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Abstract

The primary application of collaborate filtering (CF) is to recommend a small set
of items to a user, which entails ranking. Most approaches, however, formulate the
CF problem as rating prediction, overlooking the ranking perspective. In this work
we present a method for collaborative ranking that leverages the strengths of the
two main CF approaches, neighborhood- and model-based. Our novel method is
highly efficient, with only seventeen parameters to optimize and a single hyperpa-
rameter to tune, and beats the state-of-the-art collaborative ranking methods. We
also show that parameters learned on datasets from one item domain yield excel-
lent results on a dataset from very different item domain, without any retraining.

1 Introduction

Collaborative Filtering (CF) is a method of making predictions about an individual’s preferences
based on the preference information from many users. The emerging popularity of web-based ser-
vices such as Amazon, YouTube, and Netflix has led to significant developments in CF in recent
years. Most applications use CF to recommend a small set of items to the user. For instance, Ama-
zon presents a list of top-T products it predicts a user is most likely to buy next. Similarly, Netflix
recommends top-T movies it predicts a user will like based on his/her rating and viewing history.

However, while recommending a small ordered list of items is a ranking problem, ranking in CF has
gained relatively little attention from the learning-to-rank community. One possible reason for this
is the Netflix[3] challenge which was the primary venue for CF model development and evaluation
in recent years. The challenge was formulated as a rating prediction problem, and almost all of the
proposed models were designed specifically for this task, and were evaluated using the normalized
squared error objective. Another potential reason is the absence of user-item features. The standard
learning-to-rank problem in information retrieval (IR), which is well explored with many powerful
approaches available, always includes item features, which are used to learn the models. These
features incorporate a lot of external information and are highly engineered to accurately describe
the query-document pairs. While a similar approach can be taken in CF settings, it is likely to be
very time consuming to develop analogous features, and features developed for one item domain
(books, movies, songs etc.) are likely to not generalize well to another. Moreover, user features
typically include personal information which cannot be publicly released, preventing open research
in the area. An example of this is the second part of the Netflix challenge which had to be shut down
due to privacy concerns. The absence of user-item features makes it very challenging to apply the
models from the learning-to-rank domain to this task. However, recent work [23, 15, 2] has shown
that by optimizing a ranking objective just given the known ratings a significantly higher ranking
accuracy can be achieved as compared to models that optimize rating prediction.

Inspired by these results we propose a new ranking framework where we show how the observed
ratings can be used to extract effective feature descriptors for every user-item pair. The features do
not require any external information and make it it possible to apply any learning-to-rank method to
optimize the parameters of the ranking function for the target metric. Experiments on MovieLens
and Yahoo! datasets show that our model outperforms existing rating and ranking approaches to CF.
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Moreover, we show that a model learned with our approach on a dataset from one user/item domain
can then be applied to a different domain without retraining and still achieve excellent performance.

2 Collaborative Ranking Framework

In a typical collaborative filtering (CF) problem we are given a set of N users U = {u1, ..., uN}
and a set of M items V = {v1, ..., vM}. The users’ ratings of the items can be represented by an
N×M matrix R where R(un, vm) is the rating assigned by user un to item vm and R(un, vm) = 0
if vm is not rated by un. We use U(vm) to denote the set of all users that have rated vm and V(un)
to denote the set of items that have been rated by un. We use vector notation: R(un, :) denotes the
n’th row of R (1×M vector), and R(:, vm) denotes the m’th column (N × 1 vector).

As mentioned above, most research has concentrated on the rating prediction problem in CF where
the aim is to accurately predict the ratings for the unrated items for each user. However, most appli-
cations that use CF typically aim to recommend only a small ranked set of items to each user. Thus
rather than concentrating on rating prediction we instead approach this problem from the ranking
viewpoint and refer to it as Collaborative Ranking (CR). In CR the goal is to rank the unrated items
in the order of relevance to the user. A ranking of the items V can be represented as a permutation
π : {1, ...,M} → {1, ...,M} where π(m) = l denotes the rank of the item vm and m = π−1(l). A
number of evaluation metrics have been proposed in IR to evaluate the performance of the ranking.
Here we use the most commonly used metric, Normalized Discounted Cumulative Gain (NDCG)
[12]. For a given user un and ranking π the NDCG is given by:

NDCG(un, π,R)@T =
1

GT (un,R)

T∑
t=1

2ˆR(un, vπ−1(t))− 1

log(t+ 1)
(1)

where T is a truncation constant, vπ−1(t) is the item in position t in π and GT (un,R) is a normal-
izing term which ensures that NDCG ∈ [0, 1] for all rankings. T is typically set to a small value
to emphasize that the user will only be shown the top-T ranked items and the items below the top-T
are not evaluated.

3 Related Work

Related work in CF and CR can be divided into two categories: neighborhood-based approaches and
model-based approaches. In this section we describe both types of models.

3.1 Neighborhood-Based Approaches

Neighborhood-based CF approaches estimate the unknown ratings for a target user based on the
ratings from the set of neighborhood users that tend to rate similarly to the target user. Formally,
given the target user un and item vm the neighborhood-based methods find a subset of K neighbor
users who are most similar to un and have rated vm, i.e., are in the set U(vm) \ un. We use
K(un, vm) ⊆ U(vm) \ un to denote the set of K neighboring users. A central component of these
methods is the similarity function ψ used to compute the neighbors. Several such functions have
been proposed including the Cosine Similarity [4] and the Pearson Correlation [20, 10]:

ψcos(un, u
′) =

R(un, :) ·R(u′, :)T

‖R(un, :)‖‖R(u′, :)‖ ψpears(un, u
′) =

(R(un, :)− µ(un)) · (R(u′, :)− µ(u′))T

‖R(i, :)− µ(un)‖‖R(u′, :)− µ(u′)‖

where µ(un) is the average rating for un. Once the K neighbors are found the rating is predicted
by taking the weighted average of the neighbors’ ratings. An analogous item-based approach [22]
can be used when the number of items is smaller than the number of users.

One problem with the neighborhood-based approaches is that the raw ratings often contain user bias.
For instance, some users tend to give high ratings while others tend to give low ones. To correct for
these biases various methods have been proposed to normalize or center the ratings [4, 20] before
computing the predictions.

Another major problem with the neighborhood-based approaches arises from the fact that the ob-
served rating matrix R is typically highly sparse, making it very difficult to find similar neighbors
reliably. To addresss this sparsity, most methods employ dimensionality reduction [9] and data
smoothing [24] to fill in some of the unknown ratings, or to cluster users before computing user
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similarity. This however adds computational overhead and typically requires tuning additional pa-
rameters such as the number of clusters.

A neighborhood-based approach to ranking has been proposed recently by Liu & Yang [15]. Instead
of predicting ratings, this method uses the neighbors of un to fill in the missing entries in theM×M
pairwise preference matrix Yn, where Yn(vm, vl) is the preference strength for vm over vl by
un. Once the matrix is completed an approximate Markov chain algorithm is used to infer the
ranking from the pairwise preferences. The main drawback of this approach is that the model is
not optimized for the target evaluation metric, such as NDCG. The ranking is inferred directly from
Yn and no additional parameters are learned. In general, to the best of our knowledge, no existing
neighborhood-based CR method takes the target metric into account during optimization.

3.2 Model-Based Approaches

In contrast to the neighborhood-based approaches, the model-based approaches use the observed
ratings to create a compact model of the data which is then used to predict the unobserved ratings.
Methods in this category include latent models [11, 16, 21], clustering methods [24] and Bayesian
networks [19]. Latent factorization models such as Probabilistic Matrix Factorization (PMF) [21]
are the most popular model-based approaches. In PMF every user un and item vm are represented
by latent vectors φ(un) and φ(vm) of length D. For a given user-item pair (un, vm) the dot product
of the corresponding latent vectors gives the rating prediction: R(un, vm) ≈ φ(un) · φ(vm). The
latent representations are learned by minimizing the squared error between the observed ratings and
the predicted ones.

Latent models have more expressive power and typically perform better than the neighborhood-
based models when the number of observed ratings is small because they are able to learn preference
correlations that extend beyond the simple neighborhood similarity. However, this comes at the cost
of a large number of parameters and complex optimization. For example, with the suggested setting
of D = 20 the PMF model on the full Netflix dataset has over 10 million parameters and is prone to
overfitting. To prevent overfitting the weighted `2 norms of the latent representations are minimized
together with the squared error during the optimization phase, which introduces additional hyper-
parameters to tune.

Another problem with the majority of the model-based approaches is that inference for a new
user/item is typically expensive. For instance, in PMF the latent representation has to be learned
before any predictions can be made for a new user/item, and if many new users/items are added the
entire model has to be retrained. On the other hand, inference for a new user in neighborhood-based
methods can be done efficiently by simply computing the K neighbors, which is a key advantage of
these approaches.

Several model-based approaches to CR have recently been proposed, notably CofiRank [23] and the
PMF-based ranking model [2]. CofiRank learns latent representations that minimize a ranking-based
loss instead of the squared error. The PMF-based approach uses the latent representations produced
by PMF as user-item features and learns a ranking model on these features. The authors of that
work also note that the PMF representations might not be optimal for ranking since they are learned
using a squared error objective which is very different from most ranking metric. To account for this
they propose an extension where both user-item features and the weights of the ranking function are
optimized during learning. Both methods incorporate NDCG during the optimization phase which is
a significant advantage over most neighborhood-based approaches to CR. However, neither method
addresses the optimization or inference problems mentioned above. In the following section we
present our approach to CR which leverages the advantages of both neighborhood and model-based
methods.

3.3 Learning-to-Rank

Learning-to-rank has received a lot of attention in the machine learning community due to its im-
portance in a wide variety of applications ranging from information retrieval to natural language
processing to computer vision. In IR the learning-to-rank problem consists of a set of training
queries where for each query we are given a set of retrieved documents and their relevance labels
that indicate the degree of relevance to the query. The documents are represented as query dependent
feature vectors and the goal is to learn a feature-based ranking function to rank the documents in the
order of relevance to the query. Existing approaches to this problem can be partitioned into three
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Figure 1: An example rating matrix R and the resulting WIN, LOSS and TIE matrices for the user-item pair
(u3, v4) with K = 3 (number of neighbors). (1) Top-3 closest neighbors {u1, u5, u6} are selected from
U(v4) = {u1, u2, u5, u6} (all users who rated v4). Note that u2 is not selected because the ratings for u2

deviate significantly from those for u3. (2) The WIN, LOSS and TIE matrices are computed for each neighbor
using Equation 2. Here g ≡ 1 is used to compute the matrices. For example, u5 gave a rating of 3 to v4 which
ties it with v3 and beats v1. Normalizing by |V(u5)| − 1 = 2 gives WIN34(u5) = 0.5, LOSS34(u5) = 0 and
TIE34(u5) = 0.5.

categories: pointwise, pairwise, and listwise. Due to the lack of space we omit the description of the
individual approaches here and instead refer the reader to [14] for an excellent overview.

4 Our Approach

The main idea behind our approach is to transform the CR problem into a learning-to-rank one and
then utilize one of the many developed ranking methods to learn the ranking function. CR can be
placed into the learning-to-rank framework by noting that the users correspond to queries and items
to documents. For each user the observed ratings indicate the relevance of the corresponding items
to that user and can be used to train the ranking function. The key difference between this setup and
the standard learning-to-rank one is the absence of user-item features. In this work we bridge this
gap and develop a robust feature extraction approach which does not require any external user or
item information and is based only on the available training ratings.

4.1 Feature Extraction

The PMF-based ranking approach [2] extracts user-item features by concatenating together the latent
representations learned by the PMF model. The model thus requires the user-item representations
to be learned before the items can be ranked and hence suffers from the main disadvantages of the
model-based approaches: the large number of parameters, complex optimization, and expensive
inference for new users and items. In this work we take a different approach which avoids these
disadvantages. We propose to use the neighbor preferences to extract the features for a given user-
item pair.

Formally, given a user-item pair (un, vm) and a similarity function ψ, we use ψ to extract a subset of
the K most similar users to un that rated vm, i.e., K(un, vm). This step is identical to the standard
neighborhood-based model, and ψ can be any rating or preference based similarity function. Once
K(un, vm) = {uk}Kk=1 is found, instead of using only the ratings for vm, we use all of the observed
ratings for each neighbor and summarize the net preference for vm into three K × 1 summary
preference matrices WINnm, LOSSnm and TIEnm:

WINnm(k) =
1

|V(uk)| − 1

∑
v′∈V(uk)\vm

g(R(uk, vm),R(uk, v
′))I[R(uk, vm) > R(uk, v

′)]

LOSSnm(k) =
1

|V(uk)| − 1

∑
v′∈V(uk)\vm

g(R(uk, vm),R(uk, v
′))I[R(uk, vm) < R(uk, v

′)]

TIEnm(k) =
1

|V(uk)| − 1

∑
v′∈V(uk)\vm

I[R(uk, vm) = R(uk, v
′)]

(2)

where I[x] is an indicator function evaluating to 1 if x is true and to 0 otherwise, and g : R2 →
R is the pairwise preference function used to convert ratings to pairwise preferences. A simple
choice for g is g ≡ 1 which ignores the rating magnitude and turns the matrices into normalized
counts. However, recent work in preference aggregation [8, 13] has shown that additional gain can be
achieved by taking the relative rating magnitude into account by using either the normalized rating or
log rating difference. All three versions of g address the user bias problem mentioned above by using
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relative comparisons rather than the absolute rating magnitude. In this form WINnm(k) corresponds
to the net positive preference for vm by neighbor uk. Similarly, LOSSnm(k) corresponds to the net
negative preference and TIEnm(k) counts the number of ties. Together the three matrices thus
describe the relative preferences for vm across all the neighbors of un. Normalization by |V(uk) \
vm| (number of observed ratings for uk excluding vm), ensures that the entries are comparable across
neighbors with different numbers of ratings. For unpopular items vm that do not have many ratings
with |U(vm)| < K, the number of neighbors will be less than K, i.e., |K(un, vm)| < K. When
such an item is encountered we shrink the preference matrices to be the same size as |K(un, vm)|.
Figure 1 shows an example rating matrix R together with the preference matrices computed for the
user-item pair (u3, v4).

Given the preference matrix WINnm we summarize it with a set of simple descriptive statistics:

γ(WINnm) =

[
µ(WINnm), σ(WINnm), max(WINnm), min(WINnm),

1

K

∑
k

I[WINnm(k) 6= 0]

]

where µ and σ are mean and standard deviation functions respectively. The last statistic counts the
number of neighbors (out of K) that express any positive preference towards vm, and together with
σ summarizes the overall confidence of the preference. Extending this procedure to the other two
preference matrices and concatenating the resulting statistics gives the feature vector for (un, vm):

γ(un, vm) = [γ(WINnm), γ(LOSSnm), γ(TIEnm)] (3)

Intuitively the features describe the net preference for vm and its variability across the neighbors.

Figure 2: The flow diagram for
WLT, our feature-based CR model.

Note that since γ is independent of K, N and M this representa-
tion will have the same length for every user-item pair. We have
thus created a fixed length feature representation for every user-
item pair, effectively transforming the CR problem into a standard
learning-to-rank one. During training our aim is now to use the
observed training ratings to learn a scoring function f : R|γ| → R
which maximizes the target IR metric, such as NDCG, across all
users. At test time, given a user u and items {v1, ..., vM}, we (1)
extract features for each item vm using the neighbors of (u, vm);
(2) apply the learned scoring function to get the score for every
item; and (3) sort the scores to produce the ranking. This process
is shown in Figure 2.

It is important to note here that, first, a single scoring function
is learned for all users and items so the number of parameters is
independent of the number of users or items and only depends on
the size of γ. This is a significant advantage over most model-based approaches where the number of
parameters typically scales linearly with the number of users and/or items. Second, given a new user
u no optimization is necessary to produce a ranking of the items for u. Similarly to neighborhood-
based methods, our approach only requires computing the neighbors to extract the features and apply
the learned scoring function to get the ranking. This is also a significant advantage over most user-
based approaches where it is typically necessary to learn a new model for every user not present
in the training data before predictions can be made. Finally, unlike the existing neighborhood-
based methods to CR our approach allows to optimize the parameters of the model for the target
metric. Moreover, the extracted features incorporate preference confidence information such as the
variance across the neighbors and the fraction of the neighbors that generated each preference type
(positive, negative and tie). Taking this information into account allows us to adapt the parameters
of the scoring function to sparse low-confidence settings and addresses the reliability problem of the
neighborhood-based methods (see Section 3.1). Note that an analogous item-based approach can be
taken here by similarly summarizing the preferences of un for items that are closest to vm, we leave
this for future work. A modified version of this approach adapted to binary ratings recently placed
second in the Million Song Dataset Challenge [18] ran by Kaggle.

4.2 Learning the Scoring Function

Given the user-item features extracted based on the neighbors our goal is to use the observed training
ratings for each user to optimize the parameters of the scoring function for the target IR metric. A
key difference between this feature-based CR approach and the typical learning-to-rank setup is the
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possibility of missing features. If a given training item vm is not ranked by any other user except
un the feature vector is set to zero (γ(un, vm) ≡ 0). One way to avoid missing features is to learn
only with those items that have at least ε ratings in the training set. However, in very sparse settings
this would force us to discard some of the valuable training data. We take a different approach,
modifying the conventional linear scoring function to include an additional bias term b0:

f(γ(un, vm),W) = w · γ(un, vm) + b+ I[U(vm) \ un = ∅]b0 (4)

where W = {w, b, b0} is the set of free parameters to be learned. Here w has the same dimension as
γ, and I is an indicator function. The bias term b0 provides a base score for vm if vm does not have
enough ratings in the training data. Several possible extensions of this model are worth mentioning
here. First, the scoring function can be made non-linear by adding additional hidden layer(s) as
done in conventional multilayer neural networks. Second, user information can be incorporated
into the model by learning user specific weights. To incorporate user information we can learn a
separate set of weights wn for each user un or group of users. The weights will provide user specific
information and are then applied to rank the unrated items for the corresponding user(s). However,
this extension makes the approach similar to the model-based approaches, with all the corresponding
disadvantages mentioned above. Finally, additional user/item information such as, for example,
personal information for users and description/genre etc. for items, can be incorporated by simply
concatenating it with γ(un, vm) and expanding the dimensionality of W. Note that if these additional
features can be extracted efficiently, incorporating them will not add significant overhead to either
learning or inference and the model can still be applied to new users and items very efficiently.

In the form given by Equation 4 our model has a total of |γ|+2 parameters to be learned. We can use
any of the developed learning-to-rank approaches to optimize W. In this work we chose to use the
LambdaRank method, due it its excellent performance, having recently won the Yahoo! Learning-
To-Rank Challenge [7]. We omit the description of LambdaRank here due to the lack of space, and
refer the reader to [6] and [5] for a detailed description.

5 Experiments

To validate the proposed approach we conducted extensive experiments on three publicly avail-
able datasets: two movie datasets MovieLens-1, MovieLens-2, and a musical artist dataset from
Yahoo! [1]. All datasets were kept as is except Yahoo!, which we subsampled by first selecting
the 10,000 most popular items and then selecting the 100,000 users with the most ratings. The
subsampling was done to speed up the experiments as the original dataset has close to 2 million
users and 100,000 items. In addition to subsampling we rescaled user ratings from 0-100 to the 1-5
interval to make the data consistent with the other two datasets. The rescaling was done by map-
ping 0-19 to 1, 20-39 to 2, etc. The user, item and rating statistics are summarized in Table 1. To
investigate the effect that the number of ratings has on accuracy we follow the framework of [23, 2].

Table 1: Dataset statistics.

Dataset Users Items Ratings

MovieLens-1 1000 1700 100,000
MovieLens-2 72,000 10,000 10,000,000

Yahoo! 100,000 10,000 45,729,723

For each dataset we randomly select 10, 20, 30, 40 ratings
from each user for training, 10 for validation and test on
the remaining ratings. Users with less than 30, 40, 50,
60 ratings were removed to ensure that we could evaluate
on at least 10 ratings for each user. Note that the number
of test items varies significantly across users with many
users having more test ratings than training ones. This simulates the real life CR scenario where the
set of unrated items from which the recommendations are generated is typically much larger than
the rated item set for each user.

We trained our ranking model, referred to as WLT, using stochastic gradient descent with the learn-
ing rates 10−2, 10−3, 10−4 for MovieLens-1, MovieLens-2 and Yahoo! respectively. We found that
1 to 21 iterations was sufficient to trained the models. We also found that using smaller learning
rates typically resulted in better generalization. We compare WLT with a well established user-
based (UB) collaborative filtering model. We also compare with two collaborative ranking models:
PMF-based ranker [2] (PMF-R) and CofiRank [23] (CO). To make the comparison fair we used the
same LambdaRank architecture to train both WLT and PMF-R. Note that both PMF-R and CofiRank
report state-of-the-art CR results. To compute the PMF features we used extensive cross-validation
to determine the L2 penalty weights and the latent dimension size D (5, 10, 10 for MovieLens-
1, MovieLens-2, and Yahoo! datasets respectively). For CofiRank we used the settings suggested

1Note that 1 iteration of stochastic gradient descent corresponds to |U| weight updates.
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Table 2: Collaborative Ranking results. NDCG values at different truncation levels are shown within the main
columns, which are split based on the number of training ratings. Each model’s rounded number of parameters
is shown in brackets, with K = thousand, M = million.

10 20 30 40

N@1 N@3 N@5 N@1 N@3 N@5 N@1 N@3 N@5 N@1 N@3 N@5

MovieLens-1:
UB 49.30 54.67 57.36 57.49 61.81 62.88 64.25 65.75 66.58 62.27 64.92 66.14
PMF-R(12K) 69.39 68.33 68.65 72.50 70.42 69.95 72.77 72.23 71.55 74.02 71.55 70.90
CO(240K) 67.28 66.23 66.59 71.82 70.80 70.30 71.60 71.15 70.58 71.43 71.64 71.43
WLT(17) 70.96 68.25 67.98 70.34 69.50 69.21 71.41 71.16 71.02 74.09 71.85 71.52

MovieLens-2:
UB 67.62 68.23 68.74 71.29 70.78 70.87 72.65 71.98 71.90 73.33 72.63 72.42
PMF-R(500K) 70.12 69.41 69.35 70.65 70.04 70.09 72.22 71.48 71.43 72.18 71.60 71.55
CO(5M) 70.14 68.40 68.46 68.80 68.51 68.76 64.60 65.62 66.38 62.82 63.49 64.25
WLT(17) 72.78 71.70 71.49 73.93 72.63 72.37 74.67 73.37 73.04 75.19 73.73 73.30

Yahoo!:
UB 57.20 55.29 54.31 64.29 61.48 60.16 66.82 63.83 62.42 68.97 65.89 64.50
PMF-R(1M) 52.86 51.98 51.53 63.93 62.42 61.65 66.82 65.41 64.61 69.46 68.05 67.21
CO(10M) 57.42 56.88 56.46 60.59 59.94 59.48 62.07 61.10 60.54 61.68 60.78 60.24
WLT(17) 58.76 55.20 53.53 66.06 62.77 61.21 69.74 66.58 65.02 71.50 68.52 67.00

in [23] and ran the code available on the author’s home page. Similarly to [2], we found that the
regression-based objective almost always gave the best results for CofiRank, consistently outper-
forming NDCG and ordinal objectives.

For WLT and UB models we use cosine similarity as the distance function to find the top-K neigh-
bors. Note that using the same similarity function ensures that both models select the same neighbor
sets and allows for fair comparison. The number of neighbors K was cross validated in the range
[10, 100] on the small MovieLens-1 dataset and set to 200 on all other datasets as we found the
results to be insensitive for K above 100 which is consistent with the findings of [15]. In all experi-
ments only ratings in the training set were used to select the neighbors, and make predictions for the
validation and test set items.

5.1 Results

The NDCG (N@T) results at truncations 1,3 and 5 are shown in Table 2. From the table it is seen
that the WLT model performs comparably to the best baseline on MovieLens-1, outperforms all
methods on MovieLens-2 and is also the best overall approach on Yahoo!. Across the datasets the
gains are especially large at lower truncations N@1 and N@3, which is important since those items
will most likely be the ones viewed by the user.

Several patterns can also be seen from the table. First, when the number of users and ratings is small
(MovieLens-1) the performance of the UB approach significantly drops. This is likely due to the fact
that neighbors cannot be found reliably in this setting since users have little overlap in ratings. By
taking into account the confidence information such as the number of available neighbors WLT is
able to significantly improve over UB while using the same set of neighbors. On MovieLens-1 WLT
outperforms UB by as much as 20 NDCG points. Second, for larger datasets such as MovieLens-2
and Yahoo! the model-based approaches have millions of parameters (shown in brackets in Table 2)
to optimize and are highly prone to overfitting. Tuning the hyper-parameters for these models is dif-
ficult and computationally expensive in this setting as it requires conducting many cross-validation
runs over large datasets. On the other hand, our approach achieves consistently better performance
with only 17 parameters, and a single hyper-parameter K which is fixed to 200. Overall, the results
demonstrate the robustness of the proposed features which generalize well when both few and many
users available.

5.2 Transfer Learning Results

In addition to the small number of parameters, another advantage of our approach over most model-
based methods is that inference for a new user only requires finding the K neighbors. Thus both
users and items can be taken from a different, unseen during training, set. This transfer learning task
is much more difficult than the strong generalization task [17] commonly used to test CF methods
on new users. In strong generalization the models are evaluated on users not present at training time
while keeping the item set fixed, while here the item set also changes. Note that it is impossible to
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Table 3: Transfer learning NDCG results. Original: WLT model trained on the respective dataset. WLT-M1
and WLT-M2 models are trained on MovieLens-1 and MovieLens-2 respectively, WLT-Y is trained on Yahoo!.
WLT-M1, WLT-M2 and WLT-Y models are applied to other datasets without retraining.

10 20 30 40

N@1 N@3 N@5 N@1 N@3 N@5 N@1 N@3 N@5 N@1 N@3 N@5

MovieLens-1:
Original 70.96 68.25 67.98 70.34 69.50 69.21 71.41 71.16 71.02 74.09 71.85 71.52
WLT-M2 63.15 62.46 62.75 69.66 68.61 68.47 71.02 70.99 70.88 73.28 71.70 71.46
WLT-Y 44.12 47.06 48.75 61.73 62.60 63.57 67.33 66.99 67.99 71.11 69.22 68.95

MovieLens-2:
Original 72.78 71.70 71.49 73.93 72.63 72.37 74.67 73.37 73.04 75.19 73.73 73.30
WLT-M1 72.90 71.77 71.57 73.97 72.59 72.34 74.67 73.36 73.01 75.28 73.76 73.28
WLT-Y 68.04 68.03 68.41 71.54 71.02 71.07 73.15 72.38 72.25 74.00 73.03 72.79

Yahoo!:
Original 58.76 55.20 53.53 66.06 62.77 61.21 69.74 66.58 65.02 71.50 68.52 67.00
WLT-M1 57.93 53.91 52.35 66.03 62.68 61.18 68.93 65.85 64.32 71.15 68.17 66.65
WLT-M2 58.81 54.70 53.15 65.29 61.95 60.47 68.68 65.55 64.07 70.84 67.91 66.44

apply PMF-R, CO and most other model-based methods to this setting without re-training the entire
model. Our model, on the other hand, can be applied without re-training by simply extracting the
features for every new user-item pair and applying the learned scoring function to rank the items.

To test the generalization properties of the model we took the three learned WLT mod-
els (referred to as WLT-M1, WLT-M2, WLT-Y for MovieLens-1&2 and Yahoo! respec-
tively) and applied each model to the datasets that it was not trained on. So for instance
WLT-M1 was applied to MovieLens-2 and Yahoo!. Table 3 shows the transfer results for
each of the datasets along with the original results for the WLT model trained on each

Figure 3: Normalized WLT weights. White/black corre-
spond to positive/negative weights; the weight magnitude
is proportional to the square size.

dataset (referred to as Original). Note that
none of the models were re-trained or tuned
in any way. From the table it seen that our
model generalizes very well to different do-
mains. For instance, WLT-M1 trained on
MovieLens-1 is able to achieve state-of-the
art performance on MovieLens-2, outper-
forming all the baselines that were trained
on MovieLens-2. Note that MovieLens-2
has over 5 times more items and 72 times more users than MovieLens-1, majority of which the WLT-
M1 model has not seen during training. Moreover, perhaps surprisingly, our model also generalizes
well across item domains. The WLT-Y model trained on musical artist data achieves state-of-the-art
performance on MovieLens-2 movie data, performing better than all the baselines when 20, 30 and
40 ratings are used for training. Moreover, both WLT-M1 and WLT-M2 achieve very competitive
results on Yahoo! outperforming most of the baselines.

More insight into why the model generalizes well can be gained from Figure 3, which shows the
normalized weights learned by the WLT models on each of the three datsets. The weights are
partitioned into feature sets from each of the three preference matrices (see Equation 2). From the
figure it can be seen that the learned weights share a lot of similarities. The weights on the features
from the WIN matrix are mostly positive while those on the features from the LOSS matrix are
mostly negative. Mean preferences and the number of neighbors features have the highest absolute
weights which indicates that they are the most useful for predicting the item scores. The similarity
between the weight vectors suggests that the features convey very similar information and remain
invariant across different user/item sets.

6 Conclusion

In this work we presented an effective approach to extract user-item features based on neighbor
preferences. The features allow us to apply any learning-to-rank approach to learn the ranking
function. Experimental results show that by using these features state-of-the art ranking results
can be achieved. Going forward, the strong transfer results call into question whether the complex
machinery developed for CF is appropriate when the true goal is recommendation, as the required
information for finding the best items to recommend can be obtained from basic neighborhood
statistics. We are also currently investigating additional features such as neighbors’ rating overlap.
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