
Supplementary Material for Efficient Monte Carlo
Counterfactual Regret Minimization in Games with

Many Player Actions

Richard Gibson, Neil Burch, Marc Lanctot, and Duane Szafron
Department of Computing Science, University of Alberta

Edmonton, Alberta, T6G 2E8, Canada
{rggibson | nburch | lanctot | dszafron}@ualberta.ca

1 Introduction

This supplementary material proves Theorems 4, 5, and 6 from the paper Efficient Monte Carlo
Counterfactual Regret Minimization in Games with Many Player Actions and proves that Average
Strategy Sampling (AS) exhibits the same regret bound given by Theorem 6.

2 Preliminaries

We begin by providing additional notation and definitions. For a history h′ ∈ H , we say that
the history h is a prefix of h′, written h v h′, if h′ begins with the sequence h. For a history
h ∈ Hi and a strategy profile σ ∈ Σ, let I(h) be the information set containing h and denote
σ(h, ·) = σ(I(h), ·). Similar to the definition of πσ(h, h′), let πσi (h, h′) and πσ−i(h, h

′) be the
probability contributed from player i and from all players/chance other than i respectively of history
h′ occurring after history h, given that history h has occurred. Furthermore, for I ∈ Ii, define
πσ−i(I) =

∑
h∈I π

σ
−i(h).

Define the counterfactual value for player i at h under σ to be

vi(h, σ) =
∑
z∈Z
hvz

πσ−i(h)πσ(h, z)ui(z).

Notice that for I ∈ Ii, perfect recall implies that

vi(I, σ) =
∑
h∈I

vi(h, σ). (1)

In addition, for h ∈ Hi and a strategy σ′i ∈ Σi, define

RTi (h, σ′i) =

T∑
t=1

(vi(h, σ
t
(I(h)→σ′i)

)− vi(h, σti))

to be the counterfactual regret at h for σ′
i, where σ(I→σ′i) is the strategy profile σ except at I , we

follow σ′i. Note that by (1),
RTi (I, σ′i) =

∑
h∈I

RTi (h, σ′i). (2)

Furthermore, define the full counterfactual regret at h for σ′
i to be

RTi,full(h, σ
′
i) =

T∑
t=1

(vi(h, (σ
′
i, σ

t
−i))− vi(h, σt)).
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The full counterfactual regret measures how much we wish we had played σ′i at every history from
h on, rather than playing σt at every time step. Notice that the regret RTi = maxσ′i∈Σi

RTi,full(∅, σ′i),
where ∅ is the root of the game.

We now need some notation regarding reachable histories. Firstly, defineHi = {h ∈ H | P (h) = i}
to be the set of all histories belonging to player i. Next, for h ∈ Hi, define

Succ1(h) = {h′ ∈ Hi | h @ h′ and @h′′ ∈ Hi such that h @ h′′ @ h′}

to be the set of all possible next histories for player i before taking another action. For an integer
` > 1, we recursively define

Succ`(h) =
⋃

h′∈Succ`−1(h)

Succ1(h′)

to be the set of all possible histories of player i reachable after exactly ` more actions by player i.
Similarly, let

Z1(h) = {z ∈ Z | h @ z and @h′ ∈ Hi such that h @ h′ @ z}
be the set of all terminal histories where player i’s last action was at h. Finally, define

D(h) = {h} ∪
⋃
`≥1

Succ`(h)

to be the set of all nonterminal histories for player i descending from h.

3 Proof of Theorems 4, 5, and 6

Lemma A. For h ∈ Hi and σ′i ∈ Σi,

RTi,full(h, σ
′
i) =

∑
h′∈D(h)

πσ
′

i (h, h′)RTi (h′, σ′i).

Proof. The proof is by strong induction on |D(h)|. Note that the base case D(h) = {h} is trivial
sinceRTi,full(h, σ

′
i) = RTi (h, σ′i). For the induction step, assume that the lemma holds for all h′ ∈ Hi

with |D(h′)| < |D(h)|. To complete the proof, we must show that the lemma holds for h. To start,

RTi,full(h, σ
′
i) =

T∑
t=1

vi(h, (σ
′
i, σ

t
−i))−

T∑
t=1

vi(h, σ
t)

=

T∑
t=1

∑
a∈A(h)

σ′i(h, a)vi(h, (σ
′
i(I(h)→a), σ

t
−i))−

T∑
t=1

vi(h, σ
t)

=
∑

a∈A(h)

σ′i(h, a)

T∑
t=1

 ∑
z∈Z1(h)
havz

πσ
t

−i(z)ui(z)

+
∑

h′∈Succ1(h)
havh′

vi(h
′, (σ′i, σ

t
−i))

−
T∑
t=1

vi(h, σ
t). (3)

Now, notice that for all h′ ∈ Succ1(h), D(h′) ⊂ D(h) and h /∈ D(h′), and so |D(h′)| < |D(h)|
for all h′ ∈ Succ1(h). Therefore, we may apply the induction hypothesis to each h′ ∈ Succ1(h),
giving us

T∑
t=1

vi(h
′, (σ′i, σ

t
−i)) = RTi,full(h

′, σ′i) +

T∑
t=1

vi(h
′, σt)

2



=
∑

h′′∈D(h′)

πσ
′

i (h′, h′′)RTi (h′′, σ′i) +

T∑
t=1

vi(h
′, σt)

for all h′ ∈ Succ1(h). Substituting this into (3), after changing the order of summation, gives

RTi,full(h, σ
′
i) =

∑
a∈A(h)

σ′i(h, a)

 T∑
t=1

∑
z∈Z1(h)
havz

πσ
t

−i(z)ui(z)

+
∑

h′∈Succ1(h)
havh′

 ∑
h′′∈D(h′)

πσ
′

i (h′, h′′)RTi (h′′, σ′i) +

T∑
t=1

vi(h
′, σt)




−
T∑
t=1

vi(h, σ
t)

=
∑

a∈A(h)

σ′i(h, a)

T∑
t=1

vi(h, σ
t
(I(h)→a))−

T∑
t=1

vi(h, σ
t)

+
∑

a∈A(h)

σ′i(h, a)
∑

h′∈Succ1(h)
havh′

∑
h′′∈D(h′)

πσ
′

i (h′, h′′)RTi (h′′, σ′i)

=
∑

a∈A(h)

σ′i(h, a)RTi (h, a) +
∑

h′∈D(h)
h′ 6=h

πσ
′

i (h, h′)RTi (h′, σ′i)

=
∑

h′∈D(h)

πσ
′

i (h, h′)RTi (h′, σ′i),

completing the proof. �
Theorem 4.

RTi =
∑
I∈Ii

πσ
∗

i (I)RTi (I, σ∗i ).

Proof. We may assume that player i acts at the root of the game, ∅; otherwise, we may append a
new root to the game that belongs to player i, is contained in a new, singleton information set, and
has one action leading to the old root. Then,

RTi = max
σ′i∈Σi

T∑
t=1

(ui(σ
′
i, σ

t
−i)− ui(σti , σt−i))

= RTi,full(∅, σ∗i )

=
∑

h∈Hi\Z

πσ
∗

i (h)RTi (h, σ∗i ) by Lemma A

=
∑
I∈Ii

∑
h∈I

πσ
∗

i (h)RTi (h, σ∗i )

=
∑
I∈Ii

πσ
∗

i (I)
∑
h∈I

RTi (h, σ∗i ) due to perfect recall

=
∑
I∈Ii

πσ
∗

i (I)RTi (I, σ∗i ),

where the last line follows by equation (2). �
Theorem 5. When using vanilla CFR, average regret is bounded by

RTi
T
≤

∆iMi(σ
∗
i )
√
|Ai|√

T
.
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Proof. Following the proof of Theorem 2 [10],

RTi =
∑
I∈Ii

πσ
∗

i (I)RTi (I, σ∗i ) by Theorem 4

=
∑
I∈Ii

πσ
∗

i (I)
∑

a∈A(I)

σ∗i (I, a)RTi (I, a)

=
∑
I∈Ii

πσ
∗

i (I) max
a∈A(I)

RTi (I, a)

≤
∑
I∈Ii

πσ
∗

i (I)

√ ∑
a∈A(I)

T 2(RT,+i (I, a)/T )2

≤
∑
I∈Ii

πσ
∗

i (I)∆i

√
|A(I)|

√√√√ T∑
t=1

(πσ
t

−i(I))2

by Theorem 6 of [10] with ∆t = ∆iπ
σt

−i(I)

≤ ∆i

√
|Ai|

∑
B∈Bi

πσ
∗

i (B)
∑
I∈B

√√√√ T∑
t=1

(πσ
t

−i(I))2

≤ ∆i

√
|Ai|

∑
B∈Bi

πσ
∗

i (B)

√√√√|B| T∑
t=1

∑
I∈B

πσ
t

−i(I)

by Lemma 6 of [10]

≤ ∆i

√
|Ai|

∑
B∈Bi

πσ
∗

i (B)
√
|B|T by Lemma 16 of [10]

= ∆i

√
|Ai|TMi(σ

∗
i ).

Dividing both sides by T gives the result. �

We now prove a general, probabilistic bound that can be applied to any MCCFR sampling algorithm.
We then use this bound to prove Theorem 6 and a similar bound for AS.
Lemma B. Let p, δ ∈ (0, 1]. When using any MCCFR algorithm, if

∑
I∈B

 ∑
z∈Q∩ZI

πσ
t

(z[I], z)πσ
t

−i(z[I])

q(z)

2

≤ 1

δ2

for all Q ∈ Q, B ∈ Bi, and t ≤ T , then with probability at least 1 − p, average regret is bounded
by

RTi
T
≤

(
Mi(σ

∗
i ) +

√
2|Ii||Bi|√

p

)(
1

δ

)
∆i

√
|Ai|√
T

.

Proof. Our proof follows that of Theorem 7 in [10]. To start, define

∆t
i(I) = ∆i

∑
z∈Q∩ZI

πσ
t

(z[I], z)πσ
t

−i(z[I])

q(z)

so that the difference between two sampled counterfactual values at information set I is bounded by

ṽi(I, σ
t
(I→a))− ṽi(I, σ

t
(I→b)) ≤ ∆t

i(I)

for all a, b ∈ A(I). By our assumption, we then have∑
I∈B

(∆t
i(I))2 ≤ (∆i)

2

δ2
(4)
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for all B ∈ Bi.
Define RTi (I) = maxa∈A(I)R

T
i (I, a) and R̃Ti (I) = maxa∈A(I) R̃

T
i (I, a). The proof will proceed

as follows. First, we prove a bound on the weighted sum of the cumulative sampled counterfac-
tual regrets

∑
I∈I π

σ∗

i (I)R̃Ti (I). Secondly, we prove a probabilistic bound on the expected squared
difference between

∑
I∈Ii π

σ∗

i (I)RTi (I) and
∑
I∈I π

σ∗

i (I)R̃Ti (I), showing that the true counter-
factual regrets are not too far from the sampled counterfactual regrets. Finally, we apply Theorem 4
to obtain the bound on the average regret.

For the first step,

∑
I∈Ii

πσ
∗

i (I)R̃Ti (I) ≤
∑
I∈Ii

πσ
∗

i (I)

√√√√√T 2
∑

a∈A(I)

(
R̃T,+i (I, a)

T

)2

≤
∑
I∈Ii

πσ
∗

i (I)

√√√√|A(I)|
T∑
t=1

(∆t
i(I))2

by Theorem 6 of [10]

≤
√
|Ai|

∑
B∈Bi

πσ
∗

i (B)
∑
I∈B

√√√√ T∑
t=1

(∆t
i(I))2

≤
√
|Ai|

∑
B∈Bi

πσ
∗

i (B)

√√√√|B| T∑
t=1

∑
I∈B

(∆t
i(I))2

by Lemma 5 of [10]

≤
√
|Ai|

∑
B∈Bi

πσ
∗

i (B)

√
|B|T (∆i)2

δ2
by equation (4)

=
∆iMi(σ

∗
i )
√
|Ai|T

δ
. (5)

Secondly, for I ∈ Ii,

(
RTi (I)− R̃Ti (I)

)2

=

(
max
a∈A(I)

T∑
t=1

rti(I, a)− max
a∈A(I)

T∑
t=1

r̃ti(I, a)

)2

≤

(
max
a∈A(I)

T∑
t=1

(
rti(I, a)− r̃ti(I, a)

))2

≤ max
a∈A(I)

(
T∑
t=1

(
rti(I, a)− r̃ti(I, a)

))2

≤
∑

a∈A(I)

[
T∑
t=1

(
rti(I, a)− r̃ti(I, a)

)2
+2

T∑
t=1

T∑
t′=t+1

(
rti(I, a)− r̃ti(I, a)

) (
rt
′

i (I, a)− r̃t
′

i (I, a)
)]

. (6)

We now multiply both sides by (πσ
∗

i (I))2 and take the expectation of both sides. Note that

E
[(
rti(I, a)− r̃ti(I, a)

) (
rt
′

i (I, a)− r̃t
′

i (I, a)
)]

= E
[
E
[
(rt
′

i (I, a)− r̃t
′

i (I, a)) | rti(I, a), r̃ti(I, a)
] (
rti(I, a)− r̃ti(I, a)

)]
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and that E
[
(rt
′

i (I, a)− r̃t′i (I, a)) | rti(I, a), r̃ti(I, a)
]

= 0 since for t′ > t, r̃t
′

i is an unbiased esti-

mate of rt
′

i given σt
′
. Thus from equation (6), we have

E
[
(πσ

∗

i (I))2
(
RTi (I)− R̃Ti (I)

)2
]
≤

∑
a∈A(I)

T∑
t=1

E
[
(πσ

∗

i (I))2
(
rti(I, a)− r̃ti(I, a)

)2]

≤
∑

a∈A(I)

T∑
t=1

E
[(
rti(I, a)

)2
+
(
r̃ti(I, a)

)2]

≤
∑

a∈A(I)

T∑
t=1

[(
πσ

t

−i(I)
)2

∆2
i +

(
∆t
i(I)

)2]
. (7)

We can now bound the expected squared difference between
∑
I∈Ii π

σ∗

i (I)RTi (I) and∑
I∈Ii π

σ∗

i (I)R̃Ti (I) by

E

(∑
I∈Ii

πσ
∗

i (I)
(
RTi (I)− R̃Ti (I)

))2


≤ E

(∑
I∈Ii

∣∣∣πσ∗i (I)
(
RTi (I)− R̃Ti (I)

)∣∣∣)2


≤ E


√|Ii|∑

I∈Ii

∣∣∣πσ∗i (I)
(
RTi (I)− R̃Ti (I)

)∣∣∣2
2


by Lemma 5 of [10]

= |Ii|
∑
I∈Ii

E
[(
πσ
∗

i (I)
)2 (

RTi (I)− R̃Ti (I)
)2
]

≤ |Ii|
∑
I∈Ii

∑
a∈A(I)

T∑
t=1

[(
πσ

t

−i(I)
)2

∆2
i +

(
∆t
i(I)

)2]
by equation (7)

≤ |Ii||Ai|
∑
B∈Bi

T∑
t=1

[∑
I∈B

(
πσ

t

−i(I)
)2

∆2
i +

∑
I∈B

(
∆t
i(I)

)2]

≤ |Ii||Ai|
∑
B∈Bi

T∑
t=1

[
∆2
i +

∆2
i

δ2

]
by Lemma 16 of [10] and equation (4)

≤ 2|Ii||Ai||Bi|T∆2
i

δ2
(8)

Finally, with probability 1− p, we can bound the regret by

RTi =
∑
I∈Ii

πσ
∗

i (I)RTi (I) by Theorem 4

=
∑
I∈Ii

πσ
∗

i (I)
(
RTi (I)− R̃Ti (I) + R̃Ti (I)

)
≤

∣∣∣∣∣∑
I∈Ii

πσ
∗

i (I)
(
RTi (I)− R̃Ti (I)

)∣∣∣∣∣+
∑
I∈Ii

πσ
∗

i (I)R̃Ti (I)
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≤ 1
√
p

√√√√√E

(∑
I∈Ii

πσ
∗
i (I)

(
RTi (I)− R̃Ti (I)

))2
+

∆iMi(σ
∗
i )
√
|Ai|T

δ

by Lemma 2 of [10] and equation (5)

≤

(√
2|Ii||Bi|√

p
+Mi(σ

∗
i )

)(
1

δ

)
∆i

√
|Ai|T

by equation (8). Dividing both sides by T gives the result. �
Theorem 6′. Let X be one of CS, ES, OS (assuming OS samples opponent actions according to
σ−i), or AS, let p ∈ (0, 1], and let δ = minz∈Z qi(z) > 0 over all 1 ≤ t ≤ T . When using X , with
probability 1− p, average regret is bounded by

RTi
T
≤

(
Mi(σ

∗
i ) +

√
2|Ii||Bi|√

p

)(
1

δ

)
∆i

√
|Ai|√
T

.

Proof. By Lemma B, it suffices to show that

Y =
∑
I∈B

 ∑
z∈Q∩ZI

πσ
t

(z[I], z)πσ
t

−i(z[I])

q(z)

2

≤ 1

δ2

for all B ∈ Bi, Q ∈ Q, and t ≤ T . To that end, fix B ∈ Bi, Q ∈ Q, and t ≤ T . Since X samples
a single action at each h ∈ Hc according to σc, there exists a unique a∗h ∈ A(h) such that if z ∈ Q
and h v z, then ha∗h v z. Consider the new chance probability distribution σ̂c defined according to

σ̂c(h, a) =

{
1 if a = a∗h
0 if a 6= a∗h

for all h ∈ Hc, a ∈ A(h). When X 6= CS, we also have a unique such action a∗I for each I ∈ I−i
sampled according to σt−i, so we can similarly define the new opponent profile σ̂−i according to

σ̂−i(I, a) =

 σt−i(I, a) if X = CS
1 if X 6= CS and a = a∗I
0 if X 6= CS and a 6= a∗I

for all I ∈ I−i, a ∈ A(I). Then

Y =
∑
I∈B

 ∑
z∈Q∩ZI

πσ
t

i (z[I], z)πσ
t

−i(z)

q(z)

2

=
∑
I∈B

(∑
z∈ZI

πσ
t

i (z[I], z)πσ̂−i(z)

qi(z)

)2

≤ 1

δ2

∑
I∈B

(∑
z∈ZI

πσ̂−i(z)

)2

=
1

δ2

∑
I∈B

(
πσ̂−i(I)

)2
≤ 1

δ2
,

where the last line follows by Lemma 16 of [10]. �
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