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Abstract

We propose a hovel stochastic process that is with prolbabilibeing absorbed
at current staté, and with probabilityl — «; follows a random edge out of it.
We analyze its properties and show its potential for exptpdraph structures.
We prove that under proper absorption rates, a random waikirgl from a set
S of low conductance will be mostly absorbed$h Moreover, the absorption
probabilities vary slowly inside, while dropping sharply outside, thus imple-
menting the desirable cluster assumption for graph-bassdihg. Remarkably,
the partially absorbing process unifies many popular moaiéding in a variety
of contexts, provides new insights into them, and makesssitde for transfer-
ring findings from one paradigm to another. Simulation rissdemonstrate its
promising applications in retrieval and classification.

1 Introduction

Random walks have been widely used for graph-based leareiading to a variety of models in-
cluding PageRank [14] for web page ranking, hitting and cartenimes [8] for similarity measure
between vertices, harmonic functions [20] for semi-suised learning, diffusion maps [7] for di-
mensionality reduction, and normalized cuts [12] for chuisty. In graph-based learning one often
adopts the cluster assumption, which states that the semmarsiually vary smoothly for vertices
within regions of high density [17], and suggests to plaae ghediction boundary in regions of
low density [5]. Itis thus interesting to ask how the clusiesumption can be realized in terms of
random walks.

Although a random walk appears to explore the graph glopgatpnverges to a stationary distribu-
tion determined solely by vertex degrees regardless ot#ngrey points, a phenomenon well known
as the mixing of random walks [11]. This causes some randollnapgproaches intended to capture
non-local graph structures to fail, especially when theaulyihg graph is well connected, i.e., the
random walk has a large mixing rate. For example, it was ticproven in [16] that under some
mild conditions the hitting and commute times on large gsaght not take into account the global
structure of the graph at all, despite the fact that they lategrated all the relevant paths on the
graph. Itis also shown in [13] that the “harmonic” walks [20high-dimensional spaces converge
to a constant distribution as the data size approachestinfiviiich is undesirable for classification
and regression. These findings show that intuitions reggn@dindom walks can sometimes be mis-
leading, and should be taken with caution. A natural quesgo can we design a random walk
which implements the cluster assumption with some guaesfte

In this paper, we propose partially absorbing random welleRWs), a novel random walk mod-
el whose properties can be analyzed theoretically. In PARMWsndom walk is with probability
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Figure 1: A partially absorbing random walk. (a) A flow persiipee (see text). (b) A second-order
Markov chain. (c) An equivalent standard Markov chain witldidional sinks.

«; being absorbed at current stateand with probabilityl — «; follows a random edge out of it.
PARWSs are guaranteed to implement the cluster assumptitdeigense that under proper absorp-
tion rates, a random walk starting from a gebf low conductance will be mostly absorbed$n
Furthermore, we show that by setting the absorption ratesalbsorption probabilities can vary s-
lowly inside S, while dropping sharply outsid§. This approximately piecewise constant property
makes PARWSs highly desirable and robust for a variety offligay tasks including ranking, clus-
tering, and classification, as demonstrated in Section 4reNfderestingly, it turns out that many
existing models including PageRank, hitting and commune$, and label propagation algorithms
in semi-supervised learning, can be unified or related inWARwhich brings at least two benefits.
On one hand, our theoretical analysis sheds some light omnitherstanding of existing models; on
the other hand, it enables transferring findings amongreiffeparadigms. We present our model in
Section 2, analyze a special case of it in Section 3, and simmiation results in Section 4. Section
5 concludes the paper. Most of our proofs are included in pipeadix.

2 Partially Absorbing Random Walks

Let us consider a simple diffusion process illustrated g E{a). At the beginning, a unit flow (blue)
is injected to the graph at a selected vertex. After one stpg of the flow (red) is “stored” at the
vertex while the rest (blue) propagates to its neighborseiéker the flow passes a vertex, some
fraction of it is retained at that vertex. As this processtoares, the amount of flow stored in each
vertex will accumulate and there will be less and less flowrlgining on the graph. After a certain
number of steps, there will be almost no flow left running arelftow stored will nearly sum up to
1. The above diffusion process can be made precise in ternamddm walks, as shown below.

Consider a discrete-time stochastic procEss { X : ¢t > 0} on the state spad€ = {1,2,...,n},
where the initial stateX, is given, sayX, = 4, the next stateX; is determined by the tran5|t|0n
probabilityP(X; = j|Xo = ¢) = p;;, and the subsequent states are determined by the transition
probabilities

1, i=j,i=k,
]P(Xt+2 :j|Xt+1 - i7Xt - k) - { Oa l 7& ]aZ: ka . . (1)
]P(Xt+2 = J|Xt+1 = Z) = Pij, 1 # k,

wheret > 0. Note that the procesk is time homogeneouse., the transition probabilities in (1)
are independent af In other words, if the previous and current states are theesshe process
will remain in the current state forever. Otherwise, thetrs¢ate is conditionally independent of the
previous state given the current state, i.e., the procdss/es like a usual random walk.

To illustrate the above construction, consider Fig. 1(Artgg from state, there is some probabil-
ity p;; that the process will stay ain the next step; and once it stays, the process will be absorb
into statei. Hence, we shall call the above procegsaatially absorbing random walKPARW),
wherep;; is theabsorption rateof statei. If 0 < p;; < 1, then we say thatis apartially absorbing
state If p; = 1, then we say thatis afully absorbing stateFinally, if p;; = 0, then we say that

is atransient stateNote that ifp;; € {0, 1} for every staté € N, then the above process reduces to
a standard Markov chain [9].

A PARW is a second-order Markov chain completely specifieddfjrst order transition probabil-
ities {p;; }. One can observe that any PARW can be realized as a standakdWzain by adding



a sink (fully absorbing state) to each vertex in the graptillastrated in Fig. 1(c). The transition
probability froms to its sink:’ equals the absorption rapg; in PARWs. One may also notice that
the construction of PARWSs can be generalized torthéh order, i.e., the process is absorbed at a
state only after it has stayed at that staterfeconsecutive steps. However, it can be shown that any
m-th order PARW can be realized by a second-order PARW. Wenaillelaborate on this due to
space constraints.

2.1 PARWSs on Graphs

LetG = (V, W) be an undirected weighted graph, wheres a set ofn vertices andl’ = [w;;] €
R™*™ js a symmetric non-negative matrix of pairwise affinitiescenm vertices. We assunigis
connected. LeD = diag(dy,ds,...,d,) with d; = Ej w;; as the degree of vertéxand define
the Laplacian ofj by L = D — W [6]. Denote byd(S) := ), ¢ d; the volume of a subset C V
of vertices. Let\;, A2, ..., A\, > 0 be arbitrary, and set = diag(A1, \2,...,\,). Suppose that
we define the first order transition probabilities of a PARW by

Ni+d;° t=17

pii =19 w0 (2)
)\i‘i’.di y 7é J-

Then, we see that staiés an absorbing state (either partially or fully) whgn> 0, and is a transient

state when\; = 0. In particular, the matrix\ acts like a regularizer that controls the absorption rate

of each state, i.e., the larggy, the largem;;. In the sequel, we refer td as theregularizer matrix

Absorption Probabilities. We are interested in the probability; that a random walk starting from
states, is absorbed at stagein any finite number of steps. Let = [a;;] € R™*™ be the matrix of
absorption probabilities. The following theorem showg thdas a closed-form.

Theorem 2.1. Suppose\; > 0 for somei. ThenA = (A + L)~ !A.

Proof. Since\; > 0 for somes, the matrixA + L is positive definite and hence non-singular.
Moreover, the matrixA + D is non-singular, sinc® is non-singular. Thus, the matrix— (A +
D)~'W = (A + D)~Y(A + L) is also non-singular. Now, observe that the absorbing fitiias
{a;;} satisfy the following equationS'

I Wig .
A N -I—d +Z N+ a‘j17 (3)
ai; = Z—Ai+’diakj, i ] (4)
k#i
Upon writing equations (3) and (4) in matrix form, we have- (A + D)"'W)A = (A + D)~ !A,
whenced = (I — (A + D)"'W)=Y(A+ D)"'A = (A + D — W)~'A = (A + L)~ A. O

The following result confirms that is indeed a probability matrix.

Proposition 2.1. Suppose\; > 0 for somei. ThenA is a non-negative matrix with each row
summing up to 1.

By Proposition 2.1) , a;, = 1 for anyj. This means that a PARW starting from any vertex will
eventually be absorbed, provided that there is at leastlos@rbing state in the state space.

2.2 Limits of Absorption Probabilities

By Theorem 2.1, we see that the absorption probabilitidsafe governed by both the structure
of the graph [) and the regularizer matrixA(. It would be interesting to see how varies with
A, particularly when\;’'s become small which allows the flow to propagate sufficie(fig. 1(a)).
The following result shows that a% ()\;'s) vanishes, each row ol converges to a distribution

proportional to(A1, Az, ..., A, ), regardless of graph structure.
Theorem 2.2. Supposé\; > 0 for all 7. Then
lim (oA + L) *aA =1X", (5)
a—0+

where(A); = Xi/ (307, ). In particular, limg o1 (af + L)'l = +117.



Theorem 2.2 tells us that with = o and asaa — 0 a PARW will converge to the constant
distribution1/n, regardless of the starting vertex. At first glance, thistliseems meaningless.
However, the following lemma will show that it actually hadresting connections with™, the
pseudo-inverse of the graph Laplacian, a matrix that is lyigteidied and proven useful for many
learning tasks including recommendation and clusterihg [8

Proposition 2.2. Supposé\ = oI and denoted® := (A + L)"'A = (ol + L) 'a. Then,

. A —1L117
lim ——2—— = LT, (6)
a—0 6]

Proposition 2.2 gives a novel probabilistic interpretatis L. Note that by Theorem 2.240 :=
lima—0 A% = 2117, ThusL™ is the derivative 0fA” w.r.t. o ata = 0, implying thatL* reflects
the variation of absorption probabilities when the absomptate is very small. By (6), we see that
ranking by L™ is essentially the same as ranking 4y, whenq is sufficiently small.

2.3 Relations with Popular Ranking and Classification Moded

Relations with PageRank Vectors.Suppose\; > 0 for all j. Leta be the absorption probability
vector of a PARW starting from vertex Denote bys the indicator vector of, i.e.,s(i) = 1 and
s(j) =0forj #i. Thena” =s' (A + L)~!A, which can be rewritten as

a' =s"(A+ D) 'A+a’ AW (A + D) A 7)

By letting A = %D, we havea” = s + (1 — B)a” D~'W, which is exactly the equilibrium
equation for personalized PageRank [14]. Note thas$ often referred to as the “teleportation”
probability in PageRank. This shows that personalized Ragk is a special case of PARWSs with
absorption rates;; = 13- = 3.

Relations with Hitting and Commute Times. The hitting time H;; is the expected time that it
takes a random walk starting froirto first arrive atj, and the commute time’;; is the expected
time it takes a random walk starting frohto travel toj and back ta, which can be computed as

Hij = d(G)(L}; — L), Ciyj = Hyj + Hj = d(G)(Lf; + Lf; — 2L, (8)

whered(G) := ), d; denotes the volume of the graph. By (6), wher= ol anda is sufficiently
small, ranking wnhHw or C;; (say, with respect t0) is the same as ranking by;; — A7, or
A% + AG; — 2A7; respectively. This appears to be not particularly meamlrt@ﬁcause the termaJ

is the self- -absorption probability that does not contaip essential information with the starting
vertexi. Accordingly, it should not be included as part of the ragkianction with respect to.
This argument is also supported in a recent study by [16]ravtiee hitting and commute times are
shown to be dominated by the inverse of degrees of verticesthler words, they do not take into
account the graph structure at all. A remedy they propose flsrow away the diagonal terms of
LT and only use the off-diagonal terms. This happens to suggisg absorption probabilities for
ranking and as similarity measure, because whéensufficiently small, ranking by the off-diagonal
terms of L is essentially the same as ranking Ky, i.e., the absorption probability of starting
from i and being absorbed at Our theoretical anaflysis in Section 3 and the simulaticults in
Section 4 further confirm this argument.

Relations with Semi-supervised Learning. Interestingly, many label propagation algorithms in
semi-supervised learning can be cast in PARWs. The harnfonation method [20] is a PARW
when setting\; = oo (absorption rate 1) for the labeled vertices while= 0 (absorption rate 0) for
the unlabeled. In [19] the authors have made this interfoetan terms of absorbing random walks,
where a random walk arriving at an absorbing state will steye forever. PARWSs can be viewed
as an extension of absorbing random walks. The regulariaeddmic function method [5] is also a
PARW when setting\; = « for the labeled vertices whilg; = 0 for the unlabeled. The consistency
method [17], if using un-normalized Laplacian instead ofmalized Laplacian, is a PARW with
A = ol. Our analysis in this paper reveals several nice propentites case (Section 3). A variant
of this method is a PARW witth = oD, which is the same as PageRank as shown above. If we
add an additional sink to the graph, a variant of harmoniction method [10] and a variant of the
regularized harmonic function method [3] can all be incllids instances of PARWs. We omit the
details here due to space constraints.



Benefits of a Unifying View. We have shown that PARWSs can unify or relate many models from
different contexts. This brings at least two benefits. Fitsheds some light on existing models. For
instance, hitting and commute times are not suitable fd<irggiven its interpretation in absorption
probabilities, as discussed above. In the next section, Welvow that a special case of PARWS is
better suited for implementing the cluster assumption fapg-based learning. Second, a unifying
view builds bridges between different paradigms thus n@kieasier to transfer findings between
them. For example, it has been shown in [2, 4] that approxmpatsonalized PageRank vectors can
be computed irD(1/¢) iterations, where is a precision tolerance parameter. We indicate here that
such a technique is also applicable to PARWSs due to PARWSsisrgéizing nature. Consequently,
most models included in PARWSs can be substantially acaelérssing the same technique.

3 PARWSs with Graph Conductance

In this section, we present results on the properties of isergtion probability vectos; obtained
by a PARW starting from vertex (i.e., a; is the rowi of A). We show that properties cf;
relate closely to the connectivity betweémnd the rest of graph, which can be captured by the
conductance of the clust&r wherei belongs. We also find that properties &yf depend on the
setting of absorption rates. Our key results can be sumethasg follows. In general, the probability
mass ofa; is mostly absorbed byg. Under proper absorption rates;, can vary slowly withinS
while dropping sharply outsid§. Such properties are highly desirable for learning tasks sis
ranking, clustering, and classification.

w(S,S)
_ mingd(s),d(s))’
w(S,8) = Y jee(s,§) Wij 1S the cut betwees and its complemens [6]. We denote the
indicator vector ofS by x s such thatygs(i) = 1if ¢ € S andx (i) = 0 otherwise; and denote
the stationary distribution w.r.tS by ws such thatrs(i) = d;/d(S) if i € S andnws(i) = 0
otherwise. In terms of the conductance®fthe following theorem gives an upper bound on the
expected probability mass escaped fr8tif the distribution of the starting vertex #8s.

The conductance of a subs8t C V of vertices is defined a®&(S) = where

Theorem 3.1. Let S be any set of vertices satisfyigS) < 1d(G). Lety; = mines 2— and
Yo = MaX;c§ % Then,

9)

Theorem 3.1 shows that most of the probability mass will bsodied inS, provided thatS is of
small conductance and the random walk starts fémccording tors. In other words, a PARW
will be trapped inside the clustefrom where it starts, as desired. To identify the entiretelysvhat

is more desirable would be that the absorption probalslitigy slowly within the cluster while
dropping sharply outside. As such, the cluster can be ifiedtby detecting the sharp drop. We
show below that such property can be achieved by settingpppipte absorption rates at vertices.

3.1 PARWswithA = al

We will prove that the choice ak = «f can fulfill the above goal. Before presenting theoretical
analysis, let us discuss the intuition behind it from botwf(&ig. 1(a)) and random walk perspec-
tives. To vary slowly within the cluster, the flow needs to liributed evenly within it; while to
drop sharply outside, the flow must be prevented from esgaplihis means that the absorption
rates should be small in the interior but large near the bagnarea of the cluster. Settidg= o/
achieves this. It corresponds to the absorption rates kid = ot which decrease monoton-
ically with d;. Since the degrees of vertices are usually relatively lardgke interior of the cluster
due to denser connections, and small near its boundary Biga2(a)), the absorption rates are
therefore much larger at its boundary than in its interiag (E(b)). State differently, a random walk
may move freely inside the cluster, but it will get absorbdthvigh probability when traveling
near the cluster’'s boundary. In this way, the absorptiogsraet up a bounding “wall” around the
cluster to prevent the random walk from escaping, leadirgntabsorption probability vector that

1A cluster is understood as a subset of vertices of small azindue.
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Figure 2: Absorption rates and absorption probabiliti@d.A data set of three Gaussians with the
degrees of vertices in the underlying graph shown (see @edtifor the descriptions of the data
and graph construction). A starting vertex is denoted irlblkircle. (b—c) Absorption rates and
absorption probabilities foh = o (o = 1073). (d) Sorted absorption probabilities of (c). For
illustration purpose, in (a—b), the degrees of vertices thedabsorption rates have been properly
scaled, and in (c), the data are arranged such that poiritsweiach Gaussian appear consecutively.

varies slowly within the cluster while dropping sharply side (Figs. 2(c—d)), thus implementing
the cluster assumption. We make these arguments prece. bel

It is worth pointing out that a PARW with = «/ is symmetric, i.e., the absorption probability of
starting from; and absorbed gtis equal to the probability of starting frognand absorbed &t For
simplicity, we use the abbreviated notatiomo denotea;, the absorption probability vector for the
PARW starting from vertex. By (3) and the symmetry property, we immediately see shzas the
following “harmonic” property:

. i Wik . Wik L
= + E k = —" _a(k # 1. 10
a(i) N+ di 2 N dia( ), a(j) oy N +d, a(k), j#i (10)

We will use this property to prove some interesting resuitsother desirable property one should
notice for this PARW is that the starting vertex always haes ltrgest absorption probability, as
shown by the following lemma.

Lemma 3.2. GivenA = ol, thena;; > a;; for anye # j.

By Lemma 3.2 and without loss of generality, we assume thécesrare sorted so tha{l) >
a(2) > --- > a(n), where vertex 1 is the starting vertex. L&t be the set of vertice§l, ..., k}.
Denotee(S;, S;) as the set of edges betwegnands;.

The following theorem quantifies the drop of the absorptiarbpbilities betwees, andS.

Theorem 3.3. ForeveryS € {S; | k=1,2,...,n},

Z wyy (alu) —a(v)) = « (1 — Z a(j)) ) (11)

(u,v)€e(S,S) JjES

Theorem 3.3 shows that the weighted difference in absorgtiobabilities betweers,, andS;, is

e (1 — 25:1 a(j)) , implying that it drops slowly wher is small and a& increases, as expected.
Next we show the variation of absorption probabilities wittaph conductance. Without loss of
generality, we consider sef§ whered(S;) < 1d(G).

The following theorem says thatj + 1) will drop little from a(j) if the setS; has high conductance
or if the vertexj is far away from the starting vertex 1 (i.g.;> 1).

Lemma 3.4. If &(S;) = ¢, then

a (1 - i:l a(k:))
¢d(S;)

a(j+1) = a(j) - (12)

The above result can be extended to describe the drop in a hangkr range, as stated in the
following theorem.
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Figure 3: Absorption probabilities on the three Gaussian&ig. 2(a) with the starting vertex
10°,1072,1074,107°%,1078; (f—) A = aD,

a = 10°,1072,1074,1075,10~8. For illustration purpose, the data are arranged such thiatp
within each Gaussian appear consecutively, as in Fig. 2(c).

denoted in black circle.

(a—€e) = al, «

Table 1: Ranking results (MAP) on USPS
Digits 0 1 2 3 4 5 6 7 8 9 All
A=al 981 | .988 | .876 | .893 | .646 | .77/8 | .940 | .919 | .746 | .730 | .850
PageRank .886 | .972| .608 | .764 | .488 | .568 | .837 | .825| .626 | .702 | .728
Manifold Ranking | .957 | .987 | .827 | .827 | .467 | .630 | .917 | .822 | .675 | .719 | .783
Euclidean Distancg .640 | .980 | .318 | .499 | .337 | .294 | .548 | .620 | .368 | .480 | .508

Theorem 3.5. If ®(S;) > 2¢, then there exists & > j such that

o (1 - i:l a(k))
¢d(S;)

d(Sy) = (1 +)d(S;) and a(k) > a(j) -

Theorem 3.5 tells us that if the s&f has high conductance, then there will be a%einuch larger
thanS; where the absorption probabilityk) remains large. In other words (k) will not drop
much if S; is closely connected with the rest of graph. Combining Them 3.3, 3.5, and 3.1, we
see that the absorption probability vector of the PARW uite: ./ has the nice property of varying
slowly within the cluster while dropping sharply outside.

We remark that similar analyses have been conducted in fn 2Jersonalized PageRank, for the
local clustering problem [15] whose goal is to find a local afibow conductance near a specified
starting vertex. As shown in Section 2, personalized Pagkf&aa special case of PARWs with
A=aD = %D, which corresponds to setting the same absorptiongrate: S at each vertex.
This setting does not take advantage of the cluster assomptideed, despite the significant cluster
structure in the three Gaussians (Fig. 2), no clear drop geseoy varyings (Section 4). This
explains the “heuristic” used in [1, 2] where the persoraliPageRank vector is divided by the
degrees of vertices to generate a sharp drop. In contrasthoice ofA = «l appears to be more
justified, without the need of such post-processing whilaingng a probabilistic foundation.

4 Simulation

In this section, we demonstrate our theoretical resultsath synthetic and real data. For each data
set, a weighte@-NN graph is constructed with = 20. The similarity between verticesandj is
computed asv;; = exp(—d;; /o) if i is within j's k nearest neighbors or vice versa, ang = 0
otherwise {v;; = 0), wheres = 0.2 x r andr denotes the average square distance between each
point to its20th nearest neighbor.

The first experiment is to examine the absorption probadslivhen varying absorption rates. We
use the synthetic three Gaussians in Fig. 2(a), which censi®00 points from three Gaussians,
with 300 in each. Fig. 3 compares the cases\oE= of andA = aD (PageRank). We can



Table 2: Classification accuracy on USPS
HMN LGC A=aD A=al
782 £ .068 | .7924+.062 | .787 +.048 | .881 +.039

draw several observations. Far= «al, whene is large, most probability mass is absorbed in
the cluster of the starting vertex (Fig. 3(a)). As it becomegropriately small, the probability mass
distributes evenly within the cluster, and a sharp drop geefFig. 3(b)). Asx — 0, the probability
mass distributes more evenly within each cluster and algb@pntire graph (Figs. 3(c—e)), but the
drops between clusters are still quite significant. In astirforA = oD, no significant drops
show for alla’s (Figs. 3(f—j)). This is due to the uniform absorption st the graph, which
makes the flow favor vertices with denser connections @felarge degrees). These observations
support the theoretical arguments in Section 3 for PARWhA wit= ol and suggest its robustness
in distinguishing between different clusters.

The second experiment is to test the potential of PARWSs ffarination retrieval. We compare
PARWSs withA = «l to PageRank (i.e., PARWs with = «aD), Manifold Ranking [18], and
the baseline using Euclidean distance. For parametertisgiewve usea = 1076 for A = of
andg = 0.15 for PageRank (see Section 2.3) as suggested in [14]. Théaremgtion parameter
in Manifold Ranking is set to 0.99, following [18]. The imagenchmark USPSis used for this
experiment, which contains 9298 images of handwrittentgligom 0 to 9 of sizel6 x 16, with
1553, 1269, 929, 824, 852, 716, 834, 792, 708, and 821 iresavfceach digit respectively. Each
instance is used as a query and the mean average precisid?) (s¥eported. The results are shown
in Table 1. We see that the PARW with= «/ consistently gives best results for individual digits
as well as the entire data set.

In the last experiment, we test PARWSs on classification/ssmervised learning, also on USPS
with all 9298 images. We randomly sample 20 instances adedliata and make sure there is
at least one label for each class. For PARWSs, we classify aatdbeled instance to the class
of the labeled vertex wherewu is most likely to be absorbed, i.e:,= argmax;c, a,; whereL
denotes the labeled data amg is the absorption probability. We compare PARWSs with= o/

(a« = 1075 andA = aD (B8 = 0.15) to the harmonic function method (HMN) [20] coupled
with class mass normalization (CMN) and the local and glabakistency (LGC) method [17]. No
parameter in HMN is required, and the regularization patame LGC is set to 0.99 following [17].
The classification accuracy averaged over 1000 runs is slowable 2. Again, it confirms the
superior performance of the PARW with= al.

In the second and third experiments, we also tried othempeter settings for methods where ap-
propriate. We found that the performance of PARWs with= o] is quite stable with smalk, and
varying parameters in other methods did not lead to sigmifigdetter results, which validates our
previous arguments.

5 Conclusions

We have presented partially absorbing random walks (PARSMS)vel stochastic process generaliz-
ing ordinary random walks. Surprisingly, it has been shawwartify or relate many popular existing
models and provide new insights. Moreover, a new algoritlewetbped from PARWSs has been
theoretically shown to be able to reveal cluster structungen the cluster assumption. Simulation
results have confirmed our theoretical analysis and suggést potential for a variety of learning
tasks including retrieval, clustering, and classificatibmfuture work, we plan to apply our model
to real applications.
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Appendix

Lemma 5.1. Suppose\; > 0 for somei. Then any eigenvalue of the mat(ix + D)~'W is of
magnitude less than 1.

Proof. LetC = (A+ D)~'W. SinceC is similar to the symmetric real matrpd + D)~ 1/2W (A +
D)~1/2, the eigenvalues af' are real. Let be any ofC’s eigenvalues. We claim that| < 1. Let

u = (ui,us,...,u,) , Whereu; € Rfori =1,2,... n, be the nonzero eigenvector associated
with v. Observe thatC is nonnegative and the sum of each rom®fs less than or equal to 1.
Since); > 0 for somes, the sum of the-th row of C' is less than 1. Ifu;| = max;{|u;|}, then
lvw;| = |C(4,:)u| < |u,l, yielding |v| < 1. Otherwise, there must beka# 4, |u,| = max;{|u;|}

and |ug| > |u;|- Itis not difficult to see that(k,:)u # wvuy if |v| > 1, which contradicts the
assumption that'u = vu. Therefore, we conclude that| < 1. O

Lemma 5.2. Suppose,; > 0 for somei. Then,

(A+L)7'A =) (A+D)"'W)"(A+ D)~ "A. (13)

t>0

Proof. (A+L)™" = (A+D-W)™"' = ([T - A+ D)7'"W)""(A+D)™" = 3 5,((A+
D)~W)!(A + D)~!, where the last equation follows from Lemma 5.1. O

Proof of Proposition 2.1. The non-negativity ofd follows directly from Lemma 5.2 since each
matrix in the summation is non-negative. Denbteas the all-one vector ar@}, as the zero vector.
SinceA + L is nonsingular, it suffices to show thgt + L)(A1,, — 1,,) = 0,. This follows by
plugginginA = (A + L)~'A and using the fact that1,, = 0,,. O

Proof of Theorem 2.2. Note thatA~! L is similar to the symmetric and positive semi-definite matri
L = A~Y2LA=1/2. Thus they share the same real eigenvalues.ZLet UEU " be the eigen-
decomposition of. with eigenvalue® = v; < v < .-+ < v, (72 > 0 due to the connectivity of
the graph). TherA ~! L has the following eigen-decomposition:

AT'L=VEV, V=AU (VI =UTAY?),

and
1 «
A+ L taA=T+ =AD" '=VE VL E, = diag(l . (14
(A L) Nak = (T4 AL = VEV T By = diag(l, S ). (14)
Thus
lim (aA +L)"'aA = AU (1)U 1) AV = 1", (15)
a—
where in the last equation we have used the factlifatl) = (—2_, ... 2w T O
q Gtatl) (\/zm’ 7\/&&)

Proof of Proposition 2.2. Let L = UEU' be the eigen-decomposition df, where U =
(u,...,u,) is the orthonormal eigenvector matrix afl = diagy1,7v2,.--,7), 0 = M1 <
v2 < --- < ,, is the associated eigenvalue matrix. It is well-known ihat= 1/,/n. A* can be
factorized as

1
A% = (ol + L) 'a =uu] + O‘Z wu, . (16)
o Ot
(6) follows fromu;u = 1117 andlima—04 Y1 ﬁuiuf =Lt. O

Denoted = (di,ds,...,d,)" as the vector of vertex degrees. [Rt= D~'WV.
Lemma5.3. If v < 8d, thenPTv < gd.



Proof. PTv =WD~'v < gWD~'d = W1 = fd. O

Lemma 5.4. Supposel(S) < 1d(G). Theny [P ws = ©(S).

Proof. x[ P ms =X WD 'ms = 7sxIWxs = 435 = 0(S). O

Lemma 5.5. Supposeé(S) < 3d(G). Then,

xsP'Tms <t®(S). (17)

Proof. By Lemma 5.4, (17) holds when= 1. Assume it holds fot = k. By induction, it suffices
to show it holds fott = k£ + 1. Note that

X}:P(kﬂ) TS <X5P V5—|-XTPkT7T5, (18)

wherevs denotes the vectoP* " s restricted onS, i.e., vs(i) = (P*Txs)(i) if i € S and
vs(i) = 0 otherwise. Sincers < isyd, we haveP"'mrs < zisd by Lemma 5.3. Thus
vs < s becausers equals; )d restricted onS. Thereforex L PTvs < xi P ms = ®(S) by
Lemma 5.4, yleldlngcTP(’*H)ng < O(S) + kD(S) = (k+1)2(S). O

Proof of Theorem 3.1.

msAxs = w5y [(A+D)'WI'(A+ D) ' Axs (19)
t>0
= w5 > [(A+D)"'DD'WI'(A+ D)~ Axs (20)
t>0
d; A
< 7k t : 5 21
< ws (r?eastJrA )IglgdmL/\ixS (21)
Y2 T t
= — P)'xs 22
1+’72 Z% +71 J'xs (22)
= SN ymlPxs (23)
1+ = T+m
2 1 t
< td(S 24
< 1+v2;(1+71) (8) (24)
Y2 l1+m
= d(S), 25
T, ) (25)
where (19) and (24) follow from Lemmas 5.2 and 5.5, respelstiv O

Proof of Lemma 3.2. Note thatB := ol + D — W is symmetric and strictly diagonal dominant,
1., bur > 3,y [bre| fOr anyk, £, k # (. Assume, to the contrary, there existg, i # j, such
thata,; < a;;. Denotek = argmaxyy; a;. Then byBA = oI, we have) = B(i,:)A(:, k) =
Do bicam = biain + 3004 bicare > biiair — 3 g4 [bielai = (bii — D44 [bie)aie > 0. This
contradicts the assumption, and thus completes the proof. O

Proof of Theorem 3.3. We first show that (11) holds f&f = S;. By (10),

Wik
a(l) = dl —|—a dl +a = (d1 + @)a(l) = a—l—kzN:lwlka (26)
= Y _wix(a(l) —a(k)) = a(l —a(1)). (27)

10



Assume (11) holds fof = S;_;. By induction, it suffices to show (11) holds f6r= S;. Note that

> weo (a(u) —a()) = Y wuw (alu) —a(v)) (28)

(u,v)€e(S;j—1,Sj-1) (u,v)€e(S;,85)

= Y wulaw) -al) - D wilal) - a) (29)
u~ju€S 1 v~jvES;
= iju(a(u) —a(j)) = ijua(u) —d;a(j) (30)
= (dj + a)a(j) —d;a(j) = aa(j), (31)
where in (31) we have used (10). Therefore
Y. ww(a(w) -a() = > wuy (a(u) —a(v)) —ca(j)  (32)

(u,v)€e(S;,S;) (u,v)€e(Sj-1,S5-1)

=« (1 - Z a(k)) —aa(j) =« (1 - Z a(k)) . (33)

k€S;—1 keS;

O

Proof of Theorem 3.4. By Theorem 3.3,

\%

a (1 —Za<k>> = Y wela@ -a®) > w(S.8)a0) - al + 1) (34)

k=1 (u,v)€e(S;,8;)
= ¢d(S;)(a(j) —a(j +1)). (35)
O
Proof of Theorem 3.5. Observe thatl(G) — d(S;) > w(S;,S;) > 2¢d(S;). This shows that
d(G) = (1+2¢)d(S;).

Now letk be the least integer such thiS,—1) < d(S;)(1 + ¢) < d(Sk). Then the cut between
S; andSy,_, satisfies

w(S;, Sp—1) > w(S;,8;) — d(Sk—1\S;) > 2¢d(S;) — ¢d(S;) = ¢pd(S;). (36)
By Theorem 3.3,

o (1 - Za(k)) = > wwlalu) - a(v)) (37)
k

=1 (uw)€e(S;,5;5)

> > Wy (a(u) — a(v)) (38)
(u,v)Ee(Sj,S'k_l)

> w(S;, S-1)(alj) —a(k)) (39)

> ¢d(S;)(a(j) — a(k)). (40)

o
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