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Abstract

We propose a novel stochastic process that is with probability αi being absorbed
at current statei, and with probability1 − αi follows a random edge out of it.
We analyze its properties and show its potential for exploring graph structures.
We prove that under proper absorption rates, a random walk starting from a set
S of low conductance will be mostly absorbed inS. Moreover, the absorption
probabilities vary slowly insideS, while dropping sharply outside, thus imple-
menting the desirable cluster assumption for graph-based learning. Remarkably,
the partially absorbing process unifies many popular modelsarising in a variety
of contexts, provides new insights into them, and makes it possible for transfer-
ring findings from one paradigm to another. Simulation results demonstrate its
promising applications in retrieval and classification.

1 Introduction

Random walks have been widely used for graph-based learning, leading to a variety of models in-
cluding PageRank [14] for web page ranking, hitting and commute times [8] for similarity measure
between vertices, harmonic functions [20] for semi-supervised learning, diffusion maps [7] for di-
mensionality reduction, and normalized cuts [12] for clustering. In graph-based learning one often
adopts the cluster assumption, which states that the semantics usually vary smoothly for vertices
within regions of high density [17], and suggests to place the prediction boundary in regions of
low density [5]. It is thus interesting to ask how the clusterassumption can be realized in terms of
random walks.

Although a random walk appears to explore the graph globally, it converges to a stationary distribu-
tion determined solely by vertex degrees regardless of the starting points, a phenomenon well known
as the mixing of random walks [11]. This causes some random walk approaches intended to capture
non-local graph structures to fail, especially when the underlying graph is well connected, i.e., the
random walk has a large mixing rate. For example, it was recently proven in [16] that under some
mild conditions the hitting and commute times on large graphs do not take into account the global
structure of the graph at all, despite the fact that they haveintegrated all the relevant paths on the
graph. It is also shown in [13] that the “harmonic” walks [20]in high-dimensional spaces converge
to a constant distribution as the data size approaches infinity, which is undesirable for classification
and regression. These findings show that intuitions regarding random walks can sometimes be mis-
leading, and should be taken with caution. A natural question is: can we design a random walk
which implements the cluster assumption with some guarantees?

In this paper, we propose partially absorbing random walks (PARWs), a novel random walk mod-
el whose properties can be analyzed theoretically. In PARWs, a random walk is with probability
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Figure 1: A partially absorbing random walk. (a) A flow perspective (see text). (b) A second-order
Markov chain. (c) An equivalent standard Markov chain with additional sinks.

αi being absorbed at current statei, and with probability1 − αi follows a random edge out of it.
PARWs are guaranteed to implement the cluster assumption inthe sense that under proper absorp-
tion rates, a random walk starting from a setS of low conductance will be mostly absorbed inS.
Furthermore, we show that by setting the absorption rates, the absorption probabilities can vary s-
lowly insideS, while dropping sharply outsideS. This approximately piecewise constant property
makes PARWs highly desirable and robust for a variety of learning tasks including ranking, clus-
tering, and classification, as demonstrated in Section 4. More interestingly, it turns out that many
existing models including PageRank, hitting and commute times, and label propagation algorithms
in semi-supervised learning, can be unified or related in PARWs, which brings at least two benefits.
On one hand, our theoretical analysis sheds some light on theunderstanding of existing models; on
the other hand, it enables transferring findings among different paradigms. We present our model in
Section 2, analyze a special case of it in Section 3, and show simulation results in Section 4. Section
5 concludes the paper. Most of our proofs are included in the appendix.

2 Partially Absorbing Random Walks

Let us consider a simple diffusion process illustrated in Fig. 1(a). At the beginning, a unit flow (blue)
is injected to the graph at a selected vertex. After one step,some of the flow (red) is “stored” at the
vertex while the rest (blue) propagates to its neighbors. Whenever the flow passes a vertex, some
fraction of it is retained at that vertex. As this process continues, the amount of flow stored in each
vertex will accumulate and there will be less and less flow left running on the graph. After a certain
number of steps, there will be almost no flow left running and the flow stored will nearly sum up to
1. The above diffusion process can be made precise in terms ofrandom walks, as shown below.

Consider a discrete-time stochastic processX = {Xt : t ≥ 0} on the state spaceN = {1, 2, . . . , n},
where the initial stateX0 is given, sayX0 = i, the next stateX1 is determined by the transition
probabilityP(X1 = j|X0 = i) = pij , and the subsequent states are determined by the transition
probabilities

P(Xt+2 = j|Xt+1 = i,Xt = k) =

{

1, i = j, i = k,
0, i 6= j, i = k,
P(Xt+2 = j|Xt+1 = i) = pij , i 6= k,

(1)

wheret ≥ 0. Note that the processX is time homogeneous, i.e., the transition probabilities in (1)
are independent oft. In other words, if the previous and current states are the same, the process
will remain in the current state forever. Otherwise, the next state is conditionally independent of the
previous state given the current state, i.e., the process behaves like a usual random walk.

To illustrate the above construction, consider Fig. 1(b). Starting from statei, there is some probabil-
ity pii that the process will stay ati in the next step; and once it stays, the process will be absorbed
into statei. Hence, we shall call the above process apartially absorbing random walk(PARW),
wherepii is theabsorption rateof statei. If 0 < pii < 1, then we say thati is apartially absorbing
state. If pii = 1, then we say thati is a fully absorbing state. Finally, if pii = 0, then we say thati
is atransient state. Note that ifpii ∈ {0, 1} for every statei ∈ N , then the above process reduces to
a standard Markov chain [9].

A PARW is a second-order Markov chain completely specified byits first order transition probabil-
ities {pij}. One can observe that any PARW can be realized as a standard Markov chain by adding
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a sink (fully absorbing state) to each vertex in the graph, asillustrated in Fig. 1(c). The transition
probability fromi to its sinki′ equals the absorption ratepii in PARWs. One may also notice that
the construction of PARWs can be generalized to them-th order, i.e., the process is absorbed at a
state only after it has stayed at that state form-consecutive steps. However, it can be shown that any
m-th order PARW can be realized by a second-order PARW. We willnot elaborate on this due to
space constraints.

2.1 PARWs on Graphs

Let G = (V ,W ) be an undirected weighted graph, whereV is a set ofn vertices andW = [wij ] ∈
R

n×n is a symmetric non-negative matrix of pairwise affinities among vertices. We assumeG is
connected. LetD = diag(d1, d2, . . . , dn) with di =

∑

j wij as the degree of vertexi, and define
the Laplacian ofG byL = D −W [6]. Denote byd(S) :=∑i∈S di the volume of a subsetS ⊆ V
of vertices. Letλ1, λ2, . . . , λn ≥ 0 be arbitrary, and setΛ = diag(λ1, λ2, . . . , λn). Suppose that
we define the first order transition probabilities of a PARW by

pij =

{

λi

λi+di
, i = j,

wij

λi+di
, i 6= j.

(2)

Then, we see that statei is an absorbing state (either partially or fully) whenλi > 0, and is a transient
state whenλi = 0. In particular, the matrixΛ acts like a regularizer that controls the absorption rate
of each state, i.e., the largerλi, the largerpii. In the sequel, we refer toΛ as theregularizer matrix.

Absorption Probabilities. We are interested in the probabilityaij that a random walk starting from
statei, is absorbed at statej in any finite number of steps. LetA = [aij ] ∈ R

n×n be the matrix of
absorption probabilities. The following theorem shows that A has a closed-form.
Theorem 2.1. Supposeλi > 0 for somei. ThenA = (Λ + L)−1Λ.

Proof. Sinceλi > 0 for somei, the matrixΛ + L is positive definite and hence non-singular.
Moreover, the matrixΛ + D is non-singular, sinceD is non-singular. Thus, the matrixI − (Λ +
D)−1W = (Λ +D)−1(Λ + L) is also non-singular. Now, observe that the absorbing probabilities
{aij} satisfy the following equations:

aii =
λi

λi + di
× 1 +

∑

j 6=i

wij

λi + di
aji, (3)

aij =
∑

k 6=i

wik

λi + di
akj , i 6= j. (4)

Upon writing equations (3) and (4) in matrix form, we have(I − (Λ +D)−1W )A = (Λ+D)−1Λ,
whenceA = (I − (Λ +D)−1W )−1(Λ +D)−1Λ = (Λ +D −W )−1Λ = (Λ + L)−1Λ.

The following result confirms thatA is indeed a probability matrix.
Proposition 2.1. Supposeλi > 0 for somei. ThenA is a non-negative matrix with each row
summing up to 1.

By Proposition 2.1,
∑

k ajk = 1 for anyj. This means that a PARW starting from any vertex will
eventually be absorbed, provided that there is at least one absorbing state in the state space.

2.2 Limits of Absorption Probabilities

By Theorem 2.1, we see that the absorption probabilities (A) are governed by both the structure
of the graph (L) and the regularizer matrix (Λ). It would be interesting to see howA varies with
Λ, particularly whenλi’s become small which allows the flow to propagate sufficiently (Fig. 1(a)).
The following result shows that asΛ (λi’s) vanishes, each row ofA converges to a distribution
proportional to(λ1, λ2, . . . , λn), regardless of graph structure.
Theorem 2.2. Supposeλi > 0 for all i. Then

lim
α→0+

(αΛ + L)−1αΛ = 1λ̄
⊤
, (5)

where(λ̄)i = λi/(
∑n

j=1 λj). In particular, limα→0+(αI + L)−1αI = 1
n11

⊤.
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Theorem 2.2 tells us that withΛ = αI and asα → 0 a PARW will converge to the constant
distribution1/n, regardless of the starting vertex. At first glance, this limit seems meaningless.
However, the following lemma will show that it actually has interesting connections withL+, the
pseudo-inverse of the graph Laplacian, a matrix that is widely studied and proven useful for many
learning tasks including recommendation and clustering [8].

Proposition 2.2. SupposeΛ = αI and denoteAα := (Λ + L)−1Λ = (αI + L)−1α. Then,

lim
α→0

Aα − 1
n11

⊤

α
= L+. (6)

Proposition 2.2 gives a novel probabilistic interpretation of L+. Note that by Theorem 2.2,A0 :=
limα→0 A

α = 1
n11

⊤. ThusL+ is the derivative ofAα w.r.t. α atα = 0, implying thatL+ reflects
the variation of absorption probabilities when the absorption rate is very small. By (6), we see that
ranking byL+ is essentially the same as ranking byAα, whenα is sufficiently small.

2.3 Relations with Popular Ranking and Classification Models

Relations with PageRank Vectors.Supposeλj > 0 for all j. Let a be the absorption probability
vector of a PARW starting from vertexi. Denote bys the indicator vector ofi, i.e., s(i) = 1 and
s(j) = 0 for j 6= i. Thena⊤ = s

⊤(Λ + L)−1Λ, which can be rewritten as

a
⊤ = s

⊤(Λ +D)−1Λ + a
⊤Λ−1W (Λ +D)−1Λ. (7)

By lettingΛ = β
1−βD, we havea⊤ = βs⊤ + (1 − β)a⊤D−1W, which is exactly the equilibrium

equation for personalized PageRank [14]. Note thatβ is often referred to as the “teleportation”
probability in PageRank. This shows that personalized PageRank is a special case of PARWs with
absorption ratespii = λi

λi+di
= β.

Relations with Hitting and Commute Times. The hitting timeHij is the expected time that it
takes a random walk starting fromi to first arrive atj, and the commute timeCij is the expected
time it takes a random walk starting fromi to travel toj and back toi, which can be computed as

Hij = d(G)(L+
jj − L+

ij), Cij = Hij +Hji = d(G)(L+
ii + L+

jj − 2L+
ij), (8)

whered(G) := ∑i di denotes the volume of the graph. By (6), whenΛ = αI andα is sufficiently
small, ranking withHij or Cij (say, with respect toi) is the same as ranking byAα

jj − Aα
ij or

Aα
ii +Aα

jj − 2Aα
ij respectively. This appears to be not particularly meaningful because the termAα

jj
is the self-absorption probability that does not contain any essential information with the starting
vertexi. Accordingly, it should not be included as part of the ranking function with respect toi.
This argument is also supported in a recent study by [16], where the hitting and commute times are
shown to be dominated by the inverse of degrees of vertices. In other words, they do not take into
account the graph structure at all. A remedy they propose is to throw away the diagonal terms of
L+ and only use the off-diagonal terms. This happens to suggestusing absorption probabilities for
ranking and as similarity measure, because whenα is sufficiently small, ranking by the off-diagonal
terms ofL+ is essentially the same as ranking byAα

ij , i.e., the absorption probability of starting
from i and being absorbed atj. Our theoretical analysis in Section 3 and the simulation results in
Section 4 further confirm this argument.

Relations with Semi-supervised Learning. Interestingly, many label propagation algorithms in
semi-supervised learning can be cast in PARWs. The harmonicfunction method [20] is a PARW
when settingλi = ∞ (absorption rate 1) for the labeled vertices whileλi = 0 (absorption rate 0) for
the unlabeled. In [19] the authors have made this interpretation in terms of absorbing random walks,
where a random walk arriving at an absorbing state will stay there forever. PARWs can be viewed
as an extension of absorbing random walks. The regularized harmonic function method [5] is also a
PARW when settingλi = α for the labeled vertices whileλi = 0 for the unlabeled. The consistency
method [17], if using un-normalized Laplacian instead of normalized Laplacian, is a PARW with
Λ = αI. Our analysis in this paper reveals several nice propertiesof this case (Section 3). A variant
of this method is a PARW withΛ = αD, which is the same as PageRank as shown above. If we
add an additional sink to the graph, a variant of harmonic function method [10] and a variant of the
regularized harmonic function method [3] can all be included as instances of PARWs. We omit the
details here due to space constraints.

4



Benefits of a Unifying View. We have shown that PARWs can unify or relate many models from
different contexts. This brings at least two benefits. First, it sheds some light on existing models. For
instance, hitting and commute times are not suitable for ranking given its interpretation in absorption
probabilities, as discussed above. In the next section, we will show that a special case of PARWs is
better suited for implementing the cluster assumption for graph-based learning. Second, a unifying
view builds bridges between different paradigms thus making it easier to transfer findings between
them. For example, it has been shown in [2,4] that approximate personalized PageRank vectors can
be computed inO(1/ǫ) iterations, whereǫ is a precision tolerance parameter. We indicate here that
such a technique is also applicable to PARWs due to PARWs’s generalizing nature. Consequently,
most models included in PARWs can be substantially accelerated using the same technique.

3 PARWs with Graph Conductance

In this section, we present results on the properties of the absorption probability vectorai obtained
by a PARW starting from vertexi (i.e., a⊤i is the rowi of A). We show that properties ofai
relate closely to the connectivity betweeni and the rest of graph, which can be captured by the
conductance of the clusterS wherei belongs. We also find that properties ofai depend on the
setting of absorption rates. Our key results can be summarized as follows. In general, the probability
mass ofai is mostly absorbed byS. Under proper absorption rates,ai can vary slowly withinS
while dropping sharply outsideS. Such properties are highly desirable for learning tasks such as
ranking, clustering, and classification.

The conductance of a subsetS ⊂ V of vertices is defined asΦ(S) = w(S,S̄)

min(d(S),d(S̄)) , where

w(S, S̄) :=
∑

(i,j)∈e(S,S̄) wij is the cut betweenS and its complement̄S [6]. We denote the
indicator vector ofS by χS such thatχS(i) = 1 if i ∈ S andχS(i) = 0 otherwise; and denote
the stationary distribution w.r.t.S by πS such thatπS(i) = di/d(S) if i ∈ S andπS(i) = 0
otherwise. In terms of the conductance ofS, the following theorem gives an upper bound on the
expected probability mass escaped fromS if the distribution of the starting vertex isπS .

Theorem 3.1. Let S be any set of vertices satisfyingd(S) ≤ 1
2d(G). Let γ1 = mini∈S

λi

di
and

γ2 = maxi∈S̄
λi

di
. Then,

π⊤
SAχS̄ ≤ γ2

1 + γ2

1 + γ1
γ2
1

Φ(S). (9)

Theorem 3.1 shows that most of the probability mass will be absorbed inS, provided thatS is of
small conductance and the random walk starts fromS according toπS . In other words, a PARW
will be trapped inside the cluster1 from where it starts, as desired. To identify the entire cluster, what
is more desirable would be that the absorption probabilities vary slowly within the cluster while
dropping sharply outside. As such, the cluster can be identified by detecting the sharp drop. We
show below that such property can be achieved by setting appropriate absorption rates at vertices.

3.1 PARWs withΛ = αI

We will prove that the choice ofΛ = αI can fulfill the above goal. Before presenting theoretical
analysis, let us discuss the intuition behind it from both flow (Fig. 1(a)) and random walk perspec-
tives. To vary slowly within the cluster, the flow needs to be distributed evenly within it; while to
drop sharply outside, the flow must be prevented from escaping. This means that the absorption
rates should be small in the interior but large near the boundary area of the cluster. SettingΛ = αI
achieves this. It corresponds to the absorption ratespii =

λi

λi+di
= α

α+di
, which decrease monoton-

ically with di. Since the degrees of vertices are usually relatively largein the interior of the cluster
due to denser connections, and small near its boundary area (Fig. 2(a)), the absorption rates are
therefore much larger at its boundary than in its interior (Fig. 2(b)). State differently, a random walk
may move freely inside the cluster, but it will get absorbed with high probability when traveling
near the cluster’s boundary. In this way, the absorption rates set up a bounding “wall” around the
cluster to prevent the random walk from escaping, leading toan absorption probability vector that

1A cluster is understood as a subset of vertices of small conductance.

5



0 300 600 900
0

2

4x 10
−3

0 300 600 900
0

2

4x 10
−3

(a) (b) (c) (d)

Figure 2: Absorption rates and absorption probabilities. (a) A data set of three Gaussians with the
degrees of vertices in the underlying graph shown (see Section 4 for the descriptions of the data
and graph construction). A starting vertex is denoted in black circle. (b–c) Absorption rates and
absorption probabilities forΛ = αI (α = 10−3). (d) Sorted absorption probabilities of (c). For
illustration purpose, in (a–b), the degrees of vertices andthe absorption rates have been properly
scaled, and in (c), the data are arranged such that points within each Gaussian appear consecutively.

varies slowly within the cluster while dropping sharply outside (Figs. 2(c–d)), thus implementing
the cluster assumption. We make these arguments precise below.

It is worth pointing out that a PARW withΛ = αI is symmetric, i.e., the absorption probability of
starting fromi and absorbed atj is equal to the probability of starting fromj and absorbed ati. For
simplicity, we use the abbreviated notationa to denoteai, the absorption probability vector for the
PARW starting from vertexi. By (3) and the symmetry property, we immediately see thata has the
following “harmonic” property:

a(i) =
λi

λi + di
+
∑

k 6=i

wik

λi + di
a(k), a(j) =

∑

k 6=j

wjk

λj + dj
a(k), j 6= i. (10)

We will use this property to prove some interesting results.Another desirable property one should
notice for this PARW is that the starting vertex always has the largest absorption probability, as
shown by the following lemma.

Lemma 3.2. GivenΛ = αI, thenaii > aij for anyi 6= j.

By Lemma 3.2 and without loss of generality, we assume the vertices are sorted so thata(1) >
a(2) ≥ · · · ≥ a(n), where vertex 1 is the starting vertex. LetSk be the set of vertices{1, . . . , k}.
Denotee(Si,Sj) as the set of edges betweenSi andSj .

The following theorem quantifies the drop of the absorption probabilities betweenSk andS̄k.

Theorem 3.3. For everyS ∈ {Sk | k = 1, 2, . . . , n},

∑

(u,v)∈e(S,S̄)

wuv (a(u)− a(v)) = α



1−
∑

j∈S
a(j)



 . (11)

Theorem 3.3 shows that the weighted difference in absorption probabilities betweenSk andS̄k is

α
(

1−∑k
j=1 a(j)

)

, implying that it drops slowly whenα is small and ask increases, as expected.

Next we show the variation of absorption probabilities withgraph conductance. Without loss of
generality, we consider setsSj whered(Sj) ≤ 1

2d(G).
The following theorem says thata(j+1) will drop little from a(j) if the setSj has high conductance
or if the vertexj is far away from the starting vertex 1 (i.e.,j ≫ 1).

Lemma 3.4. If Φ(Sj) = φ, then

a(j + 1) ≥ a(j) −
α
(

1−
∑j

k=1 a(k)
)

φd(Sj)
. (12)

The above result can be extended to describe the drop in a muchlonger range, as stated in the
following theorem.
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Figure 3: Absorption probabilities on the three Gaussians in Fig. 2(a) with the starting vertex
denoted in black circle. (a–e)Λ = αI, α = 100, 10−2, 10−4, 10−6, 10−8; (f–j) Λ = αD,
α = 100, 10−2, 10−4, 10−6, 10−8. For illustration purpose, the data are arranged such that points
within each Gaussian appear consecutively, as in Fig. 2(c).

Table 1: Ranking results (MAP) on USPS
Digits 0 1 2 3 4 5 6 7 8 9 All
Λ = αI .981 .988 .876 .893 .646 .778 .940 .919 .746 .730 .850

PageRank .886 .972 .608 .764 .488 .568 .837 .825 .626 .702 .728
Manifold Ranking .957 .987 .827 .827 .467 .630 .917 .822 .675 .719 .783
Euclidean Distance .640 .980 .318 .499 .337 .294 .548 .620 .368 .480 .508

Theorem 3.5. If Φ(Sj) ≥ 2φ, then there exists ak > j such that

d(Sk) ≥ (1 + φ)d(Sj) and a(k) ≥ a(j) −
α
(

1−∑j
k=1 a(k)

)

φd(Sj)
.

Theorem 3.5 tells us that if the setSj has high conductance, then there will be a setSk much larger
thanSj where the absorption probabilitya(k) remains large. In other words,a(k) will not drop
much ifSj is closely connected with the rest of graph. Combining Theorems 3.3, 3.5, and 3.1, we
see that the absorption probability vector of the PARW withΛ = αI has the nice property of varying
slowly within the cluster while dropping sharply outside.

We remark that similar analyses have been conducted in [1, 2]on personalized PageRank, for the
local clustering problem [15] whose goal is to find a local cutof low conductance near a specified
starting vertex. As shown in Section 2, personalized PageRank is a special case of PARWs with
Λ = αD = β

1−βD, which corresponds to setting the same absorption ratepii = β at each vertex.
This setting does not take advantage of the cluster assumption. Indeed, despite the significant cluster
structure in the three Gaussians (Fig. 2), no clear drop emerges by varyingβ (Section 4). This
explains the “heuristic” used in [1, 2] where the personalized PageRank vector is divided by the
degrees of vertices to generate a sharp drop. In contrast, our choice ofΛ = αI appears to be more
justified, without the need of such post-processing while retaining a probabilistic foundation.

4 Simulation

In this section, we demonstrate our theoretical results on both synthetic and real data. For each data
set, a weightedk-NN graph is constructed withk = 20. The similarity between verticesi andj is
computed aswij = exp(−d2ij/σ) if i is within j’s k nearest neighbors or vice versa, andwij = 0
otherwise (wii = 0), whereσ = 0.2 × r andr denotes the average square distance between each
point to its20th nearest neighbor.

The first experiment is to examine the absorption probabilities when varying absorption rates. We
use the synthetic three Gaussians in Fig. 2(a), which consists of 900 points from three Gaussians,
with 300 in each. Fig. 3 compares the cases ofΛ = αI andΛ = αD (PageRank). We can
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Table 2: Classification accuracy on USPS
HMN LGC Λ = αD Λ = αI

.782± .068 .792± .062 .787± .048 .881± .039

draw several observations. ForΛ = αI, whenα is large, most probability mass is absorbed in
the cluster of the starting vertex (Fig. 3(a)). As it becomesappropriately small, the probability mass
distributes evenly within the cluster, and a sharp drop emerges (Fig. 3(b)). Asα → 0, the probability
mass distributes more evenly within each cluster and also onthe entire graph (Figs. 3(c–e)), but the
drops between clusters are still quite significant. In contrast, forΛ = αD, no significant drops
show for allα’s (Figs. 3(f–j)). This is due to the uniform absorption rates on the graph, which
makes the flow favor vertices with denser connections (i.e.,of large degrees). These observations
support the theoretical arguments in Section 3 for PARWs with Λ = αI and suggest its robustness
in distinguishing between different clusters.

The second experiment is to test the potential of PARWs for information retrieval. We compare
PARWs withΛ = αI to PageRank (i.e., PARWs withΛ = αD), Manifold Ranking [18], and
the baseline using Euclidean distance. For parameter selection, we useα = 10−6 for Λ = αI
andβ = 0.15 for PageRank (see Section 2.3) as suggested in [14]. The regularization parameter
in Manifold Ranking is set to 0.99, following [18]. The imagebenchmark USPS2 is used for this
experiment, which contains 9298 images of handwritten digits from 0 to 9 of size16 × 16, with
1553, 1269, 929, 824, 852, 716, 834, 792, 708, and 821 instances of each digit respectively. Each
instance is used as a query and the mean average precision (MAP) is reported. The results are shown
in Table 1. We see that the PARW withΛ = αI consistently gives best results for individual digits
as well as the entire data set.

In the last experiment, we test PARWs on classification/semi-supervised learning, also on USPS
with all 9298 images. We randomly sample 20 instances as labeled data and make sure there is
at least one label for each class. For PARWs, we classify eachunlabeled instanceu to the class
of the labeled vertexv whereu is most likely to be absorbed, i.e.,v = argmaxi∈L aui whereL
denotes the labeled data andaui is the absorption probability. We compare PARWs withΛ = αI
(α = 10−6) andΛ = αD (β = 0.15) to the harmonic function method (HMN) [20] coupled
with class mass normalization (CMN) and the local and globalconsistency (LGC) method [17]. No
parameter in HMN is required, and the regularization parameter in LGC is set to 0.99 following [17].
The classification accuracy averaged over 1000 runs is shownin Table 2. Again, it confirms the
superior performance of the PARW withΛ = αI.

In the second and third experiments, we also tried other parameter settings for methods where ap-
propriate. We found that the performance of PARWs withΛ = αI is quite stable with smallα, and
varying parameters in other methods did not lead to significantly better results, which validates our
previous arguments.

5 Conclusions

We have presented partially absorbing random walks (PARWs), a novel stochastic process generaliz-
ing ordinary random walks. Surprisingly, it has been shown to unify or relate many popular existing
models and provide new insights. Moreover, a new algorithm developed from PARWs has been
theoretically shown to be able to reveal cluster structure under the cluster assumption. Simulation
results have confirmed our theoretical analysis and suggested its potential for a variety of learning
tasks including retrieval, clustering, and classification. In future work, we plan to apply our model
to real applications.
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Appendix

Lemma 5.1. Supposeλi > 0 for somei. Then any eigenvalue of the matrix(Λ + D)−1W is of
magnitude less than 1.

Proof. LetC = (Λ+D)−1W . SinceC is similar to the symmetric real matrix(Λ+D)−1/2W (Λ+
D)−1/2, the eigenvalues ofC are real. Letv be any ofC ’s eigenvalues. We claim that|v| < 1. Let
u = (u1, u2, . . . , un)

⊤, whereui ∈ R for i = 1, 2, . . . , n, be the nonzero eigenvector associated
with v. Observe thatC is nonnegative and the sum of each row ofC is less than or equal to 1.
Sinceλi > 0 for somei, the sum of thei-th row ofC is less than 1. If|ui| = maxj{|uj|}, then
|vui| = |C(i, :)u| < |ui|, yielding |v| < 1. Otherwise, there must be ak 6= i, |uk| = maxj{|uj|}
and |uk| > |ui|. It is not difficult to see thatC(k, :)u 6= vuk if |v| ≥ 1, which contradicts the
assumption thatCu = vu. Therefore, we conclude that|v| < 1.

Lemma 5.2. Supposeλi > 0 for somei. Then,

(Λ + L)−1Λ =
∑

t≥0

((Λ +D)−1W )t(Λ +D)−1Λ. (13)

Proof. (Λ + L)−1 = (Λ + D − W )−1 = (I − (Λ + D)−1W )−1(Λ + D)−1 =
∑

t≥0((Λ +

D)−1W )t(Λ +D)−1, where the last equation follows from Lemma 5.1.

Proof of Proposition 2.1. The non-negativity ofA follows directly from Lemma 5.2 since each
matrix in the summation is non-negative. Denote1n as the all-one vector and0n as the zero vector.
SinceΛ + L is nonsingular, it suffices to show that(Λ + L)(A1n − 1n) = 0n. This follows by
plugging inA = (Λ + L)−1Λ and using the fact thatL1n = 0n.

Proof of Theorem 2.2. Note thatΛ−1L is similar to the symmetric and positive semi-definite matrix
L̄ = Λ−1/2LΛ−1/2. Thus they share the same real eigenvalues. LetL̄ = UEU⊤ be the eigen-
decomposition of̄L with eigenvalues0 = γ1 < γ2 ≤ · · · ≤ γn (γ2 > 0 due to the connectivity of
the graph). ThenΛ−1L has the following eigen-decomposition:

Λ−1L = V EV −1, V = Λ−1/2U (V −1 = U⊤Λ1/2),

and

(αΛ + L)−1αΛ = (I +
1

α
Λ−1L)−1 = V EαV

−1, Eα = diag(1,
α

γ2 + α
, . . . ,

α

γn + α
). (14)

Thus

lim
α→0+

(αΛ + L)−1αΛ = Λ−1/2U(:, 1)U(:, 1)⊤Λ1/2 = 1λ̄
⊤
, (15)

where in the last equation we have used the fact thatU(:, 1) = (
√
λ1√∑
i λi

, . . . ,
√
λn√∑
i λi

)⊤.

Proof of Proposition 2.2. Let L = UEU⊤ be the eigen-decomposition ofL, where U =
(u1, . . . ,un) is the orthonormal eigenvector matrix andE = diag(γ1, γ2, . . . , γn), 0 = γ1 <
γ2 ≤ · · · ≤ γn, is the associated eigenvalue matrix. It is well-known thatu1 = 1/

√
n. Aα can be

factorized as

Aα = (αI + L)−1α = u1u
⊤
1 + α

n
∑

i=2

1

α+ γi
uiu

⊤
i . (16)

(6) follows fromu1u
⊤
1 = 1

n11
⊤ andlimα→0+

∑n
i=2

1
α+γi

uiu
⊤
i = L+.

Denoted = (d1, d2, . . . , dn)
⊤ as the vector of vertex degrees. LetP = D−1W .

Lemma 5.3. If v ≤ βd, thenP⊤
v ≤ βd.
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Proof. P⊤
v = WD−1

v ≤ βWD−1
d = βW1 = βd.

Lemma 5.4. Supposed(S) ≤ 1
2d(G). Thenχ⊤

S̄P
⊤πS = Φ(S).

Proof. χ⊤
S̄P

⊤πS = χ⊤
S̄WD−1πS = 1

d(S)χ
⊤
S̄WχS = w(S,S̄)

d(S) = Φ(S).

Lemma 5.5. Supposed(S) ≤ 1
2d(G). Then,

χ⊤
S̄P

t⊤πS ≤ tΦ(S). (17)

Proof. By Lemma 5.4, (17) holds whent = 1. Assume it holds fort = k. By induction, it suffices
to show it holds fort = k + 1. Note that

χ⊤
S̄P

(k+1)⊤πS ≤ χ⊤
S̄P

⊤
vS + χ⊤

S̄P
k⊤πS , (18)

wherevS denotes the vectorP k⊤πS restricted onS, i.e., vS(i) = (P k⊤πS)(i) if i ∈ S and
vS(i) = 0 otherwise. SinceπS ≤ 1

d(S)d, we haveP k⊤πS ≤ 1
d(S)d by Lemma 5.3. Thus

vS ≤ πS becauseπS equals 1
d(S)d restricted onS. Thereforeχ⊤

S̄P
⊤
vS ≤ χ⊤

S̄P
⊤πS = Φ(S) by

Lemma 5.4, yieldingχ⊤
S̄P

(k+1)⊤πS ≤ Φ(S) + kΦ(S) = (k + 1)Φ(S).

Proof of Theorem 3.1.

π⊤
SAχS̄ = π⊤

S
∑

t≥0

[(Λ +D)−1W ]t(Λ +D)−1ΛχS̄ (19)

= π⊤
S
∑

t≥0

[(Λ +D)−1DD−1W ]t(Λ +D)−1ΛχS̄ (20)

≤ π⊤
S
∑

t≥0

(max
i∈S

di
di + λi

P )t max
i∈S̄

λi

di + λi
χS̄ (21)

=
γ2

1 + γ2
π⊤

S
∑

t≥0

(
1

1 + γ1
P )tχS̄ (22)

=
γ2

1 + γ2

∑

t≥0

(
1

1 + γ1
)tπ⊤

SP
tχS̄ (23)

≤ γ2
1 + γ2

∑

t≥0

(
1

1 + γ1
)ttΦ(S) (24)

=
γ2

1 + γ2

1 + γ1
γ2
1

Φ(S), (25)

where (19) and (24) follow from Lemmas 5.2 and 5.5, respectively.

Proof of Lemma 3.2. Note thatB := αI + D − W is symmetric and strictly diagonal dominant,
i.e., bkk >

∑

ℓ 6=k |bkℓ| for anyk, ℓ, k 6= ℓ. Assume, to the contrary, there existsi, j, i 6= j, such
thataii ≤ aij . Denotek = argmaxℓ 6=i aiℓ. Then byBA = αI, we have0 = B(i, :)A(:, k) =
∑

ℓ biℓaℓk = biiaik +
∑

ℓ 6=i biℓaℓk ≥ biiaik −∑ℓ 6=i |biℓ|aik = (bii −
∑

ℓ 6=i |biℓ|)aik > 0. This
contradicts the assumption, and thus completes the proof.

Proof of Theorem 3.3. We first show that (11) holds forS = S1. By (10),

a(1) =
α

d1 + α
+
∑

k∼1

w1k

d1 + α
a(k) =⇒ (d1 + α)a(1) = α+

∑

k∼1

w1ka(k) (26)

=⇒
∑

k∼1

w1k(a(1)− a(k)) = α(1 − a(1)). (27)
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Assume (11) holds forS = Sj−1. By induction, it suffices to show (11) holds forS = Sj . Note that
∑

(u,v)∈e(Sj−1,S̄j−1)

wuv (a(u)− a(v)) −
∑

(u,v)∈e(Sj ,S̄j)

wuv (a(u)− a(v)) (28)

=
∑

u∼j,u∈Sj−1

wju(a(u) − a(j))−
∑

v∼j,v∈S̄j

wjv(a(j)− a(v)) (29)

=
∑

u∼j

wju(a(u)− a(j)) =
∑

u∼j

wjua(u)− dja(j) (30)

= (dj + α)a(j) − dja(j) = αa(j), (31)

where in (31) we have used (10). Therefore
∑

(u,v)∈e(Sj ,S̄j)

wuv (a(u)− a(v)) =
∑

(u,v)∈e(Sj−1,S̄j−1)

wuv (a(u)− a(v)) − αa(j) (32)

= α



1−
∑

k∈Sj−1

a(k)



 − αa(j) = α



1−
∑

k∈Sj

a(k)



 . (33)

Proof of Theorem 3.4. By Theorem 3.3,

α

(

1−
j
∑

k=1

a(k)

)

=
∑

(u,v)∈e(Sj ,S̄j)

wuv(a(u)− a(v)) ≥ w(Sj , S̄j)(a(j) − a(j + 1)) (34)

= φd(Sj)(a(j) − a(j + 1)). (35)

Proof of Theorem 3.5. Observe thatd(G) − d(Sj) ≥ w(Sj , S̄j) ≥ 2φd(Sj). This shows that
d(G) ≥ (1 + 2φ)d(Sj).

Now let k be the least integer such thatd(Sk−1) ≤ d(Sj)(1 + φ) ≤ d(Sk). Then the cut between
Sj andS̄k−1 satisfies

w(Sj , S̄k−1) ≥ w(Sj , S̄j)− d(Sk−1\Sj) ≥ 2φd(Sj)− φd(Sj) = φd(Sj). (36)

By Theorem 3.3,

α

(

1−
j
∑

k=1

a(k)

)

=
∑

(u,v)∈e(Sj ,S̄j)

wuv(a(u)− a(v)) (37)

≥
∑

(u,v)∈e(Sj ,S̄k−1)

wuv(a(u)− a(v)) (38)

≥ w(Sj , S̄k−1)(a(j) − a(k)) (39)

≥ φd(Sj)(a(j) − a(k)). (40)
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