Supplementary Material for paper
Bandit Algorithms boost motor-task selection
for Brain Computer Interfaces

A The UCB — classif algorithm

A.1 Some intuition on bandit algorithms

Figure 3 illustrates how the UCB-classif algorithm works.
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Figure 3: This figure represents two snapshots, a time ¢ and ¢+ 1, of a bandit with 2 arms. Although
arm 1 is the best arm (r] > r3, represented by the red stars), at time ¢, By ; < Ba, therefore the
arm 2 is selected. Pulling the arm 2 gives a better estimate 75 ;. of r5 and reduces the confidence
interval. At time ¢t + 1, By 441 will be greater than Bs ;4 1, so arm 1 will be selected.

A.2 Proof of Theorem 1

Reminder of Vapnik-Chervonenkis’s bound in classification Let D be a probability distribution
in R? x {0, 1}. Let H be the set of binary linear classifiers in R%, i.e. if (X,Y) ~ D, (i.e. are drawn
from D) then i (X) is the inferred class of the sample while the true class is Y.

We define the {0, 1} loss of a classifier h (which is not always equal to the loss I(.,.) of the SVM
classifier) as
Lp(h) = Ex,y)~p[1{h(X) # Y}].

Let h* be the best linear classifier on D for the {0, 1} loss, i.e.

= in L .
h arg min p(h)

Letnow X = {(X1,Y),...,(X7,Y7)} be T i.i.d. points in R? x {0, 1}, sampled from D.
We define the {0, 1} empirical loss of a classifier  as
1 T
Lx(h) = T Z 1{h(Xy) # Vil

t=1

Leth € ‘H be the linear SVM classifier on X in 7{. We have the following Theorem (see [15] for a
survey on this).

Theorem 2 (Vapnik, 1982) We have with probability 1 — 26 a bounded error on the (0,1) loss in
generalization, and a bounded error in the estimate of the (0,1) loss, that is to say
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L) — Lo(h*) < \/d(log(2T/d) 4;1) - log(4/5)7

and

Lo(h*) — Ex(®) <2 \/d(log(ZT/d) +T 1) +log(4/9)

Adaptation of Vapnik-Chervonenkis’s bound in our context Write Rk,t the empirical estimate
of the linear SVM classifier’s classification error on the ¢ first samples of task £ (and with any
samples of idle condition).

Define the following event

¢= 11N {|r;;—fzk,t| gzwﬂog@t/dﬂ1z+log<8NK/6>}_ 5

k<K t<n

The previous Theorem states that this event is of probability at least 1 — ¢ (by an union bound).

In our setting and for task k, we have 1 — r} which is the {0, 1} loss of the best classifier for task
k and 1 — 7 ; which is the empirical {0, 1} loss of the linear SVM classifier for task & with T}, ;
samples. As a corollary, we obtain that with probability 1 — 4, for any task k& and any time ¢,

I — ] <2 \/ d(log(2T}¢/d) + 1) + log(8N K /5)

)
Tt

where d is the number of features.

Overview of the way the algorithm works As T}, ; < N, we have on ¢ that for any task k and
any time t,

It — ] <2 d(log(2N/d) 4+ 1) + log(8NK/6) < alog(SNK/(S),
Tk,t Tk,t

where a = 5(d + 1).

We thus have on &
. log(SNK/§ N log(8NK/§
v < en aog(Tkt /)Srk+2 aog(Tkt /)
alog(8NK/$)

Note here that By, ; = 7+ + is an upper bound on & on 77}.

Tt

In the event £ of large probability such that this is true for any k and any N, we know that we pull
at time ¢ a sub-optimal arm £ if for the best arm * with reward r*, B, ; < By, ;, which according to
the last equation leads to:

alog(8NK/d)

7" < Byt < Bpi<ri+2
Tyt

This means by a simple computation that on £ we pull a sub-optimal arm & only if

log(SNK/§
1 < gt oB(SNE/S)
SRR
We then pull with probability 1 — § the suboptimal arms only a number of times in O (log(8 N K/d)),

as Tk,N S 4%7{?@

atleast N — >, 4olosBNE/S)

(r*frl*;)z

and thus pull the optimal arm N — O(log(8 N K /¢)) times, more precisely



Finally, the error of the empirical classifier on the best arm is such that with probability 1 — §

alog(8NK/6)
N — Zk;ﬁ* 4alog(8NK/6) :

e —7)?

[r — 7] <

If for instance we choose § = 1/N, we have that with probability at least 1 — /N, the best arm is
pulled atleast N — 37, . 8%
k
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