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Abstract

Many visual and auditory neurons have response properties that are well explained
by pooling the rectified responses of a set of spatially shifted linear filters. These
filters cannot be estimated using spike-triggered averaging (STA). Subspace meth-
ods such as spike-triggered covariance (STC) can recover multiple filters, but re-
quire substantial amounts of data, and recover an orthogonal basis for the subspace
in which the filters reside rather than the filters themselves. Here, we assume a
linear-nonlinear–linear-nonlinear (LN-LN) cascade model in which the first lin-
ear stage is a set of shifted (‘convolutional’) copies of a common filter, and the
first nonlinear stage consists of rectifying scalar nonlinearities that are identical
for all filter outputs. We refer to these initial LN elements as the ‘subunits’ of
the receptive field. The second linear stage then computes a weighted sum of the
responses of the rectified subunits. We present a method for directly fitting this
model to spike data, and apply it to both simulated and real neuronal data from
primate V1. The subunit model significantly outperforms STA and STC in terms
of cross-validated accuracy and efficiency.

1 Introduction

Advances in sensory neuroscience rely on the development of testable functional models for the
encoding of sensory stimuli in neural responses. Such models require procedures for fitting their
parameters to data, and should be interpretable in terms both of sensory function and of the biological
elements from which they are made. The most common models in the visual and auditory literature
are based on linear-nonlinear (LN) cascades, in which a linear stage serves to project the high-
dimensional stimulus down to a one-dimensional signal, where it is then nonlinearly transformed
to drive spiking. LN models are readily fit to data, and their linear operators specify the stimulus
selectivity and invariance of the cell. The weights of the linear stage may be loosely interpreted
as representing the efficacy of synapses, and the nonlinearity as a transformation from membrane
potential to firing rate.

For many visual and auditory neurons, responses are not well described by projection onto a single
linear filter, but instead reflect a combination of several filters. In the cat retina, the responses of Y
cells have been described by linear pooling of shifted rectified linear filters, dubbed “subunits” [1, 2].
Similar behaviors are seen in guinea pig [3] and monkey retina [4]. In the auditory nerve, responses
are described as computing the envelope of the temporally filtered sound waveform, which can be
computed via summation of squared quadrature filter responses [5]. In primary visual cortex (V1),
simple cells are well described using LN models [6, 7], but complex cell responses are more like a
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superposition of multiple spatially shifted simple cells [8], each with the same orientation and spatial
frequency preference [9]. Although the description of complex cells is often reduced to a sum of
two squared filters in quadrature [10], more recent experiments indicate that these cells (and indeed
most ’simple’ cells) require multiple shifted filters to fully capture their responses [11, 12, 13].
Intermediate nonlinearities are also required to describing the response properties of some neurons
in V2 to stimuli (e.g., angles [14] and depth edges [15]).

Each of these examples is consistent with a canonical but constrained LN-LN model, in which the
first linear stage consists of convolution with one (or a few) filters, and the first nonlinear stage
is point-wise and rectifying. The second linear stage then pools the responses of these “subunits”
using a weighted sum, and the final nonlinearity converts this to a firing rate. Hierarchical stacks of
this type of “generalized complex cell” model have also been proposed for machine vision [16, 17].
What is lacking is a method for validating this model by fitting it directly to spike data.

A widely used procedure for fitting a simple LN model to neural data is reverse correlation [18, 19].
The spike-triggered average of a set of Gaussian white noise stimuli provides an unbiased estimate
of the linear kernel. In a subunit model, the initial linear stage projects the stimulus into a multi-
dimensional subspace, which can be estimated using spike-triggered covariance (STC) [20, 21].
This has been used successfully for fly motion neurons [22], vertebrate retina [23], and primary vi-
sual cortex [24, 11]. But this method relies on a Gaussian stimulus ensemble, requires a substantial
amount of data, and recovers only a set of orthogonal axes for the response subspace—not the under-
lying biological filters. More general methods based on information maximization alleviate some of
the stimulus restrictions [25] but strongly limit the dimensionality of the recoverable subspace and
still produce only a basis for the subspace.

Here, we develop a specific subunit model and a maximum likelihood procedure to estimate its
parameters from spiking data. We fit the model to both simulated and real V1 neuronal data, demon-
strating that it is substantially more accurate for a given amount of data than the current state-of-the-
art V1 model which is based on STC [11], and that it produces biologically interpretable filters.

2 Subunit model

We assume that neural responses arise from a weighted sum of the responses of a set of nonlinear
subunits. Each subunit applies a linear filter to its input (which can be either the raw stimulus, or
the responses arising from a previous stage in a hierarchical cascade), and transforms the filtered
response using a memoryless rectifying nonlinearity. A critical simplification is that the subunit
filters are related by a fixed transformation; here, we assume they are spatially translated copies of
a common filter, and thus the population of subunits can be viewed as computing a convolution.
For example, the subunits of a V1 complex cell could be simple cells in V1 that share the same
orientation and spatial frequency preference, but differ in spatial location, as originally proposed by
Hubel & Wiesel [8, 9]. We also assume that all subunits use the same rectifying nonlinearity. The
response to input defined over two discrete spatial dimensions and time, x(i, j, t), is written as:

r̂(t) =
X

m,n

w

m,n

f⇥

0

@
X

i,j,⌧

k(m,n, ⌧)·x(i�m, j � n, t� ⌧)

1

A+ . . .+ b, (1)

where k is the subunit filter, f⇥ is a point-wise function parameterized by vector ⇥, w
n,m

are the
spatial weights, and b is an additive baseline. The ellipsis indicates that we allow for multiple
subunit channels, each with its own filter, nonlinearity, and pooling weights. We interpret r̂(t) as a
‘generator potential’, (e.g., time-varying membrane voltage) which is converted to a firing rate by
another rectifying nonlinearity.

The subunit model of Eq. (1) may be seen as a specific instance of a subspace model, in which the
input is initially projected onto a linear subspace. Bialek and colleagues introduced spike-triggered
covariance as a means of recovering such subspaces [20, 22]. Specifically, eigenvector analysis
of the covariance matrix of the spike-triggered input ensemble exposes orthogonal axes for which
the spike-triggered ensemble has a variance that differs significantly from that of the raw input
ensemble. These axes may be separated into those along which variance is greater (excitatory) or
less than (suppressive) that of the input. Figure 1 demonstrates what happens when STC is applied
to a simulated complex cell with 15 spatially shifted subunits. The response of this model cell is
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Figure 1: Spike-triggered covariance analysis of a simulated V1 complex cell. (a) The model output
is formed by summing the rectified responses of multiple linear filter kernels which are shifted and
scaled copies of a canonical form. (b) The shifted filters lie along a manifold in stimulus space
(four shown), and are not mutually orthogonal in general. STC recovers an orthogonal basis for
a low-dimensional subspace that contains this manifold by finding the directions in stimulus space
along which spikes are elicited or suppressed. (c) STC analysis of this model cell returns a variable
number of filters dependent upon the amount of acquired data. A modest amount of data typically
reveals two strong STC eigenvalues (top), whose eigenvectors form a quadrature (90-degree phase-
shifted) pair and span the best-fitting plane for the set of shifted model filters. These will generally
have tuning properties (orientation, spatial frequency) similar to the true model filters. However, the
manifold does not generally lie in a two-dimensional subspace [26], and a larger data set reveals
additional eigenvectors (bottom) that serve to capture the deviations from the ~e1,2 plane. Due to
the constraint of mutual orthogonality, these filters are usually not localized and they have tuning
properties that differ from true model filters.

r̂(t) =
P

i

w

i

b(~k
i

· ~x(t))c2, where the ~k’s are shifted filters, w weights filters by position, and ~x is
the stimulus vector. The recovered STC axes span the same subspace as the shifted model filters, but
there are fewer of them, and the enforced orthogonality of eigenvectors means that they are generally
not a direct match to any of the model filters. This has also been observed in filters extracted from
physiological data [11, 12]. Although one may follow the STC analysis by indirectly identifying a
localized filter whose shifted copies span the recovered subspace [11, 13], the reliance on STC still
imposes the stimulus limitations and data requirements mentioned above.

3 Direct subunit model estimation

A generic subspace method like STC does not exploit the specific structure of the subunit model.
We therefore developed an estimation procedure explicitly tailored for this type of computation. We
first introduce a piecewise-linear parameterization of the subunit nonlinearity:

f(s) =
X

l

↵

l

T

l

(s), (2)

where the ↵’s scale a small set of overlapping ‘tent’ functions, T
l

(·), that represent localized portions
of f(·) (we find that a dozen or so basis functions are typically sufficient to provide the needed
flexibility). Incorporating this into the model response of Eq. (1) allows us to fold the second linear
pooling stage and the subunit nonlinearity into a single sum:
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The model is now partitioned into two linear stages, separated by the fixed nonlinear functions T
l

(·).
In the first, the stimulus is convolved with k, and in the second, the nonlinear responses are summed
with a set of weights that are separable in the indices l and n,m. The partition motivates the use of an
iterative coordinate descent scheme: the linear weights of each portion are optimized in alternation,

3



while the other portion is held constant. For each step, we minimized the mean square error between
the observed firing rate of a cell and the firing rate predicted by the model. For models that include
two subunit channels we optimize over both channels simultaneously (see section 3.3 for comments
regarding two-channel initialization).

3.1 Estimating the convolutional subunit kernel

The first coordinate descent leg optimizes the convolutional subunit kernel, k, using gradient descent
while fixing the subunit nonlinearity and the final linear pooling. Because the tent basis functions
are fixed and piecewise linear, the gradient is easily determined. This property also ensures that
the descent is locally convex: assuming that updating k does not cause any of the the linear subunit
responses to jump between the localized tent functions representing f , then the optimization is linear
and the objective function is quadratic. In practice, the full gradient descent path causes the linear
subunit responses to move slowly across bins of the piecewise nonlinearity. However, we include
a regularization term to impose smoothness on the nonlinearity (see below) and this yields a well-
behaved minimization problem for k.

3.2 Estimating the subunit nonlinearities and linear subunit pooling

The second leg of coordinate descent optimizes the subunit nonlinearity (more specifically, the
weights on the tent functions, ↵

l

), and the subunit pooling, w
n,m

. As described above, the objective
is bilinear in ↵

l

and w

n,m

when k is fixed. Estimating both ↵

l

and w

n,m

can be accomplished with
alternating least-squares, which assures convergence to a (local) minimum [27]. We also include
two regularization terms in the objective function. The first ensures smoothness in the nonlinearity
f , by penalizing the square of the second derivative of the function in the least-squares fit. This
smooth nonlinearity helps to guarantee that the optimization of k is well behaved, even where finite
data sets leave the function poorly constrained. We also include a cross-validated ridge prior for
the pooling weights to bias w

n,m

toward zero. The filter kernel k can also be regularized to ensure
smoothness, but for the examples shown here we did not find the need to include such a term.

3.3 Model initialization

Our objective function is non-convex and contains local minima, so the selection of initial parameter
values may affect the solution. We found that initializing our two-channel subunit model to have
a positive pooling function for one channel and a negative pooling function for the second channel
allowed the optimization of the second channel to proceed much more quickly. This is probably
due in part to a suppressive channel that is much weaker than the excitatory channel in general.
We initialized the nonlinearity to halfwave-rectification for the excitatory channel and fullwave-
rectification for the suppressive channel.

To initialize the convolutional filter we use a novel technique that we term ‘convolutional STC’. The
subunit model describes a receptive field as the linear combination of nonlinear kernel responses that
spatially tile the stimulus. Thus, the contribution of each localized patch of stimulus (of a size equal
to the subunit kernel) is the same, up to a scale factor set by the weighting used in the subsequent
pooling stage. As such, we compute an STC analysis on the union of all localized patches of stimuli.
For each subunit location, {m,n}, we extract the local stimulus values in a window, g

m,n

(i, j), the
size of the convolutional kernel and append them vertically in a ’local’ stimulus matrix. As an initial
guess for the pooling weights, we weight each of these blocks by a Gaussian spatial profile, chosen
to roughly match the size of the receptive field. We also generate a vector containing the vertical
concatenation of copies of the measured spike train, ~r (one copy for each subunit location).
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After performing STC analysis on the localized stimulus matrix, we use the first (largest variance)
eigenvector to initialize the subunit kernel of the excitatory channel, and the last (lowest variance)
eigenvector to initialize the kernel of the suppressive channel. In practice, we find that this initializa-
tion greatly reduces the number of iterations, and thus the run time, of the optimization procedure.
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Figure 2: Model fitting performance for simulated V1 neurons. Shown are correlation coefficients
for the subunit model (black circles) and the Rust-STC model (blue squares) [11], computed on both
the training data (open), and on a holdout test set (closed). Spike counts for each presented stimulus
frame are drawn from a Poisson distribution. Shaded regions indicate ± 1 s.d. for 5 simulation runs.
(a) ‘Simple’ cell, with spike rate determined by the halfwave-rectified and squared response of a
single oriented linear filter. (b) ‘Complex’ cell, with rate determined by a sum of squared Gabor
filters arranged in spatial quadrature. Insets show estimated filters for the subunit (top) and Rust-
STC (bottom) models with ten seconds (400 frames; left) and 20 minutes (48,000 frames; right) of
data.

4 Experiments

We fit the subunit model to physiological data sets in 3 different primate cortical areas: V1, V2, and
MT. The model is able to explain a significant amount of variance for each of these areas, but for
illustrative purposes we show here only data for V1. Initially, we use simulated V1 cells to compare
the performance of the subunit model to that of the Rust-STC model [11], which is based upon STC
analysis.

4.1 Simulated V1 data

We simulated the responses of canonical V1 simple cells and complex cells in response to white
noise stimuli. Stimuli consisted of a 16x16 spatial array of pixels whose luminance values were
set to independent ternary white noise sequences, updated every 25 ms (or 40 Hz). The simulated
cells use spatiotemporally oriented Gabor filters: The simple cell has one even-phase filter and a
half-squaring output nonlinearity while the complex cell has two filters (one even and one odd)
whose squared responses are combined to give a firing rate. Spike counts are drawn from a Poisson
distribution, and overall rates are scaled so as to yield an average of 40 ips (i.e. one spike per time
bin).

For consistency with the analysis of the physiological data, we fit the simulated data using a subunit
model with two subunit channels (even though the simulated cells only possess an excitatory chan-
nel). When fitting the Rust-STC model, we followed the procedure described in [11]. Briefly, after
the STA and STC filters are estimated, they are weighted according to their predictive power and
combined in excitatory and suppressive pools, E and S (we use cross-validation to determine the
number of filters to use for each pool). These two pooled responses are then combined using a joint
output nonlinearity: r̂(t)

Rust

= ↵ + (�E⇢ � �S

⇢)/(�E⇢ + ✏S

⇢ + 1). Parameters {↵,�, �, �, ✏, ⇢}
are optimized to minimizing mean squared error between observed spike counts and the model rate.

Model performances, measured as the correlation between the model rate and spike count, are shown
in Figure 2. In low data regimes, both models perform nearly perfectly on the training data, but
poorly on separate test data not used for fitting, a clear indication of over-fitting. But as the data
set increases in size, the subunit model rapidly improves, reaching near-perfect performance for
modest spike counts. The Rust-STC model also improves, but much more slowly; It requires more
than an order of magnitude more data to achieve the same performance as the subunit model. This
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Figure 3: Two-channel subunit model fit to a physiological data from a macaque V1 cell. (a) Fitted
parameters for the excitatory (top row) and suppressive (bottom row) channels, including the space-
time subunit filters (8 grayscale images, corresponding to different time frames), the nonlinearity,
and the spatial weighting function w

n,m

that is used to combine the subunit responses. (b) A raster
showing spiking responses to 20 repeated presentations of an identical stimulus with the average
spike count (black) and model prediction (blue) plotted above. (c) Simulated models (subunit model:
blue, Rust-STC model: purple) and measured (black) responses to drifting sinusoidal gratings.

inefficiency is more pronounced for the complex cell, because the simple cell is fully explained by
the STA filter, which can be estimated much more reliably than the STC filters for small amounts of
data. We conclude that directly fitting the subunit model is much more efficient in the use of data
than using STC to estimate a subspace model.

4.2 Physiological data from macaque V1

We presented spatio-temporal pixel noise to 38 cells recorded from V1 in anesthetized macaques (see
[11] for details of experimental design). The stimulus was a 16x16 grid with luminance values set
by independent ternary white noise sequences refreshed at 40 Hz. For 21 neurons we also presented
20 repeats of a sequence of 1000 stimulus frames as a validation set. The model filters were assumed
to respond over a 200 ms (8 frame) causal time window in which the stimulus most strongly affected
the firing of the neurons, and thus, model responses were derived from a stimulus vector with 2048
dimensions (16x16x8).

Figure 3 shows the fit of a 2-channel subunit model to data from a typical V1 cell. Figure 3a
illustrates the subunit kernels and their associated nonlinearities and spatial pooling maps, for both
the excitatory channel (top row) and the suppressive channel (bottom row). The two channels
show clear but opposing direction selectivity, starting at a latency of 50 ms. The fact that this cell
is complex is reflected in two aspects of the model parameters. First, the model shows a symmetric,
full-wave rectifying nonlinearity for the excitatory channel. Second, the final linear pooling for this
channel is diffuse over space, eliciting a response that is invariant to the exact spatial position and
phase of the stimulus.

For this particular example the model fits well. For the cross-validated set of repeated stimuli (which
have the same structure as for the fitting data), on average the model correlates with each trial’s firing
rate with an r-value of 0.54. A raster of spiking responses to twenty repetitions of a 5 s stimulus
are depicted in Fig. 3b, along with the average firing rate and the model prediction, which are well
matched. The model can also capture the direction selectivity of this cell’s response to moving
sinusoidal gratings (whose spatial and temporal frequency are chosen to best drive the cell) (Fig.
3c). The subunit model acceptably fits most of the cells we recorded in V1. Moreover, fit quality
is not correlated with modulation index (r = �0.08; n.s.), suggesting that the model captures the
behavior of both simple and complex cells equally well.

The fitted subunit model also significantly outperforms the Rust-STC model in terms of predicting
responses to novel data. Figure 4a shows the performance of the Rust-STC and subunit models for
21 V1 neurons, for both training data and test data on single trials. For the training data, the Rust-
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Figure 4: Model performance comparisons on physiological data. (a) Subunit model performance
vs. Rust-STC model for V1 data. Training accuracy is computed for a single variable-length se-
quence extracted from the fitting data. Test accuracy is computed on the average response to 20
repeats of a 25 s stimulus. (b) Subunit model performance vs. an ‘Oracle’ model for V1 data (see
text). Each point represents the average accuracy in predicting responses to each of 20 repeated stim-
uli. The oracle model uses the average spike count over the other 19 repeats as a prediction. Inset:
Ratio of subunit-to-oracle performance. Error bars indicate 1 s.d. (c) Subunit model performance
on test data, as a function of the total number of recorded spikes.

STC model performs significantly better than the subunit model (Figure 4a; < r

Rust

>= 0.81,
< r

subunit

>= 0.33; p ⌧ 0.005). However, this is primarily due to over-fitting: Visual inspection
of the STC kernels for most cells reveals very little structure. For test data (that was not included
in the data used to fit the models), the subunit model exhibits significantly better performance than
the Rust-STC model (< r

Rust

>= 0.16, < r

subunit

>= 0.27; p ⌧ 0.005). This is primarily due
to over-fitting in the STC analysis. For a stimulus composed of a 16x16 pixel grid with 8 frames,
the spike-triggered covariance matrix contains over 2 million parameters. For the same stimulus, a
subunit model with two channels and an 8x8x8 subunit kernel has only about 1200 parameters.

The subunit model performs well when compared to the Rust-STC model, but we were interested in
obtaining a more absolute measure of performance. Specifically, no purely stimulus-driven model
can be expected to explain the response variability seen across repeated presentations of the same
stimulus. We can estimate an upper bound on stimulus-driven model performance by implementing
an empirical ‘oracle’ model that uses the average response over all but one of a set of repeated
stimulus trials to predict the response on the remaining trial. Over the 21 neurons with repeated
stimulus data, we found that the subunit model achieved, on average, 76% the performance of the
oracle model (Figure 4b). Moreover, the cells that were least well fit by the subunit model were also
the cells that responded only weakly to the stimulus (Figure 4c). We conclude that, for most cells,
the fitted subunit model explains a significant fraction of the response that can be explained by any
stimulus-driven model.

5 Discussion

Subunits have been proposed as a qualitative description of many types of receptive fields in sensory
systems [2, 28, 8, 11, 12], and have enjoyed a recent renewal of interest by the modeling community
[13, 29]. Here we have described a new parameterized canonical subunit model that can be applied
to an arbitrary set of inputs (either a sensory stimulus, or a population of afferents from a previous
stage of processing), and we have developed a method for directly estimating the parameters of this
model from measured spiking data. Compared with STA or STC, the model fits are more accurate
for a given amount of data, less sensitive to the choice of stimulus ensemble, and more interpretable
in terms of biological mechanism.

For V1, we have applied this model directly to the visual stimuli, adopting the simplifying assump-
tion that subcortical pathways faithfully relay the image data to V1. Higher visual areas build their
responses on the afferent inputs arriving from lower visual areas, and we have applied this subunit
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model to such neurons by first simulating the responses of a population of the afferent V1 neurons,
and then optimizing a subunit model that best maps these afferent responses to the spiking responses
observed in the data. Specifically, for neurons in area V2, we model the afferent V1 population as
a collection of simple cells that tile visual space. The V1 filters are chosen to uniformly cover the
space of orientations, scales, and positions [30]. We also include four different phases. For neurons
in area MT (V5), we use an afferent V1 population that also includes direction selective subunits, be-
cause the projections from V1 to MT are known to be sensitive to the direction of visual motion [31].
Specifically, the V1 filters are a rotation-invariant set of 3-dimensional, space-space-time steerable
filters [32]. We fit these models to neural responses to textured stimuli that varied in contrast and
local orientation content (for MT, the local elements also drift over time). Our preliminary results
show that the subunit model outperforms standard models for these higher order areas as well.

We are currently working to refine and generalize the subunit model in a number of ways. The
mean squared error objective function, while computationally appealing, does not accurately reflect
the noise properties of real neurons, whose variance changes with their mean rate. A likelihood
objective function, based on a Poisson or similar spiking model, can improve the accuracy of the
fitted model, but it does so at a cost to the simplicity of model estimation (e.g. Alternating Least
Squares can no longer be used to solve the bilinear problem). Real neurons also possess other forms
of nonlinearities, such as local gain control that is been observed in neurons through the visual and
auditory systems [33]. We are exploring means by which this functionality can be included directly
in the model framework (e.g. [11]), while retaining the tractability of the parameter estimation.
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