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Abstract

Two-alternative forced choice (2AFC) and Go/NoGo (GNG) tasks are behavioral
choice paradigms commonly used to study sensory and cognitive processing in
choice behavior. While GNG is thought to isolate the sensory/decisional compo-
nent by eliminating the need for response selection as in 2AFC, a consistent ten-
dency for subjects to make more Go responses (both higher hits and false alarm
rates) in the GNG task raises the concern that there may be fundamental differ-
ences in the sensory or cognitive processes engaged in the two tasks. Existing
mechanistic models of these choice tasks, mostly variants of the drift-diffusion
model (DDM; [1, 2]) and the related leaky competing accumulator models [3, 4],
capture various aspects of behavioral performance, but do not clarify the prove-
nance of the Go bias in GNG. We postulate that this “impatience” to go is a strate-
gic adjustment in response to the implicit asymmetry in the cost structure of the
2AFC and GNG tasks: the NoGo response requires waiting until the response
deadline, while a Go response immediately terminates the current trial. We show
that a Bayes-risk minimizing decision policy that minimizes not only error rate
but also average decision delay naturally exhibits the experimentally observed Go
bias. The optimal decision policy is formally equivalent to a DDM with a time-
varying threshold that initially rises after stimulus onset, and collapses again just
before the response deadline. The initial rise in the threshold is due to the dimin-
ishing temporal advantage of choosing the fast Go response compared to the fixed-
delay NoGo response. We also show that fitting a simpler, fixed-threshold DDM
to the optimal model reproduces the counterintuitive result of a higher threshold in
GNG than 2AFC decision-making, previously observed in direct DDM fit to be-
havioral data [2], although such fixed-threshold approximations cannot reproduce
the Go bias. Our results suggest that observed discrepancies between GNG and
2AFC decision-making may arise from rational strategic adjustments to the cost
structure, and thus need not imply any other difference in the underlying sensory
and cognitive processes.

1 Introduction

The two-alternative forced-choice (2AFC) task is a standard experimental paradigm used in psy-
chology and neuroscience to investigate various aspects of sensory, motor, and cognitive processing
[5]. Typically, the paradigm involves a forced choice between two responses based on a presented
stimulus, with the measured response time and accuracy of choices shedding light on the cognitive
and neural processes underlying behavior. Another paradigm that appears to share many features
of the 2AFC task is the Go/NoGo (GNG) task [6], (see Luce [5] for a review), where one stimulus
category is associated with an overt Go response that has to be executed before a response dead-
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line, and the other stimulus (NoGo) requires withholding response until the response deadline has
elapsed. In principle, the GNG task could be used to probe the same decision-making problems as
the 2AFC task, with the possible advantage of eliminating a “response selection stage” that may
follow the decision in the 2AFC task [6, 7]. Indeed, the GNG task has been used to study various
aspects of human and animal cognition, e.g., lexical judgements [8, 9], perceptual decision-making
[10, 11, 12], and the neural basis of choice behavior (in particular, distinguishing among neural
activations associated with stimulus, memory, and response) [13, 14, 15]. However, experimental
evidence also indicates that there is a curious choice bias toward the overt (Go) response in the GNG
task [11, 16, 2, 15], in the form of shorter response times and more false alarms for the Go response,
than when compared to the same stimulus pairings in a 2AFC task [2, 16]. It has been suggested that
this choice bias may reflect differential sensory and cognitive processes underlying the two tasks,
and thus making the two non-interchangeable in the study of perception and decision-making.

In this paper, we hypothesize that this discrepancy may simply be due to differences in the implicit
reward (cost) structure of the two tasks: the NoGo response incurs a higher imposed waiting cost
than the Go response, since the NoGo response must wait until the response deadline has passed to
register, while a Go response immediately terminates the trial. In contrast, in the 2AFC task, the cost
function is symmetric for the two alternatives, whether in terms of error or delay. We propose that
the implicit cost structure difference in GNG can fully account for the Go bias in GNG compared
to 2AFC tasks, without the need to appeal to other differences in sensory or cognitive processing.
To investigate this hypothesis, we adopt a Bayes risk minimization framework for both the 2AFC
and GNG tasks, whereby sensory processing is modeled as iterative Bayesian inference of stimulus
type based on a stream of noisy sensory input, and the decision of when/how to respond rests on
a policy that minimizes a linear combination of expected decision delay and response errors. The
optimal decision policy for this Bayes-risk formulation in the 2AFC task is known as the sequential
probability ratio test (SPRT; [17, 18]), and has been shown to account for both behavioral [19, 4]
and neural data [19, 20]. Here, we generalize this theoretical framework to account for both 2AFC
and GNG decision-making in a unified framework, by assuming that a subject’s sensory and percep-
tual processing (of the same pair of stimuli) and the relative preference for decision accuracy versus
speed are shared across 2AFC and GNG, with the only difference between them being the asym-
metric temporal cost implicit in the reward structure of the GNG task –the Go response terminating
a trial while the NoGO response only registering after the response deadline.

As a stochastic process, SPRT is a bounded random walk, whereby the stochasticity in the random
walk comes from noise in the observation process. The continuum (time) limit of a bounded random
walk is the bounded drift-diffusion model (DDM), which generally assume a stochastic dynamic
variable to undergo constant drift, as well as diffusion due to Wiener noise, until one of two finite
thresholds is breached. In psychology, DDM has been augmented with additional parameters such as
a non-decision-related repsonse delay, variability in drift-rate, and variability in starting point across
trials. Figure 4A shows a simple variant of the DDM illustrating the following parameters: rate
of accumulation, threshold, and “nondecision time” or temporal offset to the start of the diffusion
process. These augmented DDMs have been used to model behavior in 2AFC tasks [21, 22, 23,
5, 24, 4], and also appear to provide good descriptive accounts of the neural activities underlying
perceptual decision-making [25, 20, 26, 27]. Variants of augmented DDM have also been utilized to
fit data in other simple decision-making tasks, including the GNG task [2]. While augmenting DDM
with extra parameters gives it additional power in explaining subtleties in data, this also diminishes
the normative interpretability of DDM fits by eliminating its formal relationship to the optimal SPRT
procedure. As a consequence, when the behavioral objectives change, e.g., in the GNG task, DDM
cannot predict a priori what parameters ought to change and how much. Instead, we begin with a
Bayes-risk minimization formulation and derive the non-parametric optimal decision-procedure as
a function of sensory statistics and behavioral objectives. We then map the optimal policy to the
DDM model space, and compare directly with previously proposed DDM variants in the context of
2AFC and GNG tasks.

In the following sections, we first describe our proposed Bayesian inference and decision-making
model, then compare simulations of the optimal decision-making model with published experimen-
tal data of subjects performing perceptual decision-making in 2AFC and GNG tasks [16]. We also
explore other evidence exploring the degree of go bias in the GNG task [28]. Next, we consider
the formal relationship between the optimal model and a fixed-threshold DDM that was previously
utilized to fit behavioral data from the GNG task [2, 12]. Finally, we present novel experimental
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 Figure 1: Systematic error biases in the GNG task. (A) The figure shows error rates associated
with a perceptual decision-making task performed by subjects in both Go/NoGo and Yes/No (forced
choice) settings. Although the error rates in the forced choice settings were similar for both classes,
there was a significant bias towards the Go response in the GNG task, with more false alarms than
omission errors. (B) Mean response time on the GNG task was lower than for the same stimulus on
the 2AFC task. (Data adapted from Bacon-Mace et al., 2007).

predictions of the optimal decision-making model, including those that specifically differ from the
fixed-threshold DDM approximation [2, 12].

2 Bayesian inference and risk minimization in choice tasks

Human choice behavior in the GNG and 2AFC tasks exhibits a consistent Go bias in the GNG task
that is not apparent for the same stimulus in the 2AFC task. For example, Figure 1 shows data
from a task in which subjects must identify whether a briefly-presented noisy image contains an
animal or not [16], under two different response conditions: GNG (only respond to animal-present
images), and 2AFC (respond yes/no to each image). Subjects showed a significant bias towards the
Go response in the GNG task, in the form of higher false alarms than omission errors (Figure 1A),
as well as faster RT than for the same stimulus in the 2AFC task (Figure 1B).

For the 2AFC task, a large body of literature supports the “accumulate-to-bound” model of percep-
tual decision-making, [23, 20, 26], where moment-to-moment sensory input (“evidence” in favor of
either choice) is accumulated over time until it reaches a bound, at which point, a response is gen-
erated. Previous work by Yu & Frazier [29] extended the formulation to include 2AFC tasks with a
decision deadline, in which subjects have the additional constraint of not exceeding a decision dead-
line. They showed that the optimal policy for decision-making under a deadline is to accumulate
evidence up to time-varying thresholds that collapse toward each other over time, leading to more
“liberal” choices and higher error rate in later responses than earlier ones. Here, we generalize the
framework to model the GNG task. In particular, the same deadline by which the subject must make
a response (or else be counted as a “miss”) on a Go trial, is the one for which the subject must with-
old response (or else be counted as a “false alarm”). We model evidence accumulation as iterative
Bayesian inference over the identity of the stimulus, and decision-making as an iterative decision
policy that chooses whether to respond (and which one in 2AFC) or continue observing at least one
more time point, based on current evidence. The optimal policy minimizes the expected value of a
cost function that depends linearly on decision delay and errors. The model is described below.

2.1 Evidence integration as Bayesian inference

We model evidence accumulation, in both 2AFC and GNG, as iterative Bayesian inference about the
stimulus identity conditioned on an independent and identically distributed (i.i.d.) stream of sensory
input. Specifically, we assume a generative model where the observations are a continual sequence
of data samples x1, x2, . . ., iid-generated from a likelihood function f0(x) or f1(x) depending on
whether the true stimulus state is d = 0 or d = 1, respectively. This incoming stream therefore
provides accumulating evidence of the hidden category label d ∈ {0, 1}. For concreteness, we
assume the likelihood functions are Gaussian distributions with means ±µ (+ for d = 1, - for
d = 0), and a variance parameter σ2 controlling the noisiness of the stimuli.
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Figure 2: Rational behavior in 2AFC and GNG tasks. (A) The figure shows the decision threshold
as a function of belief state across the 2AFC and GNG tasks. The optimal decision boundary for
2AFC is a pair of parallel thresholds (solid line) that collapse and meet at the response deadline (in-
dicated by dashed vertical line). The optimal GNG decision boundary is a single initially increasing
threshold (dashed line), that decreases to 0.5 at the response deadline. (B;C) Monte Carlo simulation
of the optimal policy show a bias towards the overt response in the GNG task. The two response
alternatives in the 2AFC task are represented as “left” and “right”, corresponding to “nogo” and
“go” in the GNG task (B). The GNG task shows lower miss rate and higher false alarm rate than the
corresponding 2AFC error rate (B), along with faster RT than the 2AFC task (C). Compare to the
experimental data in Figure 1. Parameter settings: c = 0.01, µ = 0.25, D = 40 timesteps.

The recognition model specifies the mechanism by which stimulus identity is inferred from the
noisy observations xt. In our model, we compute an posterior distribution over the category label
conditioned on the data sampled so far xt , (x1, x2, . . . xt), bt , P{d = 1|xt}, also known as the
belief state, by iteratively applying Bayes’ rule:

bt+1 =
btf1(xt+1)

btf1(xt+1) + (1− bt)f0(xt+1)
(1)

where b0 , P{d = 1} is the prior probability of the stimulus category being 1 (and is 0.5 for
equally likely stimuli). We hypothesize that the same evidence accumulation mechanism underlies
decision-making in both tasks, in particular with the same noise process/likelihood functions, f0(x)
and f1(x), for a particular individual observing the same stimuli.

2.2 Action selection as Bayes-risk minimization

We model behavior in the two tasks as a sequential decision-making process where, at each instant,
the model decideses between two actions, as a function of the current evidence so far, encapsulated
in the current belief state bt: stop (and choose the response for the more probable stimulus category
for 2AFC), or continue one more time step. A stopping policy is a mapping from the belief state
to the action space, π :bt 7→ {stop, continue}, where the stop action in 2AFC also requires a
stimulus category decision δ. In accordance with the standard Bayes risk framework for optimizing
the decision policy in a stopping problem, we assume that the behavioral cost function is a linear
combination of the probability of making a decision error and the expected decision delay τ (the
stopping time if a response is emitted before the deadline, and the deadline D otherwise). We
assume that the decision delay component is weighted by a sampling or time cost c, while the cost
of all decision errors are penalized by the same magnitude and normalized to unit cost. Based on
this cost function, the optimal decision policy is the policy that minimizes the overall expected cost:

2AFC : Lπ = c〈τ〉+ P{δ 6= d}+ P{τ = D} (2)
GNG : Lπ = c〈τ〉+ P{τ = D|d = 1}P{d = 1}+ P{τ < D|d = 0}P{d = 0} (3)

The 2AFC cost function is a special case of the more general scenario previously considered for
deadlined sequential hypothesis testing [29]: P{δ 6= d} is the expected wrong response cost, while
P{τ = D} is the expected cost of not responding before the deadline (omission error). In the GNG
cost function, P{τ = D|d = 1} is the probability that no response is emitted before the deadline
on a Go trial (miss), P{τ < D|d = 0} is the probability that a NoGo trial is terminated by a Go
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Figure 3: Influence of stimulus statistics on Go bias. Our model predicts that alse alarms are more
frequent than misses (A), and are also faster than correct Go RTs (B). The Go bias, which is apparent
at 50% Go trials, is signficantly increased when Go trials are more frequent (80%), and reduced
when Go trials are reduced to 20% of the trials. Parameter settings: c = 0.014, µ = 0.45, D = 40
timesteps. (C-D) Human subjects exhibited a similar pattern of behavior in a letter discrimination
task (Data from Nieuwenhuis et al., 2003).

response (false alarm), a correct hit requires τ < D (responding before the deadline), and a correct
NoGo response consists of a series of continue actions until a predefined response deadline D. In
both GNG and 2AFC tasks, the choice to stop limits the decision delay cost, and the choice to
continue (up to a predefined response deadline D) results in the collection of more data that help
to disambiguate the stimulus category but at the cost of c per additional sample of data observed.
We compute the optimal policy using Bellman’s dynamic programming principle (Bellman, 1952).
Specifically, we iteratively compute the expected cost of continue and stop as a function of the belief
state bt (these are theQ-factors for continue and stop,Qc(bt) andQs(bt)). IfQc(bt) < Qs(bt), then
the optimal policy chooses to continue; otherwise, it chooses to stop; therefore, the belief state is
partitioned by the decision policy into a continuation region and a stopping region (details omitted
due to lack of space).

The principal difference between the two tasks as formulated here is the loss function. In the 2AFC
task, all trials are terminated by a response (unless the response deadline is exceeded). However, in
the GNG version, subjects have to wait until the response deadline to choose the NoGo response.
This introduces a significant, extra cost of time for NoGo responses, suggesting that it may in some
cases be better to select the Go response despite the relative inadequacy of sensory evidence. We
explore these aspects in detail in the following section.

3 Results

Opportunity cost and the Go/NoGo decision threshold
Figure 2A illustrates the difference between the optimal decision policies for the two tasks. The red
lines (solid: 2AFC, dashed: GNG) illustrates the optimal decision thresholds, which, when exceeded
by the cumulative sensory evidence bt, generate the corresponding response, as a function of time.
For the 2AFC task, the optimal policy is a pair of thresholds that are initially fairly constant over
time, but then collapse toward each other (into an empty set if the cost of exceeding the deadline
is sufficiently large) as the deadline approaches (cf. [29]). In contrast, the threshold for the GNG
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Figure 4: Drift-diffusion model (DDM) for 2AFC and GNG tasks (A) A simplified version of the
DDM for 2-choice tasks, where a noisy accumulation process with a certain rate produces one of
two responses when it reaches a positive or negative threshold. In addition to the rate and threshold
parameters, a third parameter (the temporal offset to the start of the accumulation process) represents
the nondecision processes associated with visual and motor delays. (B) DDM fits to 2AFC and GNG
choice data(Gomez et al., 2007, Mack & Palmeri, 2010) suggest that the GNG task is associated
with a higher threshold and shorter offset than the 2AFC task. (C) Optimal decision-making model
predicts a lower, time-varying threshold for the GNG task.

task (dotted line) is a single threshold that varies over time, and is lower at the beginning of the
trial. This is a direct consequence of the opportunity cost involved with waiting until the deadline:
if the deadline is far away, the cost of waiting may be more than the cost of an immediate error that
terminates the trial; indeed, we expect that the farther away the deadline, the greater temporal cost
savings conferred by Go response over waiting to register the NoGo response.

Decision-making in 2AFC and GNG tasks
Figure 2B;C shows the effect of the time-varying threshold on RT and accuracy in an example model
simulation. Figure 2B shows that the GNG model is significantly biased towards the Go response,
with a higher fraction of false alarms than misses. This asymmetry is absent in the 2AFC model
performance. In addition, GNG response times are faster than 2AFC response times (Figure 2C).
This bias is a direct result of the time-varying threshold in the GNG task; early on in the trial, the
decision threshold is lower, and produces fast, error-prone responses.

This model prediction is consistent with data from human perceptual decision-making. Figure 1
shows behavioral data in the two tasks [16]– subjects determined from a brief presentation of a
noisy visual stimulus whether or not the image contained an animal. The same task was performed
in two response conditions: 2AFC, where each stimulus required a yes/no response, and GNG,
where subjects only responded to image containing the target. Figure 1A shows that in the 2AFC
condition, subjects are not significantly biased towards either response, with both false alarms and
miss rates being similar to each other. On the other hand, in the Go/NoGo condition, subjects
showed a significant bias towards the overt response, thus producing substantially more false alarms
and fewer misses. In the GNG task, their RT was significantly shorter than in the 2AFC task (Figure
1B). Similar results have also been reported by Gomez et al. in the context of lexical decision-
making [2].

Influence of stimulus probability on Go bias
We investigate the degree of Go bias in the GNG model by considering the effect of trial type fre-
quency on behavioral measures in the GNG task. Model simulations (Figure 3) show that, consistent
with Figure 2 and a host of other experimental data, there is a significant bias toward the Go response
when Go and NoGo trials are equiprobable, and this bias is increased (respectively diminished) as
NoGo trials are fewer or more frequent. The figure also shows that RT for both correct Go and erro-
neous NoGo responses increase with the frequency of NoGo trials, and that false alarm RT is faster
than correct response RT. In recent work, Nieuwenhuis et al. [28] used a block design to compare
choice accuracy and RT in a letter discrimination task when the fraction of NoGo trials was set to
20%, 50%, and 80%. As shown in Figure 3C;D, , subjects’ behavior was reliably modulated by trial
type frequency, in a manner closely reflecting model predictions.
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Figure 5: DDM approximation to optimal decision-making model. Simplified DDMs were fit to op-
timal model simulations of 2AFC and GNG behavior, and the best-fit parameters compared between
tasks. The DDM approximation for optimal GNG behavior shows a higher decision threshold (B),
and lower nondecision time (C), than the DDM approximation for the 2AFC task. In addition, the
rate of evidence accumulation was also lower for the GNG fit (A).

In our formulation, although the decision boundary is unchanged by the experimental manipulation,
the stimulus frequency induces a prior belief over the identity of the stimulus, and thus represents
the starting point for the evidence accumulation process. When Go trials are rare, the starting point
is far from the decision boundary, and it takes longer for a response to be generated. Further, due to
the extra evidence needed to overcome the prior, choices are less likely to be erroneous.

Drift-diffusion models and optimal behavior
Various versions of augmented DDM have been used to fit GNG behavioral data, with one variant
in particular suggesting that the decision threshold in GNG ought to be higher than 2AFC [2], in
an apparent contradiction to our model’s predictions (Figure 4). By fitting RT and choice data from
lexical judgment, numerosity judgment, and memory-based decision making tasks, Gomez et al. [2]
found that a DDM with an implicit negative boundary associated with the NoGo stimulus provided
a good fit to RT data. Further, joint parameter fits to 2AFC and GNG choice data indicated that the
principal difference in the two tasks was in the nondecision time and decision threshold; the rate
parameter (representing the evidence accumulation process) was similar in both tasks. In particular,
they suggested that the nondecision time was shorter, and the decision threshold higher than in
the 2AFC task (Figure 4B). These results were replicated by Mack & Palmeri by fitting DDM to
behavioral data from a visual categorization task performed in both 2AFC and GNG versions [12].

Although DDMs are formally equivalent to optimal decision-making in a restricted class of sequen-
tial choice problems [18], they do not explicitly represent and manipulate uncertainty and cost, as we
do in our Bayesian risk-minimization framework. In particular, our framework allows us to predict
that optimal behavior is well-characterized by a DDM with a time-varying threshold (Figure 4C),
and that the restricted class of constant-threshold DDMs are insufficient to fully explain observed
behavior. Nevertheless, we can ask whether our prediction is consistent with the empirical results
obtained from DDM fits with constant decision thresholds.

To address this, we computed the best constant-threshold DDM approximations to optimal decision
making in the two tasks. We simulated the optimal model with a shared set of parameters for both
the 2AFC and GNG tasks, and fit simplified random-walk models with 3 free parameters (Figure
4A) to the output of our optimal model’s simulations. Figure 5 shows that the best-fitting DDM
approximation for optimal GNG behavior has a higher threshold and a lower offset parameter than
the best-fitting DDM for optimal 2AFC task behavior.

Note that varying the magnitude of a symmetric (explicit and implicit) decision threshold is not ca-
pable of explaining the go bias towards the overt response. Gomez et al. also considered additional
variants of the DDM which allow for a change in the initial starting point, and for a different ac-
cumulation rate in the GNG task. These models, when fit to data, showed a bias towards the overt
response; however, the quality of fit did not significantly improve [2] .

Thus, our results and those of Gomez et al. [2] are conceptually consistent; a prinicipal difference
in the two tasks is the decision threshold, whereas the evidence accumulation process is similar
across tasks. However, our analysis explains precisely how and why the thresholds in the two tasks
are different: the GNG task has a time-varying threshold that is lower than the 2-choice threshold,
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due to the difference in loss functions in the two tasks. In particular, our model accounts for the
bias towards the overt response, without recourse to an implicit decision boundary or additional
parameter changes. When optimal behavior is approximated by a simpler class of models (e.g.,
models with fixed decision threshold), the best fit to optimal GNG behavior turns out to be a higher
threshold and shorter nondecision time, as found by previous work [2, 12], and adjustments to the
initial starting point are required to explain the overt response bias.

4 Discussion

Forcing a choice between two alternatives is a fundamental technique used to study a wide variety
of perceptual and cognitive phenomena, but there has long been confusion over whether GNG and
2AFC variants of such tasks are probing the same underlying neural and cognitive processes. Our
work demonstrates that a common Bayes-optimal sequential inference and decision policy can ex-
plain the behavioral results in both tasks, as well as what was perceived to be a troubling Go bias in
the GNG task, compared to 2AFC. We showed that the Go bias arises naturally as a rational response
to the asymmetric time cost between Go and NoGo responses, as the former immediately terminates
the trial, while the latter requires the subject to wait until the end of the trial to record the choice.
The consequence of this cost asymmetry is an optimal decision policy that requires Bayesian evi-
dence accumulation up to a time-varying boundary, which has an inverted-U shape: the initial low
boundary is due to the temporal advantage of choosing to Go early and save on the time necessary
to wait to register a NoGo response, the later collapsing of boundary is due to the expectation of the
deadline for responding. We showed that this optimal decision policy accounts for the general be-
havioral phenomena observed in GNG tasks, in particular accounting for the Go bias. Importantly,
our work shows that need not be any fundamental differences in the cognitive and neural processes
underlying perception and decision-making in these tasks, at least not on account of the Go bias.

Our model makes several novel experimental predictions for the GNG task: (1) for fast responses,
false alarm rate increases as a function of response time (in contrast, the fixed-threshold DDM ap-
proximation predicts a constant alarm rate); (2) lengthening the response deadline should exacerbate
the Go bias; (3) if GNG and 2AFC share a common inference and decision-making neural infras-
tructure, then our model predicts within-subject cross-task correlation: e.g. favoring speed over
accuracy in the 2AFC task should correlate with a greater Go bias in the GNG task.

The optimal decision policy for the GNG task can naturally be viewed as a stochastic process (though
it is normatively derived from task statistics and behavioral goals). We can therefore compare our
model to other stochastic process models previously proposed for the GNG task. Our model has
a single decision threshold associated with the overt response, consistent with some early models
proposed for the task (see e.g., Sperling et al. [30]). In contrast, the extended DDM framework
proposed by Gomez et al. has an additional boundary associated with the NoGo response (corre-
sponding to a covert NoGo response). Gomez et al. report that single-threshold variants of the DDM
provided very poor fits to the data. Although computationally and behaviorally we do not require
a covert-response or associated threshold, it is nevertheless possible that neural implementations
of behavior in the task may involve an explicit “NoGo” choice For instance, substantial empirical
work aims to isolate neural correlates of restraint, corresponding to a putative “NoGo” action, by
contrasting neural activity on “go” and “nogo” (see e.g., [31, 32]). We will consider approximating
the optimal policy with one that includes this second boundary in future work.
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