
Supplementary Material for paper
Bandit Algorithms boost motor-task selection
for Brain Computer Interfaces
A The UCB − classif algorithm

A.1 Some intuition on bandit algorithms

Figure 3 illustrates how the UCB-classif algorithm works.

Figure 3: This figure represents two snapshots, a time t and t+1, of a bandit with 2 arms. Although
arm 1 is the best arm (r∗1 > r∗2 , represented by the red stars), at time t, B1,t < B2,t, therefore the
arm 2 is selected. Pulling the arm 2 gives a better estimate r̂2,t+1 of r∗2 and reduces the confidence
interval. At time t+ 1, B1,t+1 will be greater than B2,t+1, so arm 1 will be selected.

A.2 Proof of Theorem 1

Reminder of Vapnik-Chervonenkis’s bound in classification Let D be a probability distribution
in Rd×{0, 1}. Let H be the set of binary linear classifiers in Rd, i.e. if (X,Y ) ∼ D, (i.e. are drawn
from D) then h(X) is the inferred class of the sample while the true class is Y .

We define the {0, 1} loss of a classifier h (which is not always equal to the loss l(., .) of the SVM
classifier) as

LD(h) = E(X,Y )∼D[1{h(X) �= Y }].

Let h∗ be the best linear classifier on D for the {0, 1} loss, i.e.

h∗ = argmin
h∈H

LD(h).

Let now X = {(X1, Y1), . . . , (XT , YT )} be T i.i.d. points in Rd × {0, 1}, sampled from D.

We define the {0, 1} empirical loss of a classifier h as

L̂X (h) =
1

T

T�

t=1

1{h(Xt) �= Yt}.

Let �h ∈ H be the linear SVM classifier on X in H. We have the following Theorem (see [15] for a
survey on this).

Theorem 2 (Vapnik, 1982) We have with probability 1 − 2δ a bounded error on the (0, 1) loss in
generalization, and a bounded error in the estimate of the (0, 1) loss, that is to say
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LD(�h)− LD(h
∗) ≤

�
d(log(2T/d) + 1) + log(4/δ)

T
,

and

|LD(h
∗)− L̂X (�h)| ≤ 2

�
d(log(2T/d) + 1) + log(4/δ)

T
.

Adaptation of Vapnik-Chervonenkis’s bound in our context Write R̂k,t the empirical estimate
of the linear SVM classifier’s classification error on the t first samples of task k (and with any
samples of idle condition).

Define the following event

ξ =
�

k≤K

�

t≤n

�
|r∗k − R̂k,t| ≤ 2

�
d(log(2t/d) + 1) + log(8NK/δ)

t

�
. (3)

The previous Theorem states that this event is of probability at least 1− δ (by an union bound).

In our setting and for task k, we have 1 − r∗k which is the {0, 1} loss of the best classifier for task
k and 1 − r̂k,t which is the empirical {0, 1} loss of the linear SVM classifier for task k with Tk,t

samples. As a corollary, we obtain that with probability 1− δ, for any task k and any time t,

|r∗k − r̂k,t| ≤ 2

�
d(log(2Tk,t/d) + 1) + log(8NK/δ)

Tk,t
,

where d is the number of features.

Overview of the way the algorithm works As Tk,t < N , we have on ξ that for any task k and
any time t,

|r∗k − r̂k,t| ≤ 2

�
d(log(2N/d) + 1) + log(8NK/δ)

Tk,t
≤

�
a log(8NK/δ)

Tk,t
,

where a = 5(d+ 1).

We thus have on ξ

r∗k ≤ r̂k,t +

�
a log(8NK/δ)

Tk,t
≤ r∗k + 2

�
a log(8NK/δ)

Tk,t
.

Note here that Bk,t = r̂k,t +
�

a log(8NK/δ)
Tk,t

is an upper bound on ξ on r∗k.

In the event ξ of large probability such that this is true for any k and any N , we know that we pull
at time t a sub-optimal arm k if for the best arm ∗ with reward r∗, B∗,t ≤ Bk,t, which according to
the last equation leads to:

r∗ ≤ B∗,t ≤ Bk,t ≤ r∗k + 2

�
a log(8NK/δ)

Tk,t
,

This means by a simple computation that on ξ we pull a sub-optimal arm k only if

Tk,t ≤ 4
a log(8NK/δ)

(r∗ − r∗k)
2

.

We then pull with probability 1−δ the suboptimal arms only a number of times in O(log(8NK/δ)),
as Tk,N ≤ 4a log(8NK/δ)

(r∗−r∗k)
2 and thus pull the optimal arm N −O(log(8NK/δ)) times, more precisely

at least N −�
k �=∗ 4

a log(8NK/δ)
(r∗−r∗k)

2 .
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Finally, the error of the empirical classifier on the best arm is such that with probability 1− δ

|r∗ − r̂∗| ≤
���� a log(8NK/δ)

N −�
k �=∗ 4

a log(8NK/δ)
(r∗−r∗k)

2

.

If for instance we choose δ = 1/N , we have that with probability at least 1 − /N , the best arm is
pulled at least N −�

k �=∗ 8
a log(8NK)
(r∗−r∗k)

2
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