b, c, δ) with b ≥ c > 0. Then, for any t > 0,

P [Φ− E[Φ] ≥ t] ≤ exp

(
−t2

8mc2

)
+
mbδ

c
.

Furthermore, the same upper bound holds for P[E[Φ]− Φ ≥ t].

Corollary 8 Let Φ be a function over a probability space Ωm that is strongly difference-bounded by
(b, θ/m, exp(−Km)). Then, for any 0 < t ≤ 2θ

√
K andm ≥ max{b/θ, (9+18/K) ln(3+6/K)},

P [Φ− E[Φ] ≥ t] ≤ 2 exp

(
−t2m
8θ2

)
.

Furthermore, the same upper bound holds for P[E[Φ]− Φ ≥ t].

The following is another useful form of the previous Corollary.

Corollary 9 Let Φ be a function over a probability space Ωm that is strongly difference-bounded
by (b, θ/m, exp(−Km)). Then, for any δ > 0 and any m ≥ max{b/θ, (9 + 18/K) ln(3 +
6/K), (2/K) ln(2/δ)}, each of the following holds with probability at least 1− δ:

Φ ≥ E[Φ]−

√
8θ2

m
ln

(
2

δ

)
,

Φ ≤ E[Φ] +

√
8θ2

m
ln

(
2

δ

)
.

2



2 Proof of Theorem 1

To analyze the stability of our algorithm, we consider a sample Z ′ = (z1, . . . , zm−1, z
′
m) that differs

from Z only by the last point (z′m instead of zm). Example z′m is an arbitrary point in the domain of
D. Throughout the analysis, h = hZ and h′ = hZ′ denote the functions in H obtained by solving
(HMC-h) respectively with training samples Z and Z ′ respectively. We also denote by H = HZ

and H′ = HZ′ their corresponding Hankel matrices.

The following technical lemma will be used to study the algorithmic stability of the optimization
problem (HMC-h).

Lemma 10 The following inequality holds for all samples Z and Z ′ differing by only one point:

2τ‖h− h′‖22 ≤ R̂Z̃(h′)− R̂Z̃(h) + R̂Z̃′(h)− R̂Z̃′(h
′) .

Proof. The argument is the same as the one presented in [3] to bound the stability of kernel ridge
regression. The following inequality is first shown using the expansion of ‖h− h′‖22 in terms of the
corresponding inner product:

2τ‖h− h′‖22 ≤ τ(BN (h′‖h) +BN (h‖h′)) ≤ BFZ (h′‖h) +BFZ′ (h‖h′) ,

where BF denotes the Bregman divergence associated to F . Next, using the optimality of h and
h′, which implies ∇FZ(h) = 0 and ∇FZ′(h′) = 0, we can write BFZ (h′‖h) + BFZ′ (h‖h′) =

R̂Z̃(h′)− R̂Z̃(h) + R̂Z̃′(h)− R̂Z̃′(h
′). 2

Our next lemma bounds the stability of the first stage of the algorithm using Lemma 10.

Lemma 11 Assume that D satisfies Assumption 1. Then, the following holds:

‖H−H′‖F ≤ min

{
2ν
√
|P||S|, 1

τ min{m̃, m̃′}

}
.

Proof. Note that by Assumption 1, for all (x, y) in Z̃, or Z̃ ′, we have |y| ≤ ν. Therefore, we must
have |H(u, v)| ≤ ν for all u ∈ P and v ∈ S , otherwise the value of FZ(H) is not minimal because
decreasing the absolute value of an entry |H(u, v)| > ν decreases the value of FZ(H). The same
holds for H′. Thus, the first bound follows from ‖H−H′‖F ≤ ‖H‖F + ‖H′‖F ≤ 2ν

√
|P||S|.

Now we proceed to show the second bound. Since by definition ‖H − H′‖F = ‖h − h′‖2, it is
sufficient to bound this second quantity. By Lemma 10, we have

2τ‖h− h′‖22 ≤ R̂Z̃(h′)− R̂Z̃(h) + R̂Z̃′(h)− R̂Z̃′(h
′) . (2)

We can consider four different situations for the right-hand side of this expression, depending on the
membership of xm and x′m in the set PS .

If xm, x′m /∈ PS, then Z̃ = Z̃ ′. Therefore, R̂Z̃(h) = R̂Z̃′(h), R̂Z̃(h′) = R̂Z̃′(h
′), and ‖h−h′‖2 =

0.

If xm, x′m ∈ PS, then m̃ = m̃′, and the following equalities hold:

R̂Z̃′(h)− R̂Z̃(h) =
|h(x′m)− y′m| − |h(xm)− ym|

m̃
,

R̂Z̃(h′)− R̂Z̃′(h
′) =

|h′(xm)− ym| − |h′(x′m)− y′m|
m̃

.

Thus, in view of (2), we can write

2τ‖h− h′‖22 ≤
|h(xm)− h′(xm)|+ |h(x′m)− h′(x′m)|

m̃
≤ 2

m̃
‖h− h′‖2 ,

where the first inequality follows from ||h(x)− y| − |h′(x)− y|| ≤ |h(x)− h′(x)|, and the second
from |h(x)− h′(x)| ≤ ‖h− h′‖2.
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If xm ∈ PS and x′m /∈ PS, the right-hand side of (2) equals∑
z∈Z̃′

(
|h′(x)− y|

m̃
− |h

′(x)− y|
m̃′

+
|h(x)− y|

m̃′
− |h(x)− y|

m̃

)
+
|h′(xm)− ym|

m̃
−|h(xm)− ym|

m̃
.

Now, since m̃ = m̃′ + 1 we can write

2τ‖h− h′‖22 ≤
∑
z∈Z̃′

|h(x)− h′(x)|
m̃ m̃′

+
|h(xm)− h′(xm)|

m̃
≤ 2

m̃
‖h− h′‖2 .

By symmetry, a similar bound holds in the case where xm /∈ PS and x′m ∈ PS. Combining these
four bounds yields the desired inequality. 2

The next three lemmas contain the main technical tools needed to bound the difference |fAZ (x) −
fAZ′ (x)| in our agnostic setting.

Lemma 12 Let A = 〈α,β, {Aa}〉 and A′ =
〈
α′,β′, {A′a}

〉
be two weighted automata with n

states. Let γ be such that both A and A′ are γ-bounded. Then, the following inequality holds for
any string x ∈ Σ?:

|fA(x)− fA′(x)| ≤ γ|x|+1
(
‖α−α′‖+ ‖β − β′‖+

|x|∑
i=1

‖Axi −A′xi‖
)
.

Proof. Follows by induction on |x| using techniques similar to those used to prove Lemmas 11 and
12 in [1]. 2

Lemma 13 Let γ = ν
√
|P||S|/σn(Hε). The weighted automaton AZ is γ-bounded.

Proof. Since ‖Ha‖ ≤ ‖Ha‖F ≤ ν
√
|P||S|, simple calculations show that ‖α>‖ ≤ ν

√
|S|,

‖β‖ ≤ ν
√
|P|/σn(Hε), and ‖Aa‖ ≤ ν

√
|P||S|/σn(Hε). 2

Let us define the following quantities in terms of the vectors and matrices that define A and A′:

εε = ‖Hε −H′ε‖ ,
εa = ‖Ha −H′a‖ ,
εV = ‖V −V′‖ ,
εS = ‖hλ,S − h′λ,S‖ ,
εP = ‖hP,λ − h′P,λ‖ .

Now we state a result that will be used in the proof of Lemma 15.

Lemma 14 The following three bounds hold:

‖Aa −A′a‖ ≤
εa + εV ‖H′a‖
σn(HεV)

+
1 +
√

5

2

‖H′a‖(εε + εV ‖H′ε‖)
min{σn(HεV)2, σn(H′εV

′)2}
,

‖α−α′‖ ≤ εS + εV ‖hλ,S‖ ,

‖β − β′‖ ≤ εP
σn(HεV)

+
1 +
√

5

2

‖h′P,λ‖(εε + εV ‖H′ε‖)
min{σn(HεV)2, σn(H′εV

′)2}
.

Proof. Using the triangle inequality, the submultiplicativity of the operator norm, and the properties
of the pseudo-inverse, we can write

‖Aa −A′a‖ = ‖(HεV)+(HaV −H′aV
′) + ((H′εV

′)+ − (HεV)+)H′aV
′‖

≤ ‖(HεV)+‖‖HaV −H′aV
′‖+ ‖(HεV)+ − (H′εV

′)+‖‖H′aV′‖
≤ σn(HεV)−1‖HaV −H′aV

′‖+ ‖H′a‖‖(HεV)+ − (H′εV
′)+‖ ,
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where we used that ‖(HεV)+‖ = σn(HεV) by the properties of pseudo-inverse and operator norm,
and ‖H′aV′‖ ≤ ‖H′a‖ by sub-multiplactivity and ‖V′‖ = 1. Now note that we also have

‖HaV −H′aV
′‖ ≤ ‖V‖‖Ha −H′a‖+ ‖H′a‖‖V −V′‖ ≤ εa + εV ‖H′a‖ .

Furthermore, using Lemma 3 we obtain

‖(HεV)+ − (H′εV
′)+‖ ≤ 1 +

√
5

2
‖HεV −H′εV

′‖max{‖(HεV)+‖2, ‖(H′εV′)+‖2}

≤ 1 +
√

5

2

‖Hε −Hε‖‖V‖+ ‖H′ε‖‖V −V′‖
min{σn(HεV)2, σn(H′εV

′)2}

=
1 +
√

5

2

εε + εV ‖H′ε‖
min{σn(HεV)2, σn(H′εV

′)2}
.

Thus we get the first of the bounds. The second bound follows straightforwardly from

‖V>hλ,S −V′
>
h′λ,S‖ ≤ ‖V> −V′

>‖‖hλ,S‖+ ‖V′>‖‖hλ,S − h′λ,S‖ = εS + εV ‖hλ,S‖ ,
which uses that ‖M>‖ = ‖M‖ holds for the operator norm.

Finally, the last bound follows from the following inequalities, where we use Lemma 3 again:
‖β − β′‖ ≤ ‖(HεV)+‖‖hP,λ − h′P,λ‖+ ‖h′P,λ‖‖(HεV)+ − (H′εV

′)+‖

≤
‖hP,λ − h′P,λ‖
σn(HεV)

+
1 +
√

5

2

‖h′P,λ‖‖HεV −H′εV
′‖

min{σn(HεV)2, σn(H′εV
′)2}

≤ εP
σn(HεV)

+
1 +
√

5

2

‖h′P,λ‖(εε + εV ‖H′ε‖)
min{σn(HεV)2, σn(H′εV

′)2}
.

2

Lemma 15 Let ε = ‖H −H′‖F , σ̂ = min{σn(Hε), σn(H′ε)}, and ρ̂ = σn(Hε)
2 − σn+1(Hε)

2.
Suppose ε ≤

√
ρ̂/4. There exists a universal constant c1 > 0 such that the following inequalities

hold for all a ∈ Σ:

‖Aa −A′a‖ ≤ c1
εν3|P|3/2|S|1/2

ρ̂σ̂2
,

‖α−α′‖ ≤ c1
εν2|P|1/2|S|

ρ̂
,

‖β − β′‖ ≤ c1
εν3|P|3/2|S|1/2

ρ̂σ̂2
.

Proof. We begin with a few observations that will help us apply Lemma 14. First note that ‖Ha −
H′a‖ ≤ ‖Ha −H′a‖F ≤ ε for all a ∈ Σ′, as well as ‖hP,λ − h′P,λ‖ ≤ ε and ‖hλ,S − h′λ,S‖ ≤ ε.
Furthermore, ‖Ha‖ ≤ ‖Ha‖F ≤ ν

√
|P||S| and ‖H′a‖ ≤ ν

√
|P||S| for all a ∈ Σ′. In addition, we

have ‖hλ,S‖ ≤ ν
√
|S| and ‖h′P,λ‖ ≤ ν

√
|P|. Finally, by construction we also have σn(HεV) =

σn(Hε) and σn(H′εV
′) = σn(H′ε). Therefore, it only remains to bound ‖V − V′‖, which by

Corollary 5 is

‖V −V′‖ ≤ 4ε

ρ̂
(2ν
√
|P||S|+ ε) ≤

16εν
√
|P||S|
ρ̂

,

where the last inequality follows from Lemma 11.

Plugging all the bounds above in Lemma 14 yields the following inequalities:

‖Aa −A′a‖ ≤
ε

σ̂

(
1 +

16ν|P|1/2|S|1/2

ρ̂

)
+

1 +
√

5

2

εν|P|1/2|S|1/2

σ̂2

(
1 +

16ν2|P||S|
ρ̂

)
,

‖α−α′‖ ≤ ε
(

1 +
16ν2|P|1/2|S|

ρ̂

)
,

‖β − β′‖ ≤ ε

σ̂
+

1 +
√

5

2

εν|P|1/2

σ̂2

(
1 +

16ν2|P||S|
ρ̂

)
.
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The result now follows from an adequate choice of c1. 2

We now define the properties that make Z a good sample and show that for large enough m they are
satisfied with high probability.

Definition 16 We say that a sampleZ ofm i.i.d. examples fromD is good if the following conditions
are satisfied for any z′m = (x′m, y

′
m) ∈ supp(D):

• |xi| ≤ ((1/c) ln(4m4))1/(1+η) for all 1 ≤ i ≤ m;

• ‖H−H′‖F ≤ 4/(τπm);

• min{σn(Hε), σn(H′ε)} ≥ σ/2;

• σn(Hε)
2 − σn+1(Hε)

2 ≥ ρ/2.

Lemma 17 Suppose D satisfies Assumptions 1 and 2. There exists a quantity M =
poly(ν, π, σ, ρ, τ, |P|, |S|) such that if m ≥M , then Z is good with probability at least 1− 1/m3.

Proof. First note that by Assumption 2, writing L = ((1/c) ln(4m4))1/(1+η) a union bound yields

P

[
m∨
i=1

|xi| > L

]
≤ m exp(−cL1+η) =

1

4m3
.

Now let m̄ = (x1, . . . , xm−1)∩(PS). Note that we have min{m̃, m̃′} ≥ m̄ and EZ [m̄] = π(m−1).
Thus, for any ∆ ∈ (0, 1) the Chernoff bound gives

P[m̄ < π(m− 1)(1−∆)] ≤ exp

(
− (m− 1)π∆2

2

)
≤ exp

(
−mπ∆2

4

)
,

where we have used that (m− 1)/m ≥ 1/2 for m ≥ 2.

Taking ∆ =
√

(4/mπ) ln(4m3) above we see that min{m̃, m̃′} ≥ (m − 1)π(1 −∆) ≥ mπ(1 −
∆)/2 holds with probability at least 1 − 1/(4m3). Now note that m ≥ (16/π) ln(4m3) implies
∆ ≤ 1/2. Therefore, by Lemma 11 we have that m ≥ max{2, (16/π) ln(4m3), 2/(τπν

√
|P||S|)}

implies that ‖H−H′‖F ≤ 4/(τπm) holds with probability at least 1− 1/(4m3).

For the third claim note that by Lemma 2 we have |σn(Hε)−σn(H′ε)| ≤ ‖Hε−H′ε‖F ≤ ‖H−H′‖F .
Thus, from the argument we just used in the previous bound we can see that when m ≥ 2 the
function Φ(Z) = σn(Hε) is strongly difference-bounded by (bσ, θσ/m, exp(−Kσm)) with bσ =

2ν
√
|P||S|, θσ = 2/(τπ(1 − ∆)), and Kσ = π∆2/4 for any ∆ ∈ (0, 1). Now note that by

Lemma 2 and the previous goodness condition on ‖H −H′‖F we have min{σn(Hε), σn(H′ε)} ≥
σn(Hε)− ‖H−H′‖F ≥ σn(Hε)− 4/(νπm). Furthermore, taking ∆ = 1/2 and assuming that

m ≥ max

{
ντπ

√
|P||S|

2
,

(
9 +

288

π

)
ln

(
3 +

96

π

)
,

32

π
ln(8m3)

}
,

we can apply Corollary 9 with δ = 1/(4m3) to see that

σn(Hε)−
4

νπm
≥ σ −

√
128

τ2π2m
ln(8m3)− 4

νπm

holds with probability at least 1 − 1/(4m3). Hence, for any sample size such that m ≥
max{16/(νπσ), (2048/τ2π2σ2) ln(8m3)}, we get

min{σn(Hε), σn(H′ε)} ≥ σ −
√

128

τ2π2m
ln(8m3)− 4

νπm
≥ σ − σ

4
− σ

4
=
σ

2
.
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To prove the fourth bound we shall study the stability of Φ(Z) = σn(Hε)
2−σn+1(Hε)

2. We begin
with the following chain of inequalities, which follows from Lemma 2 and σn(Hε) ≥ σn+1(Hε):

|Φ(Z)− Φ(Z ′)| =
∣∣(σn(Hε)

2 − σn+1(Hε)
2)− (σn(H′ε)

2 − σn+1(H′ε)
2)
∣∣

≤ |σn(Hε)
2 − σn(H′ε)

2|+ |σn+1(Hε)
2 − σn+1(H′ε)

2|
= |σn(Hε) + σn(H′ε)||σn(Hε)− σn(H′ε)|+ |σn+1(Hε) + σn+1(H′ε)||σn+1(Hε)− σn+1(H′ε)|
≤ (2σn(Hε) + ‖Hε −H′ε‖) ‖Hε −H′ε‖+ (2σn+1(Hε) + ‖Hε −H′ε‖) ‖Hε −H′ε‖
≤ 4σn(Hε)‖H−H′‖F + 2‖H−H′‖2F .

Now we can use this last bound to show that Φ(Z) is strongly difference-bounded by
(bρ, θρ/m, exp(−Kρm)) with the definitions: bρ = 16ν2|P||S|, θρ = 64σ/(τπ) and Kρ =
min{σ2τ2π2/256, π/64}. For bρ just observe that from Lemma 11 and σn(Hσ) ≤ ‖Hσ‖F ≤
ν
√
|P||S| we get

4σn(Hε)‖H−H′‖F + 2‖H−H′‖2F ≤ 16ν2|P||S| .
By the same arguments used above, if m is large enough we have ‖H −H′‖F ≤ 4/(τπm) with
probability at least 1 − exp(−mπ/16). Furthermore, by taking ∆ = 1/2 in the stability argument
given above for σn(Hε), and invoking Corollary 9 with δ = 2 exp(−Km) for some 0 < K ≤
Kσ/2 = π/32, we get

σn(Hε) ≤ σ +

√
128K

τ2π2
,

with probability at least 1 − 2 exp(−Km). Thus, taking K = min{π/32, σ2τ2π2/128} we get
σn(Hε) ≤ 2σ. If we now combine the bounds for ‖H−H′‖F and σn(Hε), we get

4σn(Hε)‖H−H′‖F + 2‖H−H′‖2F ≤
32σ

τπm
+

32

τ2π2m2
≤ 64σ

τπm
=
θρ
m

,

where have assumed thatm ≥ 1/(τπσ). To getKρ note that the above bound holds with probability
at least

1− e−mπ/16 − 2e−Km ≥ 1− 3e−Km ≥ 1− e−Km/2 = 1− e−Kρm ,

where we have used thatK ≤ π/16 and assumed thatm ≥ 2 ln(3)/K. Finally, applying Corollary 9
to Φ(Z) we see that with probability at least 1− 1/(4m3) one has

σn(Hε)
2 − σn+1(Hε)

2 ≥ ρ−
√

215σ2

τ2π2m
ln(8m3) ≥ ρ

2
,

whenever m ≥ max{(217σ2/τ2π2ρ2) ln(8m3), ν2τπ|P||S|/(4σ), (9 + 18/Kρ) ln(3 +
6/Kρ), (2/Kρ) ln(8m3)}. 2

We can now analyze how the change of one sample point in Z can affect the difference R(fZ) −
R̂Z(fZ). Our main result will be obtained by applying Theorem 7 to this difference.

Lemma 18 Let γ1 = 64ν4|P|2|S|3/2/(τσ3ρπ) and γ2 = 2ν|P|1/2|S|1/2/σ. If m ≥
max{M, 16

√
2/(τπ

√
ρ), exp(6 ln γ2(1.2c ln γ2)1/η)}, then the function Φ(Z) = R(fZ)− R̂Z(fZ)

is strongly difference-bounded by (4ν + 2ν/m, c2γ1m
−5/6 lnm, 1/m3) for some constant c2 > 0.

Proof. We will write for short f = fZ and f ′ = fZ′ . Let β1 = Ex∼DΣ [|f(x) − f ′(x)|] and
β2 = max1≤i≤m−1 |f(xi) − f ′(xi)|. We first show that |Φ(Z) − Φ(Z ′)| ≤ β1 + β2 + 2ν/m. By
definition of Φ we can write

|Φ(Z)− Φ(Z ′)| ≤ |R(f)−R(f ′)|+ |R̂Z(f)− R̂Z′(f ′)| .
By Jensen’s inequality, the first term can be upper bounded by E(x,y)∼D[||f(x)−y|−|f ′(x)−y||] ≤
β1. Now, using the triangle inequality and |f(xm)− ym|, |f ′(x′m)− y′m| ≤ 2ν, the second term can
be bounded as follows:

|R̂Z(f)− R̂Z′(f ′)| ≤ 2ν

m
+

1

m

m−1∑
i=1

|f(xi)− f ′(xi)| ≤
2ν

m
+ β2

m− 1

m
.
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Observe that for any samples Z and Z ′ we have β1, β2 ≤ 2ν. This provides an almost-sure upper
bound needed in the definition of strongly difference-boundedness. We use this bound when the
sample Z is not good. By Lemma 17, when m is large enough this event will occur with probability
at most 1/m3.

It remains to bound β1 and β2 assuming that Z is good. Note that by Lemma 17, m ≥
max{M, 16

√
2/(τπ

√
ρ)} implies ‖H − H′‖F ≤

√
ρ̂/4. Thus, by combining Lemmas 12, 13,

15, and 17, we see that the following holds for any x ∈ Σ?:

|f(x)− f ′(x)| ≤
(

2ν|P|1/2|S|1/2

σ

)|x|+1
32c1(|x|+ 2)ν3|P|3/2|S|

mτπσ2ρ

=
c1γ1
m

exp(|x| ln γ2 + ln(|x|+ 2)) .

In particular, for |x| ≤ L = ((1/c) ln(4m4))1/(1+η) and m ≥ exp(6 ln γ2(1.2c ln γ2)1/η), a simple
calculation shows that |f(x)− f ′(x)| ≤ Cγ1m−5/6 lnm for some constant C. Thus, we can write

β1 ≤ E
x∼DΣ

[|f(x)− f ′(x)| | |x| ≤ L] + 2νPx∼DΣ
[|x| ≥ L] ≤ Cγ1m−5/6 lnm+ ν/2m3

and β2 ≤ Cγ1m−5/6 lnm, where the last bound follows from the goodness of Z. Combining these
bounds yields the desired result. 2

The following is the proof of our main result.

Proof.[of Theorem 1] The result follows from an application of Theorem 7 to Φ(Z), defined as in
Lemma 18. In particular, for large enough m, the following holds with probability at least 1− δ:

R(fZ) ≤ R̂Z(fZ) + E
Z∼Dm

[Φ(Z)] +

√√√√Cγ21
ln2m

m2/3
ln

(
1

δ − 6ν
C′γ1

1
m7/6 lnm

)
,

for some constantsC,C ′ and γ1 = ν4|P|2|S|3/2/τσ3ρπ. Thus, it remains to bound EZ∼Dm [Φ(Z)].

First note that we have EZ∼Dm [R(fZ)] = EZ,z∼Dm+1 [|fZ(x)−y|]. On the other hand, we can also
write EZ∼Dm [R̂Z(fZ)] = EZ,z∼Dm+1 [|fZ′(x) − y|], where Z ′ is a sample of size m containing z
and m− 1 other points in Z chosen at random. Thus, by Jensen’s inequality we can write

| E
Z∼Dm

[Φ(Z)]| ≤ E
Z,z∼Dm+1

[|fZ(x)− fZ′(x)|] .

Now an argument similar to the one used in Lemma 18 for bounding β1 can be used to show that,
for large enough m, the following inequality holds:∣∣∣ E

Z∼Dm
[Φ(Z)]

∣∣∣ ≤ Cγ1 lnm

m5/6
+

2ν

m3
,

which completes the proof. 2
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