Proof of convergence

Under the assumption that the drift a(-) is Lipschitz, we will show that the approximation
X; = XM+ XF (1
converges to the solution of the SDE
dX; = a(X;)dt + BAW, )

in L2([0,T] x Q). We can apply Parseval’s theorem to equation (14) in our paper to see that X%
tends to 0 in L2. It remains to show that XN converges to X in L2. Our strategy will be to exploit
the Lipschitz assumption so that we can bound the error using Gronwall’s lemma.

Suppose Xy = XN = . For each ¢ in [0, 77,
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Since [la + b||? < 2||a||? + 2/|b]|?, we have
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The Cauchy-Schwarz inequality tells us
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Thus, by the Lipschitz assumption, there exists L > 0 such that
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Set
CN(t) = 2B[|IRy||”] @
U(t) = B[l Xe — XH|°] (8)
Combining (6) with (4), we see that
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0
By Gronwall’s inequality,
t
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0
Since C'V is non-negative,
T
Y(t) < CN (1) +l<:/ CN (u)du (11)
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for an appropriate constant k. We integrate both sides over [0, T']:

/1/1 du</ CN(u du+kT/ C (u)du. (12)

We can apply the dominated convergence theorem to show that

/ CN (u)du = 2/ E[||RY|I?)du — 0. (13)
‘We conclude that
/ w(u du—/ ElIX. — X 2]du — 0. (14)
0
That is, X — X in L2.



