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Abstract

Numerical integration is a key component of many problems inscientific comput-
ing, statistical modelling, and machine learning. Bayesian Quadrature is a model-
based method for numerical integration which, relative to standard Monte Carlo
methods, offers increased sample efficiency and a more robust estimate of the
uncertainty in the estimated integral. We propose a novel Bayesian Quadrature
approach for numerical integration when the integrand is non-negative, such as
the case of computing the marginal likelihood, predictive distribution, or normal-
ising constant of a probabilistic model. Our approach approximately marginalises
the quadrature model’s hyperparameters in closed form, andintroduces an ac-
tive learning scheme to optimally select function evaluations, as opposed to using
Monte Carlo samples. We demonstrate our method on both a number of synthetic
benchmarks and a real scientific problem from astronomy.

1 Introduction

The fitting of complex models to big data often requires computationally intractable integrals to be
approximated. In particular, machine learning applications often require integrals over probabilities

Z = 〈ℓ〉 =
∫

ℓ(x)p(x)dx, (1)

whereℓ(x) is non-negative. Examples include computing marginal likelihoods, partition functions,
predictive distributions at test points, and integrating over (latent) variables or parameters in a model.
While the methods we will describe are applicable to all such problems, we will explicitly con-
sider computing model evidences, whereℓ(x) is the unnormalised likelihood of some parameters
x1, . . . , xD. This is a particular challenge in modelling big data, whereevaluating the likelihood
over the entire dataset is extremely computationally demanding.

There exist several standard randomised methods for computing model evidence, such as annealed
importance sampling (AIS) [1], nested sampling [2] and bridge sampling. For a review,see [3].
These methods estimateZ given the value of the integrand on a set of sample points, whose size is
limited by the expense of evaluatingℓ(x). It is well known that convergence diagnostics are often
unreliable for Monte Carlo estimates of partition functions [4, 5, 6]. Most such algorithms also have
parameters which must be set by hand, such as proposal distributions or annealing schedules.

An alternative, model-based, approach is Bayesian Quadrature (BQ) [7, 8, 9, 10], which specifies
a distribution over likelihood functions, using observations of the likelihood to infer a distribution
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Figure 1: Model-based integration computes a posterior forthe integralZ =
∫

ℓ(x)p(x)dx, condi-
tioned on sampled values of the functionℓ(x). For this plot, we assume a Gaussian process model
for ℓ(x) and a broad Gaussian priorp(x). The variously probable integrands permitted under the
model will give different possible values forZ, with associated differing probabilities.

for Z (see Figure 1). This approach offers improved sample efficiency [10], crucial for expensive
samples computed on big data. We improve upon this existing work in three ways:

Log-GP: [10] used aGP prior on the likelihood function; this is a poor model in thiscase, unable to
express the non-negativity and high dynamic range of most likelihood functions. [11] introduced an
approximate means of exploiting aGP on the logarithm of a function (henceforth, a log-GP), which
better captures these properties of likelihood functions.We apply this method to estimateZ, and
extend it to computeZ ’s posterior variance and expected variance after adding a sample.

Active Sampling: Previous work onBQ has used randomised ora priori fixed sampling schedules.
We use active sampling, selecting locations which minimisethe expected uncertainty inZ.

Hyperparameter Marginalisation: Uncertainty in the hyperparameters of the model used for
quadrature has previously been ignored, leading to overconfidence in the estimate ofZ. We in-
troduce a tractable approximate marginalisation of input scale hyperparameters.

From a Bayesian perspective, numerical integration is fundamentally an inference and sequential
decision making problem: Given a set of function evaluations, what can we infer about the integral,
and how do we decide where to next evaluate the function. Monte Carlo methods, including MCMC,
provide simple but generally suboptimal and non-adaptive answers: compute a sample mean, and
evaluate randomly. Our approach attempts to learn about theintegrand as it evaluates the function
at different points, and decide based on information gain where to evaluate next. We compare
our approach against standard Monte Carlo techniques and previous Bayesian approaches on both
simulated and real problems.

2 Bayesian Quadrature

Bayesian quadrature[8, 10] is a means of performing Bayesian inference about thevalue of a
potentially nonanalytic integral,〈f〉 :=

∫

f(x)p(x)dx. For clarity, we henceforth assume the do-
main of integrationX = R, although all results generalise toRn. We assume a Gaussian density
p(x) := N (x; νx, λx), although other convenient forms, or, if necessary, the useof an importance
re-weighting trick (q(x) = q(x)/p(x)p(x) for anyq(x)), allow any other integral to be approximated.

Quadrature involves evaluatingf(x) at a vector of sample pointsxs, givingfs := f(xs). Often this
evaluation is computationally expensive; the consequent sparsity of samples introduces uncertainty
about the functionf between them, and hence uncertainty about the integral〈f〉.
Previous work onBQ chooses a Gaussian process (GP) [12] prior for f , with meanµf and Gaussian
covariance function

K(x1, x2) := h2 N (x1;x2, w) . (2)

Here hyperparameterh species the output scale, while hyperparameterw defines a (squared) input
scale overx. These scales are typically fitted using type two maximum likelihood (MLII ); we will
later introduce an approximate means of marginalising themin Section 4. We’ll use the following
dense notation for the standardGPexpressions for the posterior meanm, covarianceC, and variance
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Figure 2: AGP fitted to a peaked log-likelihood function is typically a better model thanGP fit to
the likelihood function (which is non-negative and has highdynamic range). The formerGP also
usually has the longer input scale, allowing it to generalise better to distant parts of the function.

V , respectively:mf |s(x⋆) := m(f⋆|fs), Cf |s(x⋆, x
′
⋆) := C(f⋆, f

′
⋆|fs) andVf |s(x⋆) := V (f⋆|fs).

Note that this notation assumes implicit conditioning on hyperparameters. Where required for dis-
ambiguation, we’ll make this explicit, as permf |s,w(x⋆) := m(f⋆|fs, w) and so forth.

Variables possessing a multivariate Gaussian distribution are jointly Gaussian distributed with any
affine transformations of those variables. Because integration is affine, we can hence use computed
samplesfs to perform analytic Gaussian process inference about the value of integrals overf(x),
such as〈f〉. The mean estimate for〈f〉 givenfs is

m(〈f〉|fs) =

∫∫

〈f〉 p(〈f〉|f) p(f |fs) d〈f〉 df

=

∫∫

〈f〉 δ
(

〈f〉 −
∫

f(x) p(x) dx

)

N
(

f ;mf |s, Cf |s

)

d〈f〉 df

=

∫

mf |s(x) p(x) dx , (3)

which is expressible in closed-form due to standard Gaussian identities [10]. The corresponding
closed-form expression for the posterior variance of〈f〉 lends itself as a natural convergence diag-
nostic. Similarly, we can compute the posteriors for integrals over the product of multiple, indepen-
dent functions. For example, we can calculate the posteriormeanm(〈fg〉|fs, gs) for an integral
∫

f(x)g(x)p(x)dx. In the following three sections, we will expand upon the improvements this
paper introduces in the use of Bayesian Quadrature for computing model evidences.

3 Modelling Likelihood Functions

We wish to evaluate the evidence (1), an integral over non-negative likelihoods,ℓ(x). Assigning
a standardGP prior to ℓ(x) ignores prior information about the range and non-negativity of ℓ(x),
leading to pathologies such as potentially negative evidences (as observed in [10]). A much better
prior would be aGP prior onlog ℓ(x) (see Figure 2). However, the resulting integral is intractable,

m(Z|log ℓs) =
∫

(

∫

exp
(

log ℓ(x)
)

p(x) dx
)

N
(

log ℓ;mlog ℓ|s, Clog ℓ|s

)

dlog ℓ , (4)

as (4) does not possess the affine property exploited in (3). To progress, we adopt an approximate
inference method inspired by [11] to tractably integrate under a log-GP prior.1 Specifically, we
linearise the problematic exponential term around some point log ℓ0(x), as

exp
(

log ℓ(x)
)

≃ exp
(

log ℓ0(x)
)

+ exp
(

log ℓ0(x)
)(

log ℓ(x)− log ℓ0(x)
)

(5)

The integral (4) consists of the product ofZ and aGP for log ℓ. The former is∼ exp log ℓ, the
latter is∼ exp

(

−(log ℓ −m)2
)

, effectively permitting only a small range oflog ℓ functions. Over
this narrow region, it is reasonable to assume thatZ does not vary too dramatically, and can be
approximated as linear inlog ℓ, as is assumed by (5). Using this approximation, and making the
definition∆log ℓ|s := mlog ℓ|s − log ℓ0, we arrive at

m(Z|log ℓs) ≃ m(Z|log ℓ0, log ℓs) :=
∫

ℓ0(x)p(x) dx+

∫

ℓ0(x)∆log ℓ|s(x)p(x) dx . (6)

1In practice, we use the transformlog (ℓ(x) + 1), allowing us to assume the transformed quantity has zero
mean. For the sake of simplicity, we omit this detail in the following derivations.
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Figure 3: Our approximate use of aGP for log ℓ(x) improves upon the use of aGP for ℓ(x) alone.
Here the ‘final approx’ ismℓ|s(1 + ∆log ℓ|s), from (5) and (6).

We now chooseℓ0 to allow us to resolve the first integral in (6). First, we introduce a secondaryGP
model forℓ, the non-log space, and chooseℓ0 := mℓ|s, wheremℓ|s is the standardGP conditional
mean forℓ given observationsℓ(xs). For bothGPs2 (over both log and non-log spaces), we take
zero prior means and Gaussian covariances of the form (2). Itis reasonable to use zero prior means:
ℓ(x) is expected to be negligible except at a small number of peaks. If a quantity is dependent upon
theGP prior for ℓ, it will be represented as conditional onℓs; if dependent upon the formerGP prior
over log ℓ, it will be conditional uponlog ℓs. We expect∆log ℓ|s(x) to be small everywhere relative
to the magnitude oflog ℓ(x) (see Figure 3). Hencelog ℓ0 is close to the peaks of the Gaussian over
log ℓ, rendering our linearisation appropriate. Forℓ0, the first integral in (6) becomes tractable.

Unfortunately, the second integral in (6) is non-analytic due to thelog ℓ0 term within∆log ℓ|s. As
such, we perform another stage of Bayesian quadrature by treating∆log ℓ|s as an unknown function
of x. For tractability, we assume this prior is independent of the prior for log ℓ. We use anotherGP
for ∆log ℓ|s, with zero prior mean and Gaussian covariance (2). A zero prior mean here is reasonable:
∆log ℓ|s is exactly zero atxs, and tends to zero far away fromxs, where bothmlog ℓ|s andlog ℓ0 are
given by the compatible prior means forlog ℓ andℓ. We must now choosecandidate pointsxc at
which to evaluate the∆log ℓ|s function (note we do not need to evaluateℓ(xc) in order to compute
∆c := ∆log ℓ|s(xc)). xc should firstly includexs, where we know that∆log ℓ|s is equal to zero.
We select the remainder ofxc at random on the hyper-ellipses (whose axes are defined by theinput
scales forℓ) surrounding existing observations; we expect∆log ℓ|s to be extremised at suchxc. We
limit ourselves to a number of candidates that scales linearly with the dimensionality of the integral
for all experiments.

Given these candidates, we can now marginalise (6) over∆log ℓ|s to give

m(Z|log ℓs) ≃ m(Z|log ℓ0, log ℓs,∆c) = m(Z|ℓs) +m
(

〈ℓ∆log ℓ|s〉
∣

∣ℓs,∆c

)

, (7)

where both terms are analytic as per Section 2;m(Z|ℓs) is of the form (3). The correction factor,
the second term in (7), is expected to be small, since∆log ℓ|s is small. We extend the work of [11]
to additionally calculate the variance in the evidence,

V (Z|log ℓ0, log ℓs,∆c) = S(Z | log ℓ0, log ℓs)−m(Z|log ℓ0, log ℓs,∆c)
2
, (8)

where the second moment is

S(Z | log ℓ0, log ℓs) := m
(

〈ℓClog ℓ|s ℓ〉
∣

∣log ℓs
)

+m(Z|log ℓ0, log ℓs,∆c)
2
, (9)

and hence

V (Z|log ℓ0, log ℓs,∆c) = m
(

〈ℓClog ℓ|s ℓ〉
∣

∣log ℓs
)

:=

∫∫

mℓ|s(x)mℓ|s(x
′)Clog ℓ|s(x, x

′)p(x)p(x′)dxdx′, (10)

which is expressible in closed form, although space precludes us from doing so. This variance can
be employed as a convergence diagnostic; it describes our uncertainty in the model evidenceZ.

2Note that separately modellingℓ andlog ℓ is not inconsistent: we use the posterior mean of theGP for ℓ
only as a convenient parameterisation forℓ0; we do not treat thisGP as a full probabilistic model. While this
modelling choice may seem excessive, this approach provides significant advantages in the sampling efficiency
of the overall algorithm by approximately capturing the non-negativity of our integrand and allowing active
sampling.
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Figure 4: a) Integrating hyperparameters increases the marginal posterior variance (in regions whose
mean varies as the input scales change) to more closely matchthe true posterior marginal variance.
b) An example showing the expected uncertainty in the evidence after observing the likelihood
function at that location.p(x) and l(x) are plotted at the top in green and black respectively, the
next sample location in red. Note the model discovering a newmode on the right hand side, sampling
around it, then moving on to other regions of high uncertainty on the left hand side.

In summary, we have described a linearisation approach to exploiting aGPprior over log-likelihoods;
this permitted the calculation of the analytic posterior mean (7) and variance (10) ofZ. Note that our
approximation will improve with increasing numbers of samples: ∆log ℓ|s will eventually be small
everywhere, since it is clamped to zero at each observation.The quality of the linearisation can also
be improved by increasing the number of candidate locations, at the cost of slower computation.

4 Marginalising hyperparameters

We now present a novel means of approximately marginalisingthe hyperparameters of theGP used
to model the log-integrand,log ℓ. In previous approaches to Bayesian Quadrature, hyperparameters
were estimated usingMLII , which approximates the likelihood as a delta function. However, ignor-
ing the uncertainty in the hyperparameters can lead to pathologies. In particular, the reliability of
the variance forZ depends crucially upon marginalising over all unknown quantities.

The hyperparameters of most interest are the input scalesw for the GP over the log-likelihood;
these hyperparameters can have a powerful influence on the fitto a function. We useMLII to fit all
hyperparameters other thanw. Marginalisation ofw is confounded by the complex dependence of
our predictions upon these input scales. We make the following essential approximations:

Flat prior: We assume that the prior forw is broad, so that our posterior is the normalised likelihood.

Laplace approximation: p(log ℓs|w) is taken as Gaussian with mean equal to theMLII valueŵ and
with diagonal covarianceCw, diagonal elements fitted using the second derivatives of the likelihood.
We represent the posterior mean forlog ℓ conditioned onŵ asm̂ := mlog ℓ|s,ŵ.

GP mean affine inw: Given the narrow width of the likelihood forw, p(log ℓ|log ℓs, w) is approx-
imated as having aGP mean which is affine inw around theMLII values, and a constant covariance;
mlog ℓ|s,w ≃ m̂+ ∂m̂

∂w
(w − ŵ) andClog ℓ|s,w ≃ Clog ℓ|s,ŵ.

The implication of these approximations is that the marginal posterior mean overlog ℓ is simply
m̃log ℓ|s := mlog ℓ|s,ŵ. The marginal posterior variance is̃Clog ℓ|s := Clog ℓ|s,ŵ + ∂m̂

∂w
Cw

∂m̂
∂w

.
An example of our approximate posterior is depicted in Figure 4a. Our approximations give the
marginal posterior mean forZ:

m̃(Z|log ℓ0, log ℓs,∆c) := m(Z|log ℓ0, log ℓs,∆c, ŵ) , (11)

of the form (7). The marginal posterior variance

Ṽ (Z|log ℓ0, log ℓs,∆c) =

∫∫

dx dx′mℓ|s(x)mℓ|s(x
′)

(

Clog ℓ|s(x, x
′) +

∂m̂(x)

∂w
Cw

∂m̂(x′)

∂w

)

(12)

is possible, although laborious, to express analytically,as with (10).
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5 Active Sampling

One major benefit of model-based integration is that samplescan be chosen by any method, in
contrast to Monte Carlo methods, which typically must sample from a specific distribution. In
this section, we describe a scheme to select samplesxs sequentially, by minimising theexpected
uncertainty in the evidence that remains after taking each additional sample.3 We take the variance
in the evidence as our loss function, and proceed according to Bayesian decision theory.

Surprisingly, the posterior variance of aGP model with fixed hyperparameters does not depend
on the function values at sampled locations at all; only the location of those samples matters. In
traditional Bayesian quadrature, the evidence is an affine transformation of the sampled likelihood
values, hence its estimate for the variance in the evidence is also independent of likelihood values.
As such, active learning with fixed hyperparameters is pointless, and the optimal sampling design
can be found in advance [13].

In Section 3, we tookZ as an affine transform of the log-likelihood, which we model with a GP. As
the affine transformation (5) itself depends on the functionvalues (via the dependence oflog ℓ0), the
conclusions of the previous paragraph do not apply, and active learning is desirable. The uncertainty
over the hyperparameters of theGP further motivates active learning: without assuminga priori
knowledge of the hyperparameters, we can’t evaluate theGP to precompute a sampling schedule.
The approximate marginalisation of hyperparameters permits an approach to active sampling that
acknowledges the influence new samples may have on the posterior over hyperparameters.

Active sampling selects a new samplexa so as to minimise the expected variance in the evidence
after adding the sample to the model ofℓ. The objective is therefore to choose thexa that minimises
the expected loss;xa = argminxa

〈

V (Z|log ℓ0, log ℓs,a) | log ℓ0, log ℓs
〉

(notexa is implicitly
conditioned on, as usual for function inputs) where the expected loss is

〈

V (Z|log ℓ0, log ℓs,a) | log ℓ0, log ℓs
〉

= S(Z | log ℓ0, log ℓs)−
∫

m(Z|log ℓ0, log ℓa,s,∆c)
2

×N
(

log ℓa; m̂a, Ĉa +
∂m̂a

∂w
Cw

∂m̂T

a

∂w

)

dlog ℓa , (13)

and we definêma := m(log ℓa|log ℓs, ŵ) andĈa := V (log ℓa|log ℓs, ŵ). The first term in (13),
the second moment, is independent of the selection ofxa and can hence be safely ignored for active
sampling (true regardless of the model chosen for the likelihood). The second term, the negative
expected squared mean, can be resolved analytically4 for any trialxa (we omit the laborious details).

Importantly, we do not have to make a linearisation approximation for this new sample. That is, the
GP posterior overlog ℓa can be fully exploited when performing active sampling.

In order to minimise the expected variance, the objective in(13) encourages the maximisation of the
expected squared mean ofZ. Due to our log-GP model, one means the method can use to do this
is to seek points where the log-likelihood is predicted to belarge: which we callexploitation. The
objective in (13) naturally balances exploitation againstexploration: the choice of points where our
current variance in the log-likelihood is significant (see Figure 4b). Note that the variance forlog ℓa
is increased by approximate integration over hyperparameters, encouraging exploration.

6 Experiments

We now present empirical evaluation of our algorithm in a variety of different experiments.

Metrics: We judged our methods according to three metrics, all averages overN similar exper-
iments indexed byi. DefineZi as the ground truth evidence for theith experiment,m(Zi) as its
estimated mean andV (Zi) as its predicted variance. Firstly, we computed the averagelog error,

3We also expect such samples to be useful not just for estimating the evidence, but also for any other related
expectations, such as would be required to perform prediction using the model.

4Here we use the fact that
∫

exp(c y)N
(

y;m,σ2
)

dy = exp(cm + 1/2 c2σ2). We assume that∆log ℓ|s

does not depend onlog ℓ
a
, only its locationxa: we know∆(xa) = 0 and assume∆log ℓ|s elsewhere remains

unchanged.
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ALE := 1
N

∑N
i=1 |logm(Zi)− logZi| . Next we computed the negative log-density of the truth,

assuming experiments are independent,− log p(Z) = −∑N
i=1 logN (Zi;m(Zi), V (Zi)), which

quantifies the accuracy of our variance estimates. We also computed the calibrationC, defined
as the fraction of experiments in which the ground truth lay within our 50% confidence interval
(

m(Zi) − 0.6745
√
V (Zi),m(Zi) + 0.6745

√
V (Zi)

)

. Ideally,C would be 50%: any higher, and a
method is under-confident, any lower and it is over-confident.

Methods: We first compared against simple Monte Carlo (SMC). SMC generates samples
x1, . . . , xN from p(x), and estimatesZ by Ẑ = 1/N

∑N
n=1 ℓ(xn). An estimate of the variance

of Ẑ is given by the standard error ofℓ(x). As an alternative Monte Carlo technique, we imple-
mented Annealed Importance Sampling (AIS) using a Metropolis-Hastings sampler. The inverse
temperature schedule was linear as in [10], and the proposalwidth was adjusted to attain approxi-
mately a 50% acceptance rate. Note that a singleAIS chain provides no ready means of determining
the posterior variance for its estimate ofZ. Our first model-based method was Bayesian Monte
Carlo (BMC) – the algorithm used in [10]. Here samples were drawn from the AIS chain above, and
a GP was fit to the likelihood samples. For this and other methods,where not otherwise mentioned,
GP hyperparameters were selected usingMLII .

We then tested four novel methods. Firstly, Bayesian Quadrature (BQ), which employed the lin-
earisation approach of Section 3 to modeling the log-transformed likelihood values. The samples
supplied to it were drawn from the sameAIS chain as used above, and 400 candidate points were per-
mitted. BQ* is the same algorithm asBQ but with hyperparameters approximately marginalised, as
per Section 4. Note that this influences only the variance of the estimate; the means forBQ andBQ*
are identical. The performance of these methods allow us to quantify to what extent our innovations
improve estimation given a fixed set of samples.

Next, we tested a novel algorithm, Doubly Bayesian Quadrature (BBQ). The method is so named
for the fact that we use not only Bayesian inference (with aGP over the log-transformed likelihood)
to compute the posterior for the evidence, but also Bayesiandecision theory to select our samples
actively, as described in Section 5.BBQ* is identical, but with hyperparameters approximately
marginalised. Both algorithms demonstrate the influence ofactive sampling on our performance.

Problems: We used these methods to evaluate evidences given Gaussian priors and a variety of
likelihood functions. As in [10] and [11], we focus on low numbers of samples; we permitted tested
methods 150 samples on synthetic integrands, and 300 when using real data. We are motivated by
real-world, big-data, problems where evaluating likelihood samples is expensive, making it desirable
to determine the techniques for evidence estimation that can operate best when permitted only a
small number of samples. Ground truthZ is available for some integrals; for the non-analytic
integrals,Z was estimated by a run ofSMC with 105 samples.

We considered seven synthetic examples. We firstly tested using single Gaussians, in one, four,
ten and twenty dimensions. We also tested on mixtures of two Gaussians in one dimension (two
examples, alternately widely separated and overlapping) and four dimensions (a single example).

We additionally tested methods on a real scientific problem:detecting a damped Lyman-α absorber
(DLA ) between the Earth and an observed quasar from spectrographic readings of the quasar.DLAs
are large objects consisting primarily of neutral hydrogengas. The statistical properties ofDLAs
inform us about the distribution of neutral hydrogen in the universe, which is of fundamental cos-
mological importance. We model the quasar spectra using aGP; the presence of aDLA is repre-
sented as an observation fault with known dynamics [14]. This model has five hyperparameters to
be marginalised, to which we assign priors drawn from the large corpus of data obtained from the
Sloan Digital Sky Survey (SDSS) [15]. We tested over four datasets; the expense of evaluating aGP
likelihood sample on the large datasets available from theSDSS(140TB of data have been released
in total) motivates the small sample sizes considered.

Evaluation Table 1 shows combined performance on the synthetic integrands listed above. The
calibration scoresC show that all methods5 are systematically overconfident, although our ap-
proaches are at least as well calibrated as alternatives. Onaverage,BBQ* provides an estimate

5Because a singleAIS chain gives no estimate of uncertainty, it has no likelihood or calibration scores.
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Figure 5: a) The posterior distribution overZ for several methods on a one-dimensional example
as the number of samples increases. Shaded regions denote±2 SD’s from the mean. The shaded
regions forSMC and BMC are off the vertical scale of this figure. b) The log density ofthe true
evidence for different methods (colours identical to thosein a), compared to the trueZ (in black).
The integrand is the same as that in Figure 4b.

Table 1:Combined Synthetic Results

Method − log p(Z) ALE C
SMC > 1000 1.101 0.286
AIS N/A 1.695 N/A
BMC > 1000 2.695 0.143
BQ > 1000 6.760 0.429
BQ* > 1000 6.760 0.429
BBQ 13.597 0.919 0.286
BBQ* −11.909 0.271 0.286

Table 2:Combined Real Results

Method − log p(Z) ALE C
SMC 5.001 0.632 0.250
AIS N/A 2.146 N/A
BMC 9.536 1.455 0.500
BQ 37.017 0.635 0.000
BQ* 33.040 0.635 0.000
BBQ 3.734 0.400 0.000
BBQ* 74.242 1.732 0.250

of Z which is closer to the truth than the other methods given the same number of samples, and as-
signs much higher likelihood to the true value ofZ. BBQ* also achieved the lowest error on five, and
best likelihood on six, of the seven problems, including thetwenty dimensional problem for both
metrics. Figure 5a shows a case where bothSMC andBBQ* are relatively close to the true value,
howeverBBQ*’s posterior variance is much smaller. Figure 5b demonstrates the typical behaviour
of the active sampling ofBBQ*, which quickly concentrates the posterior distribution at the trueZ.
The negative likelihoods ofBQ* are for every problem slightly lower than forBQ (− log p(Z) is
on average0.2 lower), indicating that the approximate marginalisation of hyperparameters grants a
small improvement in variance estimate.

Table 2 shows results for the various methods on the real integration problems. HereBBQ is clearly
the best performer; the additional exploration induced by the hyperparameter marginalisation of
BBQ* may have led to local peaks being incompletely exploited. Exploration in a relatively high
dimensional, multi-modal space is inherently risky; nonetheless,BBQ* achieved lower error than
BBQ on two of the problems.

7 Conclusions

In this paper, we have made several advances to theBQ method for evidence estimation. These are:
approximately imposing a positivity constraint6, approximately marginalising hyperparameters, and
using active sampling to select the location of function evaluations. Of these contributions, the active
learning approach yielded the most significant gains for integral estimation.
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