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Abstract

Numerical integration is a key component of many problensiantific comput-
ing, statistical modelling, and machine learning. Baye€)adrature is a model-
based method for numerical integration which, relativettmdard Monte Carlo
methods, offers increased sample efficiency and a more trastisnate of the
uncertainty in the estimated integral. We propose a novgkeBan Quadrature
approach for numerical integration when the integrand is-megative, such as
the case of computing the marginal likelihood, predictiigrébution, or normal-
ising constant of a probabilistic model. Our approach axiprately marginalises
the quadrature model’'s hyperparameters in closed form,i@naduces an ac-
tive learning scheme to optimally select function evaluadi as opposed to using
Monte Carlo samples. We demonstrate our method on both aeruwhbynthetic
benchmarks and a real scientific problem from astronomy.

1 Introduction

The fitting of complex models to big data often requires cotaponally intractable integrals to be
approximated. In particular, machine learning applicgatioften require integrals over probabilities

Z=(t) = / ((x)p(x)dx, 1)

where/(x) is non-negative. Examples include computing marginalitic®ds, partition functions,
predictive distributions at test points, and integratingrqlatent) variables or parameters in a model.
While the methods we will describe are applicable to all sudblems, we will explicitly con-
sider computing model evidences, whé(g) is the unnormalised likelihood of some parameters
z1,...,xp. Thisis a particular challenge in modelling big data, wheveluating the likelihood
over the entire dataset is extremely computationally detiman

There exist several standard randomised methods for camgpmibdel evidence, such as annealed
importance samplinga(s) [1], nested sampling [2] and bridge sampling. For a revisee [3].
These methods estimafegiven the value of the integrand on a set of sample pointsse/sze is
limited by the expense of evaluatigx). It is well known that convergence diagnostics are often
unreliable for Monte Carlo estimates of partition functdd, %/ 6]. Most such algorithms also have
parameters which must be set by hand, such as proposabdisiris or annealing schedules.

An alternative, model-based, approach is Bayesian Quaer&q) [7, 18,19,[10], which specifies
a distribution over likelihood functions, using obsergas of the likelihood to infer a distribution
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Figure 1: Model-based integration computes a posteriothi@integralZ = [ ¢(x)p(x)dx, condi-
tioned on sampled values of the functiéfx). For this plot, we assume a Gaussian process model
for £(x) and a broad Gaussian pripfz). The variously probable integrands permitted under the
model will give different possible values fdf, with associated differing probabilities.

for Z (see Figuréll). This approach offers improved sample efidgi¢10], crucial for expensive
samples computed on big data. We improve upon this existory im three ways:

Log-GP: [10] used acP prior on the likelihood function; this is a poor model in tie&se, unable to
express the non-negativity and high dynamic range of mislitiood functions.[[11] introduced an
approximate means of exploitingap on the logarithm of a function (henceforth, a lag), which
better captures these properties of likelihood function& apply this method to estimate, and
extend it to compute’’s posterior variance and expected variance after addiagpie.

Active Sampling: Previous work orBQ has used randomised ampriori fixed sampling schedules.
We use active sampling, selecting locations which minirtiigeexpected uncertainty .

Hyperparameter Marginalisation: Uncertainty in the hyperparameters of the model used for
guadrature has previously been ignored, leading to ovéidmorce in the estimate of. We in-
troduce a tractable approximate marginalisation of inpateshyperparameters.

From a Bayesian perspective, numerical integration is domehtally an inference and sequential
decision making problem: Given a set of function evaluajarhat can we infer about the integral,
and how do we decide where to next evaluate the function. &06atlo methods, including MCMC,
provide simple but generally suboptimal and non-adapthveaers: compute a sample mean, and
evaluate randomly. Our approach attempts to learn abouhtbgrand as it evaluates the function
at different points, and decide based on information gaiereto evaluate next. We compare
our approach against standard Monte Carlo techniques &wibps Bayesian approaches on both
simulated and real problems.

2 Bayesian Quadrature

Bayesian quadraturg8, [10] is a means of performing Bayesian inference aboutviidee of a
potentially nonanalytic integral,f) := [ f(z)p(xz)dz. For clarity, we henceforth assume the do-
main of integrationt = R, although all results generalise ®'. We assume a Gaussian density
p(x) := N(x; vz, \;), although other convenient forms, or, if necessary, theofise importance
re-weighting trick ¢(z) = 4(=)/p(x)p(x) for anyq(z)), allow any other integral to be approximated.

Quadrature involves evaluatirfgx) at a vector of sample points;, giving f, := f(x;). Often this
evaluation is computationally expensive; the consequaantsity of samples introduces uncertainty
about the functiorf between them, and hence uncertainty about the intégjal

Previous work orBQ chooses a Gaussian process)([12] prior for f, with meanu s and Gaussian
covariance function

K(z1,22) 1= h* N (2152, w) . 2)

Here hyperparametér species the output scale, while hyperparameteiefines a (squared) input
scale overr. These scales are typically fitted using type two maximureliiood fLi1); we will
later introduce an approximate means of marginalising tie8ectior 4. We'll use the following
dense notation for the standasé expressions for the posterior mearn covariance”, and variance
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Figure 2: AGPpfitted to a peaked log-likelihood function is typically a teetmodel tharcp fit to
the likelihood function (which is non-negative and has hityimamic range). The formesp also
usually has the longer input scale, allowing it to geneediistter to distant parts of the function.

V, respectivelym s (z.) == m(fi|f), Cpis(@s, 25) == C(fo, fi|f o) andVys(z.) ==V ([l f,)-
Note that this notation assumes implicit conditioning opédrparameters. Where required for dis-
ambiguation, we’'ll make this explicit, as pery s ., (z.) := m(f«|f,, w) and so forth.

Variables possessing a multivariate Gaussian distribugie jointly Gaussian distributed with any
affine transformations of those variables. Because intiegrés affine, we can hence use computed
samplesf, to perform analytic Gaussian process inference about thee o integrals overf (),
such as<f> The mean estimate fcm given f is

o= [[stnnpisauas
// ( /f ‘”) N (fimys,Cys) d(f) df
= [mpte -

which is expressible in closed-form due to standard Gamsdientities [10]. The corresponding
closed-form expression for the posterior variance foflends itself as a natural convergence diag-
nostic. Similarly, we can compute the posteriors for insdgjover the product of multiple, indepen-
dent functions For example, we can calculate the postereanm({fg¢)|f,,g,) for an integral

[ fz (z)dz. In the following three sections, we will expand upon the ioyements this
paper mtroduces in the use of Bayesian Quadrature for ctngponodel evidences.

3 Modelling Likelihood Functions

We wish to evaluate the evidendé (1), an integral over ngatiee likelihoods/(x). Assigning
a standardsp prior to ¢(x) ignores prior information about the range and non-nedgtivi ¢(z),
leading to pathologies such as potentially negative evidelfas observed in [10]). A much better
prior would be aGP prior onlog ¢(x) (see Figur&l2). However, the resulting integral is intrialeta

m(Zlogt,) = /(/ exp(logé(x))p(z) dm)./\/(logﬁ; mlogaS,C'logas) dlog ¢, (4)

as [4) does not possess the affine property exploitdd in Bprdgress, we adopt an approximate
inference method inspired by _|11] to tractably integratelema logep priorl] Specifically, we
linearise the problematic exponential term around sometpai ¢, (), as

exp(log £(z)) ~ exp(log £y(x)) + exp(log £y(z)) (log £(z) — log £y(x)) (5)
The integral [#) consists of the product #fand aGp for log . The former is~ explog¥, the
latter is~ oxp(—(logé — m)2), effectively permitting only a small range afg ¢ functions. Over
this narrow region, it is reasonable to assume thatoes not vary too dramatically, and can be
approximated as linear ilog ¢, as is assumed b{/1(5). Using this approximation, and makiag t
definition Ay g5 1= Miog ¢ — log £y, We arrive at

m(Z|log,) ~ m(Z|log ¢y, loge,) /Eo da:—&—/% ) Alog ¢)s(x)p(x) dz . (6)

!In practice, we use the transforeg (¢(x) + 1), allowing us to assume the transformed quantity has zero
mean. For the sake of simplicity, we omit this detail in the following derivations
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Figure 3: Our approximate use ofc® for log ¢(z) improves upon the use of@p for ¢(z) alone.
Here the ‘final approx’ isn,|s(1 + Ajeg ¢5), from (8) and[(6).

We now choosé, to allow us to resolve the first integral ial (6). First, we ottuce a secondaiyr
model for/, the non-log space, and chodse:= my,, wherem,, is the standardp conditional
mean for/ given observationg(x,). For bothcP4] (over both log and non-log spaces), we take
zero prior means and Gaussian covariances of the fdrm (@)rdasonable to use zero prior means:
¢(x) is expected to be negligible except at a small number of pdaligjuantity is dependent upon
theGp prior for £, it will be represented as conditional ég if dependent upon the formerp prior
overlog ¢, it will be conditional uporiog £,. We expectd,,, ¢, (x) to be small everywhere relative
to the magnitude ofog £(z) (see Figurél3). Hendeg ¢, is close to the peaks of the Gaussian over
log ¢, rendering our linearisation appropriate. Bgrthe first integral in[(6) becomes tractable.

Unfortunately, the second integral i (6) is non-analytie do thelog £, term within A, 4,. As
such, we perform another stage of Bayesian quadrature &iyrtge\,, ¢, as an unknown function
of z. For tractability, we assume this prior is independent efghior forlog ¢. We use anothesp
for A 415, With zero prior mean and Gaussian covariafite (2). A zey prean here is reasonable:
Ajog |5 IS €xactly zero ak, and tends to zero far away from, where bothm,,, ¢, andlog ¢, are
given by the compatible prior means floi ¢ and¢. We must now chooseandidate points, at
which to evaluate theé\,, ;| function (note we do not need to evaluéte.) in order to compute
A = Ajoggis(2e)). % should firstly includex,, where we know that\, (| is equal to zero.
We select the remainder af. at random on the hyper-ellipses (whose axes are defined lythe
scales for) surrounding existing observations; we expagt, ¢, to be extremised at such.. We
limit ourselves to a number of candidates that scales lip@ath the dimensionality of the integral
for all experiments.

Given these candidates, we can now margindlise (6) Aygry|, to give
m(Zlog £,) ~ m(Zlog £y,10g £s, Ac) = m(Z|€s) +m({{A1ges)| s, Ac) (7)

where both terms are analytic as per Sediibm2Z|¢,) is of the form [[3). The correction factor,
the second term iri{7), is expected to be small, siigg 4, is small. We extend the work of [11]
to additionally calculate the variance in the evidence,

V(Z|log ly,1og £y, A) = S(Z|log £y, log £s) — m(Z|log £y, log £y, A.)* (8)
where the second moment is

S(Z|log ly,log £s) :=m((€ Clog s £) [log £) + m(Z|log £y, log £, Al)?, 9)
and hence

V(Z“Og eOa IOgesv Ac) = m(w Clogé|s €> |10g£a)
= / mé|s(I)mé\s(xl)clogﬂs(xax,)p(x)p(xl)dxdxlv (10)

which is expressible in closed form, although space predut from doing so. This variance can
be employed as a convergence diagnostic; it describes gertaimty in the model evidence.

2Note that separately modelligandlog ¢ is not inconsistent: we use the posterior mean ofahdor ¢
only as a convenient parameterisation fgr we do not treat thisp as a full probabilistic model. While this
modelling choice may seem excessive, this approach provides sigh#iteantages in the sampling efficiency
of the overall algorithm by approximately capturing the non-negativitywfintegrand and allowing active
sampling.
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Figure 41a) Integrating hyperparameters increases thgingposterior variance (in regions whose
mean varies as the input scales change) to more closely miegt¢tue posterior marginal variance.
[B) An example showing the expected uncertainty in the evideafter observing the likelihood
function at that locationp(x) andi(z) are plotted at the top in green and black respectively, the
next sample location in red. Note the model discovering amewe on the right hand side, sampling
around it, then moving on to other regions of high uncerjagmt the left hand side.

In summary, we have described a linearisation approactploigérg aGp prior over log-likelihoods;
this permitted the calculation of the analytic posterioam&f) and varianc&€ (10) ¢f. Note that our
approximation will improve with increasing numbers of sa@spA,,, ,; will eventually be small
everywhere, since it is clamped to zero at each observaktom quality of the linearisation can also
be improved by increasing the number of candidate locatatrthie cost of slower computation.

4 Marginalising hyperparameters

We now present a novel means of approximately marginaligiadnyperparameters of tie® used

to model the log-integrandipg ¢. In previous approaches to Bayesian Quadrature, hypenghess

were estimated usingLil, which approximates the likelihood as a delta function. ldeev, ignor-

ing the uncertainty in the hyperparameters can lead to fgles. In particular, the reliability of
the variance foZ depends crucially upon marginalising over all unknown ditias.

The hyperparameters of most interest are the input sealfs the GP over the log-likelihood;
these hyperparameters can have a powerful influence on toesfitunction. We useiLil to fit all
hyperparameters other than Marginalisation ofw is confounded by the complex dependence of
our predictions upon these input scales. We make the fallgwssential approximations:

Flat prior: We assume that the prior faris broad, so that our posterior is the normalised likelihood

Laplace approximation: p(log ¢, |w) is taken as Gaussian with mean equal tomhe valuew and
with diagonal covarianc€',,, diagonal elements fitted using the second derivativesedfkblihood.
We represent the posterior mean feg ¢ conditioned oni asm := migg ¢|s,-

GP mean affine inw: Given the narrow width of the likelihood fap, p(log ¢|log ¢,, w) is approx-
imated as having ap mean which is affine im around thevLil values, and a constant covariance,
Miog t]s,w = m + g%(w - IZ]) andOlogZ|s,w = ClogE|s,7I)-

The implication of these approximations is that the margpusterior mean ovelog ¢ is simply

TMiogt]s = Miog|s,o- The marginal posterior variance g ¢s = Clogrjs,o + 22 Chy G2
An example of our approximate posterior is depicted in Fégdi@. Our approximations give the
marginal posterior mean fdf:
m(Z|log £y, log s, A.) := m(Z|log £y, log €s, Ac, W) , (12)
of the form [T). The marginal posterior variance
~ Y
V(Z|log £y, log s, A.) = // da da'mys () mg|s(:r') <C’10gg|s(:r,x') + &gi}x) Cu 37151(5 ))

12)
is possible, although laborious, to express analyticaliywith [10).



5 Active Sampling

One major benefit of model-based integration is that samgdesbe chosen by any method, in
contrast to Monte Carlo methods, which typically must sarfpbm a specific distribution. In
this section, we describe a scheme to select samplegquentially, by minimising thexpected
uncertainty in the evidence that remains after taking edditianal samplé We take the variance
in the evidence as our loss function, and proceed accordiBgyesian decision theory.

Surprisingly, the posterior variance ofGp model with fixed hyperparameters does not depend
on the function values at sampled locations at all; only teation of those samples matters. In
traditional Bayesian quadrature, the evidence is an affarestormation of the sampled likelihood
values, hence its estimate for the variance in the evidenatso independent of likelihood values.
As such, active learning with fixed hyperparameters is jpesst and the optimal sampling design
can be found in advance [13].

In Sectior B, we tookZ as an affine transform of the log-likelihood, which we modéhva GpP. As
the affine transformatiofi}(5) itself depends on the funct@limes (via the dependencelof; ¢,), the
conclusions of the previous paragraph do not apply, andealgarning is desirable. The uncertainty
over the hyperparameters of tke® further motivates active learning: without assumangriori
knowledge of the hyperparameters, we can't evaluatestho precompute a sampling schedule.
The approximate marginalisation of hyperparameters pgeram approach to active sampling that
acknowledges the influence new samples may have on the ipostegr hyperparameters.

Active sampling selects a new samplg so as to minimise the expected variance in the evidence
after adding the sample to the modekofThe objective is therefore to choose thethat minimises

the expected losst, = argmin, (V(Z|log{y,log¥s ) | logty,logts) (notez, is implicitly
conditioned on, as usual for function inputs) where the etqzbloss is

<V(Z|1Og60710g£s,a) | logém 10g£&> = S(Z“OgKOv logzé) - /m(ZHOgéOJOgea,sv Ac)2

Omg ., Om)]
ow Cu ow

X N(log 0,14, Cq + ) dlogt,, (13)
and we definen, := m(log/,|log£,,w) andC, := V(logl,|log £, ). The first term in[{IB),
the second moment, is independent of the selectian, @hd can hence be safely ignored for active
sampling (true regardless of the model chosen for the hikelil). The second term, the negative
expected squared mean, can be resolved analyfidaliany trialz, (we omit the laborious details).

Importantly, we do not have to make a linearisation appratiom for this new sample. That is, the
GP posterior ovetog ¢, can be fully exploited when performing active sampling.

In order to minimise the expected variance, the objecti@®) encourages the maximisation of the
expected squared mean &f Due to our logeP model, one means the method can use to do this
is to seek points where the log-likelihood is predicted tdavge: which we calkexploitation The
objective in [IB) naturally balances exploitation aga@gtloration the choice of points where our
current variance in the log-likelihood is significant (segure[4D). Note that the variance flarg ¢,

is increased by approximate integration over hyperparamsetncouraging exploration.

6 Experiments
We now present empirical evaluation of our algorithm in detgrof different experiments.

Metrics: We judged our methods according to three metrics, all aesragerN similar exper-
iments indexed by. DefineZ; as the ground truth evidence for tith experimentn(Z;) as its
estimated mean and(Z;) as its predicted variance. Firstly, we computed the avelegerror,

3We also expect such samples to be useful not just for estimating theeeidaut also for any other related
expectations, such as would be required to perform prediction usingddelm

“*Here we use the fact thgtexp(cy) NV (y;m, 0?) dy = exp(cm + /2¢°0”). We assume thah,g ¢
does not depend dog £, only its locationz,: we knowA(z,) = 0 and assumé\,,, ¢, elsewhere remains
unchanged.



ALE := % Zf.v:l |logm(Z;) — log Z;| . Next we computed the negative log-density of the truth,

assuming experiments are independentogp(Z) = — Zfil log N (Z;;m(Z;),V(Z;)), which
guantifies the accuracy of our variance estimates. We alspueted the calibratio®, defined
as the fraction of experiments in which the ground truth lathim our 50% confidence interval
(m(Z;) — 0.6745\/V (Z;), m(Z;) + 0.6745\/V (Z;)). Ideally,C would be 50%: any higher, and a
method is under-confident, any lower and it is over-confident

Methods: We first compared against simple Monte Carlem€). smc generates samples
Z1,...,xn from p(x), and estimate by Z = 1/n ZN £(z,). An estimate of the variance

n=1
of Z is given by the standard error 6fx). As an alternative Monte Carlo technique, we imple-
mented Annealed Importance Samplings) using a Metropolis-Hastings sampler. The inverse
temperature schedule was linear as in [10], and the propadét was adjusted to attain approxi-
mately a 50% acceptance rate. Note that a singlechain provides no ready means of determining
the posterior variance for its estimate Bf Our first model-based method was Bayesian Monte
Carlo BMc) — the algorithm used in [10]. Here samples were drawn fraamtls chain above, and
aGpPwas fit to the likelihood samples. For this and other methadi&re not otherwise mentioned,
GP hyperparameters were selected usingj .

We then tested four novel methods. Firstly, Bayesian Quadrg8Q), which employed the lin-
earisation approach of Sectibh 3 to modeling the log-t@mséd likelihood values. The samples
supplied to it were drawn from the samgs chain as used above, and 400 candidate points were per-
mitted. BQ* is the same algorithm asQ but with hyperparameters approximately marginalised, as
per Sectiof¥4. Note that this influences only the variance®tstimate; the means g andBQ*

are identical. The performance of these methods allow usaotify to what extent our innovations
improve estimation given a fixed set of samples.

Next, we tested a novel algorithm, Doubly Bayesian Quadea@geQ). The method is so named
for the fact that we use not only Bayesian inference (widPaver the log-transformed likelihood)
to compute the posterior for the evidence, but also Bayedgaision theory to select our samples
actively, as described in Sectibh ®BQ* is identical, but with hyperparameters approximately
marginalised. Both algorithms demonstrate the influen@ectife sampling on our performance.

Problems: We used these methods to evaluate evidences given Gausgiegnd a variety of
likelihood functions. As in[10] and [11], we focus on low nbers of samples; we permitted tested
methods 150 samples on synthetic integrands, and 300 wirggnnesl data. We are motivated by
real-world, big-data, problems where evaluating liketid@amples is expensive, making it desirable
to determine the techniques for evidence estimation thatopeerate best when permitted only a
small number of samples. Ground truthis available for some integrals; for the non-analytic
integrals,Z was estimated by a run eivc with 10> samples.

We considered seven synthetic examples. We firstly testieg) single Gaussians, in one, four,
ten and twenty dimensions. We also tested on mixtures of taas&ians in one dimension (two
examples, alternately widely separated and overlappingf@ur dimensions (a single example).

We additionally tested methods on a real scientific probldetecting a damped Lymam-absorber
(oLA) between the Earth and an observed quasar from spectragrapldings of the quasapLAs
are large objects consisting primarily of neutral hydroges. The statistical properties bfAs
inform us about the distribution of neutral hydrogen in timévarse, which is of fundamental cos-
mological importance. We model the quasar spectra usiag; ahe presence of aLA is repre-
sented as an observation fault with known dynamics [14]s Timodel has five hyperparameters to
be marginalised, to which we assign priors drawn from thgdamorpus of data obtained from the
Sloan Digital Sky Surveyqbs9 [15]. We tested over four datasets; the expense of evalyatsp
likelihood sample on the large datasets available fronsthes(140TB of data have been released
in total) motivates the small sample sizes considered.

Evaluation Table[1 shows combined performance on the synthetic imegristed above. The
calibration score€’ show that all methofisare systematically overconfident, although our ap-
proaches are at least as well calibrated as alternativesaverage BBQ* provides an estimate

®Because a singlals chain gives no estimate of uncertainty, it has no likelihood or calibratioresco
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Figure 5:@) The posterior distribution ov&rfor several methods on a one-dimensional example
as the number of samples increases. Shaded regions deRate’s from the mean. The shaded
regions forsmc andBmc are off the vertical scale of this figur€] b) The log densitythe true
evidence for different methods (colours identical to thivsg), compared to the trug (in black).
The integrand is the same as that in Fidure 4b.

Table 1:Combined Synthetic Results Table 2:Combined Real Results
Method —logp(Z) ALE C Method —logp(Z) ALE C
SMC >1000 1.101 0.286 SMC 5.001 0.632 0.250
AlS N/A  1.695 N/A AlS N/A 2146  N/A
BMC > 1000 2.695 0.143 BMC 9.536  1.455 0.500
BQ > 1000 6.760 0.429 BQ 37.017  0.635 0.000
BQ* > 1000 6.760 0.429 BQ* 33.040  0.635 0.000
BBQ 13.597  0.919 0.286 BBQ 3.734 0.400 0.000
BBQ* —11.909 0.271 0.286 BBQ* 74.242  1.732  0.250

of Z which is closer to the truth than the other methods given dimeesnumber of samples, and as-
signs much higher likelihood to the true valuetfseQ* also achieved the lowest error on five, and
best likelihood on six, of the seven problems, including tiienty dimensional problem for both
metrics. Figuré Ha shows a case where &Nt andBBQ* are relatively close to the true value,
howeversBQ*'s posterior variance is much smaller. Figlird 5b demoneasréhe typical behaviour
of the active sampling agBQ*, which quickly concentrates the posterior distributidritee trueZ.
The negative likelihoods o8Q* are for every problem slightly lower than f&Q (—logp(Z) is

on averagd.2 lower), indicating that the approximate marginalisatidémygperparameters grants a
small improvement in variance estimate.

Tablel2 shows results for the various methods on the reajriaien problems. HerBsQ is clearly
the best performer; the additional exploration induced hey yperparameter marginalisation of
BBQ* may have led to local peaks being incompletely exploitedplB&ration in a relatively high
dimensional, multi-modal space is inherently risky; nbiedtssBBQ* achieved lower error than
BBQ on two of the problems.

7 Conclusions

In this paper, we have made several advances ta¢hmethod for evidence estimation. These are:
approximately imposing a positivity constrdinapproximately marginalising hyperparameters, and
using active sampling to select the location of functiorleations. Of these contributions, the active
learning approach yielded the most significant gains faygrdl estimation.
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