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Abstract

Hashing-based methods provide a very promising approach to large-scale similar-
ity search. To obtain compact hash codes, a recent trend seeks to learn the hash
functions from data automatically. In this paper, we study hash function learning
in the context of multimodal data. We propose a novel multimodal hash function
learning method, called Co-Regularized Hashing (CRH), based on a boosted co-
regularization framework. The hash functions for each bit of the hash codes are
learned by solving DC (difference of convex functions) programs, while the learn-
ing for multiple bits proceeds via a boosting procedure so that the bias introduced
by the hash functions can be sequentially minimized. We empirically compare
CRH with two state-of-the-art multimodal hash function learning methods on two
publicly available data sets.

1 Introduction

Nearest neighbor search, a.k.a. similarity search, plays a fundamental role in many important ap-
plications, including document retrieval, object recognition, and near-duplicate detection. Among
the methods proposed thus far for nearest neighbor search [1], hashing-based methods [2, 3] have
attracted considerable interest in recent years. The major advantage of hashing-based methods is
that they index data using binary hash codes which enjoy not only low storage requirements but
also high computational efficiency. To preserve similarity in the data, a family of algorithms called
locality sensitive hashing (LSH) [4, 5] has been developed over the past decade. The basic idea of
LSH is to hash the data into bins so that the collision probability reflects data similarity. LSH is very
appealing in that it has theoretical guarantee and is also simple to implement. However, in practice
LSH algorithms often generate long hash codes in order to achieve acceptable performance because
the theoretical guarantee only holds asymptotically. This shortcoming can be attributed largely to
their data-independent nature which cannot capture the data characteristics very accurately in the
hash codes. Besides, in many applications, neighbors cannot be defined easily using some generic
distance or similarity measures. As such, a new research trend has emerged over the past few years
by learning the hash functions from data automatically. In the sequel, we refer to this new trend as
hash function learning (HFL).

Boosting, as one of the most popular machine learning approaches, was first applied to learning hash
functions for pose estimation [6]. Later, impressive performance for HFL using restricted Boltz-
mann machines was reported [7]. These two early HFL methods have been successfully applied to
content-based image retrieval in which large-scale data sets are commonly encountered [8]. A num-
ber of algorithms have been proposed since then. Spectral hashing (SH) [9] treats HFL as a special
case of manifold learning and uses an efficient algorithm based on eigenfunctions. One shortcom-
ing of spectral hashing is in its assumption, which requires that the data be uniformly distributed.
To overcome this limitation, several methods have been proposed, including binary reconstructive
embeddings [10], shift-invariant kernel hashing [11], distribution matching [12], optmized kernel
hashing [13], and minimal loss hashing [14]. Recently, some semi-supervised hashing models have
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been developed to combine both feature similarity and semantic similarity for HFL [15, 16, 17, 18].
To further improve the scalability of these methods, Liu et al. [19] presented a fast algorithm based
on anchor graphs.

Existing HFL algorithms have enjoyed wide success in challenging applications. Nevertheless, they
can only be applied to a single type of data, called unimodal data, which refer to data from a single
modality such as image, text, or audio. Nowadays, it is common to find similarity search applications
that involve multimodal data. For example, given an image of a tourist attraction as query, one
would like to retrieve some textual documents that provide more detailed information about the place
of interest. Because data from different modalities reside in different feature spaces, performing
multimodal similarity search will be made much easier and faster if the multimodal data can be
mapped into a common Hamming space. However, it is challenging to do so because data from
different modalities generally have very different representations.

As far as we know, there exist only two multimodal HFL methods. Bronstein et al. [20] made the
first attempt to learn linear hash functions using eigendecomposition and boosting, while Kumar
et al. [21] extended spectral hashing to the multiview setting and proposed a cross-view hashing
model. One major limitation of these two methods is that they both rely on eigendecomposition
operations which are computationally very demanding when the data dimensionality is high. More-
over, they consider applications for shape retrieval, image alignment, and people search which are
quite different from the multimodal retrieval applications of interest here.

In this paper, we propose a novel multimodal HFL method, called Co-Regularized Hashing (CRH),
based on a boosted co-regularization framework. For each bit of the hash codes, CRH learns a group
of hash functions, one for each modality, by minimizing a novel loss function. Although the loss
function is non-convex, it is in a special form which can be expressed as a difference of convex
functions. As a consequence, the Concave-Convex Procedure (CCCP) [22] can be applied to solve
the optimization problem iteratively. We use a stochastic sub-gradient method, which converges
very fast, in each CCCP iteration to find a local optimum. After learning the hash functions for one
bit, CRH proceeds to learn more bits via a boosting procedure such that the bias introduced by the
hash functions can be sequentially minimized.

In the next section, we present the CRH method in detail. Extensive empirical study using two data
sets is reported in Section 3. Finally, Section 4 concludes the paper.

2 Co-Regularized Hashing

We use boldface lowercase letters and calligraphic letters to denote vectors and sets, respectively.
For a vector x, xT denotes its transpose and ‖x‖ its `2 norm.

2.1 Objective Function

Suppose that there are two sets of data points from two modalities,1 e.g., {xi ∈ X}Ii=1 for a
set of I images from some feature space X and {yj ∈ Y}Jj=1 for a set of J textual docu-
ments from another feature space Y . We also have a set of N inter-modality point pairs Θ =
{(xa1 ,yb1), (xa2 ,yb2), . . . , (xaN ,ybN )}, where, for the nth pair, an and bn are indices of the points
in X and Y , respectively. We further assume that each pair has a label sn = 1 if xan and ybn are
similar and sn = 0 otherwise. The notion of inter-modality similarity varies from application to
application. For example, if an image includes a tiger and a textual document is a research paper on
tigers, they should be labeled as similar. On the other hand, it is highly unlikely to label the image
as similar to a textual document on basketball.

For each bit of the hash codes, we define two linear hash functions as follows:

f(x) = sgn(wT
x x) and g(y) = sgn(wT

y y),

where sgn(·) denotes the sign function, and wx and wy are projection vectors which, ideally, should
map similar points to the same hash bin and dissimilar points to different bins. Our goal is to achieve
HFL by learning wx and wy from the multimodal data.

1For simplicity of our presentation, we focus on the bimodal case here and leave the discussion on extension
to more than two modalities to Section 2.4.
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To achieve this goal, we propose to minimize the following objective function w.r.t. (with respect
to) wx and wy:

O =
1

I

I∑
i=1

`xi +
1

J

J∑
j=1

`yj + γ

N∑
n=1

ωn`
∗
n +

λx
2
‖wx‖2 +

λy
2
‖wy‖2, (1)

where `xi and `yj are intra-modality loss terms for modalities X and Y , respectively. In this work, we
define them as:

`xi =
[
1− f(xi)(w

T
x xi)

]
+

=
[
1− |wT

x xi|
]
+
,

`yj =
[
1− g(yj)(w

T
y yj)

]
+

=
[
1− |wT

y yj |
]
+
,

where [a]+ is equal to a if a ≥ 0 and 0 otherwise. We note that the intra-modality loss terms
are similar to the hinge loss in the (linear) support vector machine but have quite different mean-
ing. Conceptually, we want the projected values to be far away from 0 and hence expect the hash
functions learned to have good generalization ability [16]. For the inter-modality loss term `∗n, we
associate with each point pair a weight ωn, with

∑N
n=1 ωn = 1, to normalize the loss as well as

compute the bias of the hash functions. In this paper, we define `∗n as

`∗n = snd
2
n + (1− sn)τ(dn),

where dn = wT
x xan − wT

y ybn and τ(d) is called the smoothly clipped inverted squared deviation
(SCISD) function. The loss function such defined requires that the similar inter-modality points,
i.e., sn = 1, have small distance after projection, and the dissimilar ones, i.e., sn = 0, have large
distance. With these two kinds of loss terms, we expect that the learned hash functions can enjoy
the large-margin property while effectively preserving the inter-modality similarity.

The SCISD function was first proposed in [23]. It can be defined as follows:

τ(d) =


− 1

2d
2 + aλ2

2 if |d| ≤ λ
d2−2aλ|d|+a2λ2

2(a−1) if λ < |d| ≤ aλ
0 if aλ < |d|,

where a and λ are two user-specified parameters. The SCISD function penalizes projection vectors
that result in small distance between dissimilar points after projection. A more important property
is that it can be expressed as a difference of two convex functions. Specifically, we can express
τ(d) = τ1(d)− τ2(d) where

τ1(d) =


0 if |d| ≤ λ
ad2−2aλ|d|+aλ2

2(a−1) if λ < |d| ≤ aλ
1
2d

2 − aλ2

2 if aλ < |d|
and τ2(d) =

1

2
d2 − aλ2

2
.

2.2 Optimization

Though the objective function (1) is nonconvex w.r.t.wx and wy , we can optimize it w.r.t. wx and
wy in an alternating manner. Take wx for example, we remove the irrelevant terms and get the
following objective:

1

I

I∑
i=1

`xi +
λx
2
‖wx‖2 + γ

N∑
n=1

ωn`
∗
n, (2)

where

`xi =

 0 if |wT
x xi| ≥ 1

1−wT
x xi if 0 ≤ wT

x xi < 1
1 + wT

x xi if −1 < wT
x xi < 0.

It is easy to realize that the objective function (2) can be expressed as a difference of two convex
functions in different cases. As a consequence, we can use CCCP to solve the nonconvex opti-
mization problem iteratively with each iteration minimizing a convex upper bound of the original
objective function.
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Briefly speaking, given an objective function f0(x)−g0(x) where both f0 and g0 are convex, CCCP
works iteratively as follows. The variable x is first randomly initialized to x(0). At the tth iteration,
CCCP minimizes the following convex upper bound of f0(x)− g0(x) at location x(t):

f0(x)−
(
g0(x(t)) + ∂xg0(x(t))(x− x(t))

)
,

where ∂xg0(x(t)) is the first derivative of g0(x) at x(t). This optimization problem can be solved
using any convex optimization solver to obtain x(t+1). Given an initial value x(0), the solution
sequence {x(t)} found by CCCP is guaranteed to reach a local minimum or a saddle point.

For our problem, the optimization problem at the tth iteration minimizes the following upper bound
of Equation (2) w.r.t.wx:

Ox =
λx‖wx‖2

2
+ γ

N∑
n=1

ωn
(
snd

2
n + (1− sn)ζxn

)
+

1

I

I∑
i=1

`xi , (3)

where ζxn = τ1(dn)− τ2(d
(t)
n )− d(t)n xTan(wx−w

(t)
x ), d

(t)
n = (w

(t)
x )Txan −wT

y ybn , and w
(t)
x is the

value of wx at the tth iteration.

To find a locally optimal solution to problem (3), we can use any gradient-based method. In this
work, we develop a stochastic sub-gradient solver based on Pegasos [24], which is known to be one
of the fastest solvers for margin-based classifiers. Specifically, we randomly select k points from
each modality and l point pairs to evaluate the sub-gradient at each iteration.

The key step of our method is to evaluate the sub-gradient of objective function (3) w.r.t. wx, which
can be computed as

∂Ox
∂wx

= 2γ

N∑
n=1

ωnsndnxan + γ

N∑
n=1

ωnµ
x
n + λxwx −

1

I

I∑
i=1

πxi , (4)

where µxn = (1− sn)
(
∂τ1
∂dn
− d(t)n

)
xan ,

∂τ1
∂dn

=


0 if |dn| ≤ λ
adn−2aλ sgn(dn)

(a−1) if λ < |dn| ≤ aλ
dn if aλ < |dn|

and πxi =

{
0 if |wT

x xi| ≥ 1
sgn

(
wT
x xi

)
xi if |wT

x xi| < 1.

Similarly, the objective function for the optimization problem w.r.t.wy at the tth CCCP iteration is:

Oy =
λy‖wy‖2

2
+ γ

N∑
n=1

ωn
(
snd

2
n + (1− sn)ζyn

)
+

1

J

I∑
j=1

`yj , (5)

where ζyn = τ1(dn) − τ2(d
(t)
n ) + d

(t)
n yTbn(wy − w

(t)
y ), d

(t)
n = wT

x xan − (w
(t)
y )Tybn , w(t)

y is the
value of wy at the tth iteration and

`yj =


0 if |wT

y yj | ≥ 1
1−wT

y yj if 0 ≤ wT
y yj < 1

1 + wT
y yj if −1 < wT

y yj < 0.

The corresponding sub-gradient is given by

∂Oy
∂wy

= −2γ

N∑
n=1

ωnsndnybn − γ
N∑
n=1

ωnµ
y
n + λywy −

1

J

I∑
j=1

πyj , (6)

where µyn = (1− sn)
(
∂τ1
∂dn
− d(t)n

)
ybn and

πyj =

{
0 if |wT

y yj | ≥ 1
sgn

(
wT
y yj

)
yj if |wT

y yj | < 1.
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2.3 Algorithm

So far we have only discussed how to learn the hash functions for one bit of the hash codes. To learn
the hash functions for multiple bits, one could repeat the same procedure and treat the learning for
each bit independently. However, as reported in previous studies [15, 19], it is very important to take
into consideration the relationships between different bits in HFL. In other words, to learn compact
hash codes, we should coordinate the learning of hash functions for different bits.

To this end, we take the standard AdaBoost [25] approach to learn multiple bits sequentially. In-
tuitively, this approach allows learning of the hash functions in later stages to be aware of the bias
introduced by their antecedents. The overall algorithm of CRH is summarized in Algorithm 1.

Algorithm 1 Co-Regularized Hashing

Input:
X ,Y – multimodal data
Θ – inter-modality point pairs
K – code length
λx, λy, γ – regularization parameters
a, λ – parameters for SCISD function
Output:
w

(k)
x , k = 1, . . . ,K – projection vectors for X

w
(k)
y , k = 1, . . . ,K – projection vectors for Y

Procedure:
Initialize ω(1)

n = 1/N, ∀n ∈ {1, 2, . . . , N}.
for k = 1 to K do

repeat
Optimize Equation (3) to get w(k)

x ;
Optimize Equation (5) to get w(k)

y ;

until convergence.
Compute error of current hash functions

εk =
∑N

n=1
ω(k)
n I[sn 6=hn],

where I[a] = 1 if a is true and I[a] = 0 oth-
erwise, and

hn =

{
1 if f(xan) = g(ybn)
0 if f(xan) 6= g(ybn).

Set βk = εk/(1− εk).
Update the weight for each point pair:

ω(k+1)
n = ω(k)

n β
1−I[sn 6=hn]

k .

end for

In the following, we briefly analyze the time complexity of Algorithm 1 for one bit. The first com-
putationally expensive part of the algorithm is to evaluate the sub-gradients. The time complexity is
O((k + l)d), where d is the data dimensionality, and k and l are the numbers of random points and
random pairs, respectively, for the stochastic sub-gradient solver. In our experiments, we set k = 1
and l = 500. We notice that further increasing the two numbers brings no significant performance
improvement. We leave the theoretical study of the impact of k and l to our future work. Another
major computational cost comes from updating the weights of the inter-modality point pairs. The
time complexity is O(dN), where N is the number of inter-modality point pairs.

To summarize, our algorithm scales linearly with the number of inter-modality point pairs and the
data dimensionality. In practice, the number of inter-modality point pairs is usually small, making
our algorithm very efficient.

2.4 Extensions

We briefly discuss two possible extensions of CRH in this subsection. First, we note that it is easy
to extend CRH to learn nonlinear hash functions via the kernel trick [26]. Specifically, according to
the generalized representer theorem [27], we can represent the projection vectors wx and wy as

wx =
∑I

i=1
αiφx(xi) and wy =

∑J

j=1
βjφy(yj),

where φx(·) and φy(·) are kernel-induced feature maps for modalities X and Y , respectively. Then
the objective function (1) can be expressed in kernel form and kernel-based hash functions can be
learned by minimizing a new but very similar objective function.

Another possible extension is to make CRH support more than two modalities. Taking a new modal-
ity Z for example, we need to incorporate into Equation (1) the following terms: loss and regular-
ization terms for Z , and all pairwise loss terms involving Z and other modalities, e.g., X and Y .
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For both extensions, it is straightforward to adapt the algorithm presented above to solve the new
optimization problems.

2.5 Discussions

CRH is closely related to a recent multimodal metric learning method called Multiview Neighbor-
hood Preserving Projections (Multi-NPP) [23], because CRH uses a loss function for inter-modality
point pairs which is similar to Multi-NPP. However, CRH is a general framework and other loss
functions for inter-modality point pairs can also be adopted. The two methods have at least three
significant differences. First, our focus is on HFL while Multi-NPP is on metric learning through
embedding. Second, in addition to the inter-modality loss term, the objective function in CRH in-
cludes two intra-modality loss terms for large margin HFL while Multi-NPP only has a loss term for
the inter-modality point pairs. Third, CRH uses boosting to sequentially learn the hash functions but
Multi-NPP does not take this aspect into consideration.

As discussed briefly in [23], one may first use Multi-NPP to map multimodal data into a common
real space and then apply any unimodal HFL method for multimodal hashing. However, this naive
two-stage approach has some limitations. First, both stages can introduce information loss which
impairs the quality of the hash functions learned. Second, a two-stage approach generally needs
more computational resources. These two limitations can be overcome by using a one-stage method
such as CRH.

3 Experiments

3.1 Experimental Settings

In our experiments, we compare CRH with two state-of-the-art multimodal hashing methods,
namely, Cross-Modal Similarity Sensitive Hashing (CMSSH) [20]2 and Cross-View Hashing
(CVH) [21],3 for two cross-modal retrieval tasks: (1) image query vs. text database; (2) text query
vs. image database. The goal of each retrieval task is to find from the text (image) database the
nearest neighbors for the image (text) query.

We use two benchmark data sets which are, to the best of our knowledge, the largest fully paired
and labeled multimodal data sets. We further divide each data set into a database set and a query
set. To train the models, we randomly select a group of documents from the database set to form the
training set. Moreover, we randomly select 0.1% of the point pairs from the training set. For fair
comparison, all models are trained on the same training set and the experiments are repeated with 5
independent training sets.

The mean average precision (mAP) is used as the performance measure. To compute the
mAP, we first evaluate the average precision (AP) of a set of R retrieved documents by AP =
1
L

∑R
r=1 P (r) δ(r), where L is the number of true neighbors in the retrieved set, P (r) denotes the

precision of the top r retrieved documents, and δ(r) = 1 if the rth retrieved document is a true
neighbor and δ(r) = 0 otherwise. The mAP is then computed by averaging the AP values over all
the queries in the query set. The larger the mAP, the better the performance. In the experiments, we
set R = 50. Besides, we also report the precision and recall within a fixed Hamming radius.

We use cross-validation to choose the parameters for CRH and find that the model performance is
only mildly sensitive to the parameters. As a result, in all experiments, we set λx = 0.01, λy =
0.01, γ = 1000, a = 3.7, and λ = 1/a. Besides, unless specified otherwise, we fix the training set
size to 2,000 and the code length K to 24.

3.2 Results on Wiki

The Wiki data set, generated from Wikipedia featured articles, consists of 2,866 image-text pairs.4
In each pair, the text is an article describing some events or people and the image is closely related to

2We used the implementation generously provided by the authors.
3We implemented the method ourselves because the code is not publicly available.
4http://www.svcl.ucsd.edu/projects/crossmodal/
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the content of the article. The images are represented by 128-dimensional SIFT [28] feature vectors,
while the text articles are represented by the probability distributions over 10 topics learned by a
latent Dirichlet allocation (LDA) model [29]. Each pair is labeled with one of 10 semantic classes.
We simply use these class labels to identify the neighbors. Moreover, we use 80% of the data as the
database set and the remaining 20% to form the query set.

The mAP values of the three methods are reported in Table 1. We can see that CRH outperforms
CVH and CMSSH under all settings and CVH performs slightly better than CMSSH. We note that
CMSSH ignores the intra-modality relational information and CVH simply treats each bit indepen-
dently. Hence the performance difference is expected.

Table 1: mAP comparison on Wiki

Task Method Code Length
K = 24 K = 48 K = 64

Image Query
vs.

Text Database

CRH 0.2537± 0.0206 0.2399± 0.0185 0.2392± 0.0131
CVH 0.2043± 0.0150 0.1788± 0.0149 0.1732± 0.0072

CMSSH 0.1965± 0.0123 0.1780± 0.0080 0.1624± 0.0073
Text Query

vs.
Image Database

CRH 0.2896± 0.0214 0.2882± 0.0261 0.2989± 0.0293
CVH 0.2714± 0.0164 0.2304± 0.0104 0.2156± 0.0202

CMSSH 0.2179± 0.0161 0.2094± 0.0072 0.2040± 0.0135

We further compare the three methods on several aspects in Figure 1. We first vary the size of the
training set in subfigures 1(a) and 1(d). Although CVH performs the best when the training set
is small, its performance is gradually surpassed by CRH as the size increases. We then plot the
precision-recall curves and recall curves for all three methods in the remaining subfigures. It is clear
that CRH outperforms its two counterparts by a large margin.
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(a) Varying training set size
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(b) Precision-recall curve
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(d) Varying training set size
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(e) Precision-recall curve
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(f) Recall curve

Figure 1: Results on Wiki

3.3 Results on Flickr

The Flickr data set consists of 186,577 image-tag pairs pruned from the NUS data set5 [30] by
keeping the pairs that belong to one of the 10 largest classes. The images are represented by 500-
dimensional SIFT vectors. To obtain more compact representations of the tags, we perform PCA
on the original tag occurrence features and obtain 1000-dimensional feature vectors. Each pair is
annotated by at least one of 10 semantic labels, and two points are defined as neighbors if they share
at least one label. We use 99% of the data as the database set and the remaining 1% to form the
query set.

5http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

7



The mAP values of the three methods are reported in Table 2. In the task of image query vs. text
database, CRH performs comparably to CMSSH, which is better than CVH. However, in the other
task, CRH achieves the best performance.

Table 2: mAP comparison on Flickr

Task Method Code Length
K = 24 K = 48 K = 64

Image Query
vs.

Text Database

CRH 0.5259± 0.0094 0.4990± 0.0075 0.4929± 0.0064
CVH 0.4717± 0.0035 0.4515± 0.0041 0.4471± 0.0023

CMSSH 0.5287± 0.0123 0.5098± 0.0141 0.4911± 0.0220
Text Query

vs.
Image Database

CRH 0.5364± 0.0021 0.5185± 0.0050 0.5064± 0.0055
CVH 0.4598± 0.0020 0.4519± 0.0029 0.4477± 0.0058

CMSSH 0.5029± 0.0321 0.4815± 0.0101 0.4660± 0.0298

Similar to the previous subsection, we have conducted a group of experiments to compare the three
methods on several aspects and report the results in Figure 2. The results for varying the size of
the training set are plotted in subfigures 2(a) and 2(d). As more training data are used, CRH always
performs better but the performance of CVH and CMSSH has high variance. The precision-recall
curves and recall curves are shown in the remaining subfigures. Similar to the results on Wiki, CRH
performs the best. However, the performance gap is smaller here.
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(b) Precision-recall curve
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(c) Recall curve
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(d) Varying training set size
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(e) Precision-recall curve
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(f) Recall curve

Figure 2: Results on Flickr

4 Conclusions

In this paper, we have presented a novel method for multimodal hash function learning based on a
boosted co-regularization framework. Because the objective function of the optimization problem is
in the form of a difference of convex functions, we can devise an efficient learning algorithm based
on CCCP and a stochastic sub-gradient method. Comparative studies based on two benchmark data
sets show that CRH outperforms two state-of-the-art multimodal hashing methods.

To take this work further, we would like to conduct theoretical analysis of CRH and apply it to
some other tasks such as multimodal medical image alignment. Another possible research issue is
to develop more efficient optimization algorithms to further improve the scalability of CRH.
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