Appendix: Classification Calibration Dimension for General Multiclass Losses

Calculation of Trigger Probability Sets for Figure 2

(a) 0-1 loss ℓ^{0-1} (n = 3).

$$\boldsymbol{\ell}_1 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}; \ \boldsymbol{\ell}_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}; \ \boldsymbol{\ell}_3 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}.$$

$$\begin{aligned} \mathcal{Q}_{1}^{0-1} &= \{ \mathbf{p} \in \Delta_{3} : \mathbf{p}^{\top} \boldsymbol{\ell}_{1} \leq \mathbf{p}^{\top} \boldsymbol{\ell}_{2}, \ \mathbf{p}^{\top} \boldsymbol{\ell}_{1} \leq \mathbf{p}^{\top} \boldsymbol{\ell}_{3} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{2} + p_{3} \leq p_{1} + p_{3}, \ p_{2} + p_{3} \leq p_{1} + p_{2} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{2} \leq p_{1}, \ p_{3} \leq p_{1} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{1} \geq \max(p_{2}, p_{3}) \} \end{aligned}$$

By symmetry,

$$\begin{aligned} \mathcal{Q}_{2}^{0\cdot 1} &= \{ \mathbf{p} \in \Delta_{3} : p_{2} \ge \max(p_{1}, p_{3}) \} \\ \mathcal{Q}_{3}^{0\cdot 1} &= \{ \mathbf{p} \in \Delta_{3} : p_{3} \ge \max(p_{1}, p_{2}) \} \end{aligned}$$

(b) Ordinal regression loss ℓ^{ord} (n = 3).

$$\boldsymbol{\ell}_1 = \begin{pmatrix} 0\\1\\2 \end{pmatrix}; \ \boldsymbol{\ell}_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}; \ \boldsymbol{\ell}_3 = \begin{pmatrix} 2\\1\\0 \end{pmatrix}.$$

$$\begin{aligned} \mathcal{Q}_{1}^{\text{ord}} &= \{ \mathbf{p} \in \Delta_{3} : \mathbf{p}^{\top} \boldsymbol{\ell}_{1} \leq \mathbf{p}^{\top} \boldsymbol{\ell}_{2}, \ \mathbf{p}^{\top} \boldsymbol{\ell}_{1} \leq \mathbf{p}^{\top} \boldsymbol{\ell}_{3} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{2} + 2p_{3} \leq p_{1} + p_{3}, \ p_{2} + 2p_{3} \leq 2p_{1} + p_{2} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{2} + p_{3} \leq p_{1}, \ p_{3} \leq p_{1} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : 1 - p_{1} \leq p_{1} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{1} \geq \frac{1}{2} \} \end{aligned}$$

By symmetry,

$$\mathcal{Q}_3^{\operatorname{ord}} = \{ \mathbf{p} \in \Delta_3 : p_3 \ge \frac{1}{2} \}$$

Finally,

$$\begin{aligned} \mathcal{Q}_{2}^{\text{ord}} &= \{ \mathbf{p} \in \Delta_{3} : \mathbf{p}^{\top} \boldsymbol{\ell}_{2} \leq \mathbf{p}^{\top} \boldsymbol{\ell}_{1}, \ \mathbf{p}^{\top} \boldsymbol{\ell}_{2} \leq \mathbf{p}^{\top} \boldsymbol{\ell}_{3} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{1} + p_{3} \leq p_{2} + 2p_{3}, \ p_{1} + p_{3} \leq 2p_{1} + p_{2} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{1} \leq p_{2} + p_{3}, \ p_{3} \leq p_{1} + p_{2} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{1} \leq 1 - p_{1}, \ p_{3} \leq 1 - p_{3} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{1} \leq \frac{1}{2}, \ p_{3} \leq \frac{1}{2} \} \end{aligned}$$

(c) 'Abstain' loss $\ell^{(?)}$ (n = 3).

$$\boldsymbol{\ell}_1 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}; \ \boldsymbol{\ell}_2 = \begin{pmatrix} 1\\0\\1 \end{pmatrix}; \ \boldsymbol{\ell}_3 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}; \ \boldsymbol{\ell}_4 = \begin{pmatrix} \frac{1}{2}\\\frac{1}{2}\\\frac{1}{2}\\\frac{1}{2} \end{pmatrix}.$$

$$\begin{aligned} \mathcal{Q}_{1}^{(?)} &= \{ \mathbf{p} \in \Delta_{3} : \mathbf{p}^{\top} \boldsymbol{\ell}_{1} \leq \mathbf{p}^{\top} \boldsymbol{\ell}_{2}, \ \mathbf{p}^{\top} \boldsymbol{\ell}_{1} \leq \mathbf{p}^{\top} \boldsymbol{\ell}_{3}, \ \mathbf{p}^{\top} \boldsymbol{\ell}_{1} \leq \mathbf{p}^{\top} \boldsymbol{\ell}_{4} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{2} + p_{3} \leq p_{1} + p_{3}, \ p_{2} + p_{3} \leq p_{1} + p_{2}, \ p_{2} + p_{3} \leq \frac{1}{2} (p_{1} + p_{2} + p_{3}) \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{2} \leq p_{1}, \ p_{3} \leq p_{1}, \ p_{2} + p_{3} \leq \frac{1}{2} \} \\ &= \{ \mathbf{p} \in \Delta_{3} : p_{1} \geq \frac{1}{2} \} \end{aligned}$$

By symmetry,

$$\begin{array}{rcl} \mathcal{Q}_2^{(?)} &=& \{\mathbf{p} \in \Delta_3 : p_2 \geq \frac{1}{2}\} \\ \mathcal{Q}_3^{(?)} &=& \{\mathbf{p} \in \Delta_3 : p_3 \geq \frac{1}{2}\} \end{array}$$

Finally,

$$\begin{aligned} \mathcal{Q}_4^{(?)} &= \{ \mathbf{p} \in \Delta_3 : \mathbf{p}^\top \boldsymbol{\ell}_4 \le \mathbf{p}^\top \boldsymbol{\ell}_1, \ \mathbf{p}^\top \boldsymbol{\ell}_4 \le \mathbf{p}^\top \boldsymbol{\ell}_2, \ \mathbf{p}^\top \boldsymbol{\ell}_4 \le \mathbf{p}^\top \boldsymbol{\ell}_2 \} \\ &= \{ \mathbf{p} \in \Delta_3 : \frac{1}{2} (p_1 + p_2 + p_3) \le \min(p_2 + p_3, p_1 + p_3, p_1 + p_2) \} \\ &= \{ \mathbf{p} \in \Delta_3 : \frac{1}{2} \le 1 - \max(p_1, p_2, p_3) \} \\ &= \{ \mathbf{p} \in \Delta_3 : \max(p_1, p_2, p_3) \le \frac{1}{2} \} \end{aligned}$$

Proof of Theorem 6

Proof. Since ψ is classification calibrated w.r.t. ℓ over Δ_n , by Lemma 2, \exists pred' : $S_{\psi} \rightarrow [k]$ such that

$$\forall \mathbf{p} \in \Delta_n : \inf_{\mathbf{z}' \in \mathcal{S}_{\psi}: \text{pred}'(\mathbf{z}') \notin \operatorname{argmin}_t \mathbf{p}^\top \boldsymbol{\ell}_t} \mathbf{p}^\top \mathbf{z}' > \inf_{\mathbf{z}' \in \mathcal{S}_{\psi}} \mathbf{p}^\top \mathbf{z}'.$$
(9)

Now suppose there is some $\mathbf{z} \in S_{\psi}$ such that $\mathcal{N}_{S_{\psi}}(\mathbf{z})$ is not contained in \mathcal{Q}_{t}^{ℓ} for any $t \in [k]$. Then $\forall t \in [k], \exists \mathbf{q} \in \mathcal{N}_{S_{\psi}}(\mathbf{z})$ such that $\mathbf{q} \notin \mathcal{Q}_{t}^{\ell}$, i.e. such that $t \notin \operatorname{argmin}_{t'} \mathbf{q}^{\top} \boldsymbol{\ell}_{t'}$. In particular, for $t = \operatorname{pred}'(\mathbf{z}), \exists \mathbf{q} \in \mathcal{N}_{S_{\psi}}(\mathbf{z})$ such that $\operatorname{pred}'(\mathbf{z}) \notin \operatorname{argmin}_{t'} \mathbf{q}^{\top} \boldsymbol{\ell}_{t'}$.

Since $\mathbf{q} \in \mathcal{N}_{\mathcal{S}_{\psi}}(\mathbf{z})$, we have

$$\mathbf{q}^{\top}\mathbf{z} = \inf_{\mathbf{z}'\in\mathcal{S}_{\psi}} \mathbf{q}^{\top}\mathbf{z}'.$$
(10)

Moreover, since pred'(\mathbf{z}) \notin argmin_{t'} $\mathbf{q}^{\top} \boldsymbol{\ell}_{t'}$, we have

$$\inf_{\mathbf{z}'\in\mathcal{S}_{\psi}:\operatorname{pred}'(\mathbf{z}')\notin\operatorname{argmin}_{t'}\mathbf{q}^{\top}\boldsymbol{\ell}_{t'}}\mathbf{q}^{\top}\mathbf{z}' \leq \mathbf{q}^{\top}\mathbf{z} = \inf_{\mathbf{z}'\in\mathcal{S}_{\psi}}\mathbf{q}^{\top}\mathbf{z}'.$$
(11)

This contradicts Eq. (9). Thus it must be the case that $\forall \mathbf{z} \in S_{\psi}, \exists t \in [k] \text{ with } \mathcal{N}_{S_{\psi}}(\mathbf{z}) \subseteq \mathcal{Q}_{t}^{\ell}$. \Box

Proof of Theorem 7

The proof uses the following technical lemma:

Lemma 15. Let $\psi : [n] \times \widehat{\mathcal{T}} \to \mathbb{R}_+$. Suppose there exist $r \in \mathbb{N}$ and $\mathbf{z}_1, \ldots, \mathbf{z}_r \in \mathcal{R}_{\psi}$ such that $\bigcup_{j=1}^r \mathcal{N}_{\mathcal{S}_{\psi}}(\mathbf{z}_j) = \Delta_n$. Then any element $\mathbf{z} \in \mathcal{S}_{\psi}$ can be written as $\mathbf{z} = \mathbf{z}' + \mathbf{z}''$ for some $\mathbf{z}' \in \operatorname{conv}(\{\mathbf{z}_1, \ldots, \mathbf{z}_r\})$ and $\mathbf{z}'' \in \mathbb{R}^n_+$.

Proof. Let $S' = \{\mathbf{z}' + \mathbf{z}'' : \mathbf{z}' \in \operatorname{conv}(\{\mathbf{z}_1, \dots, \mathbf{z}_r\}), \mathbf{z}'' \in \mathbb{R}^n_+\}$, and suppose there exists a point $\mathbf{z} \in S_{\psi}$ which cannot be decomposed as claimed, i.e. such that $\mathbf{z} \notin S'$. Then by the Hahn-Banach theorem (e.g. see [19], corollary 3.10), there exists a hyperplane that strictly separates \mathbf{z} from S', i.e. $\exists \mathbf{w} \in \mathbb{R}^n$ such that $\mathbf{w}^\top \mathbf{z} < \mathbf{w}^\top \mathbf{a} \ \forall \mathbf{a} \in S'$. It is easy to see that $\mathbf{w} \in \mathbb{R}^n_+$ (since a negative component in \mathbf{w} would allow us to choose an element \mathbf{a} from S' with arbitrarily small $\mathbf{w}^\top \mathbf{a}$).

Now consider the vector $\mathbf{q} = \mathbf{w} / \sum_{i=1}^{n} w_i \in \Delta_n$. Since $\bigcup_{j=1}^{r} \mathcal{N}_{\mathcal{S}_{\psi}}(\mathbf{z}_j) = \Delta_n$, $\exists j \in [r]$ such that $\mathbf{q} \in \mathcal{N}_{\mathcal{S}_{\psi}}(\mathbf{z}_j)$. By definition of positive normals, this gives $\mathbf{q}^{\top}\mathbf{z}_j \leq \mathbf{q}^{\top}\mathbf{z}$, and therefore $\mathbf{w}^{\top}\mathbf{z}_j \leq \mathbf{w}^{\top}\mathbf{z}$. But this contradicts our construction of \mathbf{w} (since $\mathbf{z}_j \in \mathcal{S}'$). Thus it must be the case that every $\mathbf{z} \in \mathcal{S}_{\psi}$ is also an element of \mathcal{S}' .

Proof. (Proof of Theorem 7)

We will show classification calibration of ψ w.r.t. ℓ (over Δ_n) via Lemma 2. For each $j \in [r]$, let

$$T_j = \left\{ t \in [k] : \mathcal{N}_{\mathcal{S}_{\psi}}(\mathbf{z}_j) \subseteq \mathcal{Q}_t^{\ell} \right\};$$

by assumption, $T_j \neq \emptyset \ \forall j \in [r]$. By Lemma 15, for every $\mathbf{z} \in S_{\psi}$, $\exists \boldsymbol{\alpha} \in \Delta_r, \mathbf{u} \in \mathbb{R}^n_+$ such that $\mathbf{z} = \sum_{j=1}^r \alpha_j \mathbf{z}_j + \mathbf{u}$. For each $\mathbf{z} \in S_{\psi}$, arbitrarily fix a unique $\boldsymbol{\alpha}^{\mathbf{z}} \in \Delta_r$ and $\mathbf{u}^{\mathbf{z}} \in \mathbb{R}^n_+$ satisfying the above, i.e. such that

$$\mathbf{z} = \sum_{j=1}^{r} \alpha_j^{\mathbf{z}} \mathbf{z}_j + \mathbf{u}^{\mathbf{z}}$$

Now define pred' : $S_{\psi} \rightarrow [k]$ as

$$\operatorname{pred}'(\mathbf{z}) = \min\left\{t \in [k] : \exists j \in [r] \text{ such that } \alpha_j^{\mathbf{z}} \geq \frac{1}{r} \text{ and } t \in T_j\right\}.$$

We will show pred' satisfies the condition for classification calibration.

Fix any $\mathbf{p} \in \Delta_n$. Let

$$J_{\mathbf{p}} = \left\{ j \in [r] : \mathbf{p} \in \mathcal{N}_{\mathcal{S}_{\psi}}(\mathbf{z}_j) \right\};$$

since $\Delta_n = \bigcup_{j=1}^r \mathcal{N}_{\mathcal{S}_{\psi}}(\mathbf{z}_j)$, we have $J_{\mathbf{p}} \neq \emptyset$. Clearly,

$$\forall j \in J_{\mathbf{p}} : \mathbf{p}^{\top} \mathbf{z}_{j} = \inf_{\mathbf{z} \in \mathcal{S}_{\psi}} \mathbf{p}^{\top} \mathbf{z}$$
(12)

$$\forall j \notin J_{\mathbf{p}} : \mathbf{p}^{\top} \mathbf{z}_{j} > \inf_{\mathbf{z} \in \mathcal{S}_{\psi}} \mathbf{p}^{\top} \mathbf{z}$$
(13)

Moreover, from definition of T_j , we have

$$\forall j \in J_{\mathbf{p}}: \quad t \in T_j \implies \mathbf{p} \in \mathcal{Q}_t^{\ell} \implies t \in \operatorname{argmin}_{t'} \mathbf{p}^{\top} \boldsymbol{\ell}_{t'}.$$

Thus we get

$$\forall j \in J_{\mathbf{p}}: \quad T_j \subseteq \operatorname{argmin}_{t'} \mathbf{p}^\top \boldsymbol{\ell}_{t'} \,. \tag{14}$$

Now, for any $\mathbf{z} \in S_{\psi}$ for which $\operatorname{pred}'(\mathbf{z}) \notin \operatorname{arg\,min}_{t'} \mathbf{p}^{\top} \boldsymbol{\ell}_{t'}$, we must have $\alpha_j^{\mathbf{z}} \geq \frac{1}{r}$ for at least one $j \notin J_{\mathbf{p}}$ (otherwise, we would have $\operatorname{pred}'(\mathbf{z}) \in T_j$ for some $j \in J_{\mathbf{p}}$, giving $\operatorname{pred}'(\mathbf{z}) \in \operatorname{arg\,min}_{t'} \mathbf{p}^{\top} \boldsymbol{\ell}_{t'}$, a contradiction). Thus we have

$$\inf_{\mathbf{z}\in\mathcal{S}_{\psi}:\operatorname{pred}'(\mathbf{z})\notin\operatorname{argmin}_{t'}\mathbf{p}^{\top}\boldsymbol{\ell}_{t'}}\mathbf{p}^{\top}\mathbf{z} = \inf_{\mathbf{z}\in\mathcal{S}_{\psi}:\operatorname{pred}'(\mathbf{z})\notin\operatorname{argmin}_{t'}\mathbf{p}^{\top}\boldsymbol{\ell}_{t'}}\sum_{j=1}^{r}\alpha_{j}^{\mathbf{z}}\mathbf{p}^{\top}\mathbf{z}_{j} + \mathbf{p}^{\top}\mathbf{u}^{\mathbf{z}}$$
(15)

$$\geq \inf_{\boldsymbol{\alpha} \in \Delta_r: \alpha_j \geq \frac{1}{r} \text{ for some } j \notin J_{\mathbf{p}} \sum_{j=1}^{\prime} \alpha_j \mathbf{p}^\top \mathbf{z}_j$$
(16)

$$\geq \min_{j \notin J_{\mathbf{p}}} \inf_{\alpha_j \in [\frac{1}{r}, 1]} \alpha_j \mathbf{p}^\top \mathbf{z}_j + (1 - \alpha_j) \inf_{\mathbf{z} \in \mathcal{S}_{\psi}} \mathbf{p}^\top \mathbf{z}$$
(17)

$$> \inf_{\mathbf{z}\in\mathcal{S}_{th}} \mathbf{p}^{\top} \mathbf{z}, \qquad (18)$$

where the last inequality follows from Eq. (13). Since the above holds for all $\mathbf{p} \in \Delta_n$, by Lemma 2, we have that ψ is classification calibrated w.r.t. ℓ over Δ_n .

Proof of Lemma 8

Recall that a convex function $\phi : \mathbb{R}^d \to \overline{\mathbb{R}}$ (where $\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$) attains its minimum at $\mathbf{u}_0 \in \mathbb{R}^d$ iff the subdifferential $\partial \phi(\mathbf{u}_0)$ contains $\mathbf{0} \in \mathbb{R}^d$ (e.g. see [18]). Also, if $\phi_1, \phi_2 : \mathbb{R}^d \to \overline{\mathbb{R}}$ are convex functions, then the subdifferential of their sum $\phi_1 + \phi_2$ at \mathbf{u}_0 is is equal to the Minkowski sum of the subdifferentials of ϕ_1 and ϕ_2 at \mathbf{u}_0 :

$$\partial(\phi_1+\phi_2)(\mathbf{u}_0) = \left\{\mathbf{w}_1+\mathbf{w}_2: \mathbf{w}_1 \in \partial\phi_1(\mathbf{u}_0), \mathbf{w}_2 \in \partial\phi_2(\mathbf{u}_0)
ight\}$$

Proof. We have for all $\mathbf{p} \in \mathbb{R}^n$,

$$\begin{split} \mathbf{p} \in \mathcal{N}_{\mathcal{S}_{\psi}}(\boldsymbol{\psi}(\hat{\mathbf{t}})) & \iff \mathbf{p} \in \Delta_{n}, \, \mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}}) \leq \mathbf{p}^{\top} \mathbf{z}' \, \forall \mathbf{z}' \in \mathcal{S}_{\psi} \\ & \iff \mathbf{p} \in \Delta_{n}, \, \mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}}) \leq \mathbf{p}^{\top} \mathbf{z}' \, \forall \mathbf{z}' \in \mathcal{R}_{\psi} \\ & \iff \mathbf{p} \in \Delta_{n}, \text{ and the convex function } \boldsymbol{\phi}(\hat{\mathbf{t}}') = \mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}}') = \sum_{y=1}^{n} p_{y} \psi_{y}(\hat{\mathbf{t}}') \\ & \text{achieves its minimum at } \hat{\mathbf{t}}' = \hat{\mathbf{t}} \\ & \iff \mathbf{p} \in \Delta_{n}, \, \mathbf{0} \in \sum_{y=1}^{n} p_{y} \partial \psi_{y}(\hat{\mathbf{t}}) \\ & \iff \mathbf{p} \in \Delta_{n}, \, \mathbf{0} = \sum_{y=1}^{n} p_{y} \sum_{j=1}^{s_{y}} v_{j}^{y} \mathbf{w}_{j}^{y} \text{ for some } \mathbf{v}^{y} \in \Delta_{s_{y}} \\ & \iff \mathbf{p} \in \Delta_{n}, \, \mathbf{0} = \sum_{y=1}^{n} \sum_{j=1}^{s_{y}} q_{j}^{y} \mathbf{w}_{j}^{y} \text{ for some } \mathbf{q}^{y} = p_{y} \mathbf{v}^{y}, \, \mathbf{v}^{y} \in \Delta_{s_{y}} \\ & \iff \mathbf{p} \in \Delta_{n}, \, \mathbf{A}\mathbf{q} = \mathbf{0} \text{ for some } \mathbf{q} = (p_{1}\mathbf{v}^{1}, \dots, p_{n}\mathbf{v}^{n})^{\top} \in \Delta_{s}, \, \mathbf{v}^{y} \in \Delta_{s_{y}} \\ & \iff \mathbf{p} = \mathbf{B}\mathbf{q} \text{ for some } \mathbf{q} \in \text{Null}(\mathbf{A}) \cap \Delta_{s} \,. \end{split}$$

Proof of Lemma 10

Proof. For each
$$\hat{\mathbf{t}} \in \widehat{\mathcal{T}}$$
, define $\mathbf{p}^{\hat{\mathbf{t}}} = \begin{pmatrix} \mathbf{t} \\ 1 - \sum_{j=1}^{n-1} \hat{t}_j \end{pmatrix} \in \Delta_n$. Define pred : $\widehat{\mathcal{T}} \to [k]$ as $\operatorname{pred}(\hat{\mathbf{t}}) = \min \left\{ t \in [k] : \mathbf{p}^{\hat{\mathbf{t}}} \in Q_t^{\ell} \right\}.$

We will show that pred satisfies the condition of Definition 1.

Fix $\mathbf{p} \in \Delta_n$. It can be seen that

$$\mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}}) = \sum_{j=1}^{n-1} \left(p_j (\hat{t}_j - 1)^2 + (1 - p_j) \hat{t}_j^2 \right).$$

Minimizing the above over $\hat{\mathbf{t}}$ yields the unique minimizer $\hat{\mathbf{t}}^* = (p_1, \dots, p_{n-1})^\top \in \widehat{\mathcal{T}}$, which after some calculation gives

$$\inf_{\hat{\mathbf{t}}\in\widehat{\mathcal{T}}} \mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}}) = \mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}}^*) = \sum_{j=1}^{n-1} p_j (1-p_j).$$

Now, for each $t \in [k]$, define

$$\operatorname{regret}_{\mathbf{p}}^{\ell}(t) \stackrel{\Delta}{=} \mathbf{p}^{\top} \boldsymbol{\ell}_{t} - \min_{t' \in [k]} \mathbf{p}^{\top} \boldsymbol{\ell}_{t'}.$$

Clearly, $\operatorname{regret}_{\mathbf{p}}^{\ell}(t) = 0 \iff \mathbf{p} \in \mathcal{Q}_{t}^{\ell}$. Note also that $\mathbf{p}^{\hat{\mathbf{t}}^{*}} = \mathbf{p}$, and therefore $\operatorname{regret}_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}}^{*})) = 0$. Let

$$\epsilon = \min_{t \in [k]: \mathbf{p} \notin \mathcal{Q}_t^{\ell}} \operatorname{regret}_{\mathbf{p}}^{\ell}(t) > 0.$$

Then we have

$$\inf_{\hat{\mathbf{t}}\in\widehat{\mathcal{T}}, \operatorname{pred}(\hat{\mathbf{t}})\notin\operatorname{argmin}_{t}\mathbf{p}^{\top}\boldsymbol{\ell}_{t}} \mathbf{p}^{\top}\boldsymbol{\psi}(\hat{\mathbf{t}}) = \inf_{\hat{\mathbf{t}}\in\widehat{\mathcal{T}}, \operatorname{regret}_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}})) \ge \epsilon} \mathbf{p}^{\top}\boldsymbol{\psi}(\hat{\mathbf{t}}) \qquad (19)$$

$$= \inf_{\hat{\mathbf{t}}\in\widehat{\mathcal{T}}, \operatorname{regret}_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}})) \ge \epsilon} \mathbf{p}^{\top}\boldsymbol{\psi}(\hat{\mathbf{t}}) \dots (20)$$

$$\inf_{\hat{\mathbf{t}}\in\widehat{\mathcal{T}}, \operatorname{regret}_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}})) \geq \operatorname{regret}_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}}^{*})) + \epsilon} \mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}}) .$$
 (20)

Now, we claim that the mapping $\hat{\mathbf{t}} \mapsto \operatorname{regret}_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}}))$ is continuous at $\hat{\mathbf{t}} = \hat{\mathbf{t}}^*$. To see this, suppose the sequence $\hat{\mathbf{t}}_m$ converges to $\hat{\mathbf{t}}^*$. Then it is easy to see that $\mathbf{p}^{\hat{\mathbf{t}}_m}$ converges to $\hat{\mathbf{t}}^* = \mathbf{p}$, and therefore

for each $t \in [k]$, $(\mathbf{p}^{\hat{\mathbf{t}}_m})^{\top} \boldsymbol{\ell}_t$ converges to $\mathbf{p}^{\top} \boldsymbol{\ell}_t$. Since by definition of pred we have that for all m, pred $(\hat{\mathbf{t}}_m) \in \operatorname{argmin}_t(\mathbf{p}^{\hat{\mathbf{t}}_m})^{\top} \boldsymbol{\ell}_t$, this implies that for all large enough m, pred $(\hat{\mathbf{t}}_m) \in \operatorname{argmin}_t \mathbf{p}^{\top} \boldsymbol{\ell}_t$. Thus for all large enough m, regret $_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}}_m)) = 0$; i.e. the sequence $\operatorname{regret}_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}}_m))$ converges to $\operatorname{regret}_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}}^*))$, yielding continuity at $\hat{\mathbf{t}}^*$. In particular, this implies $\exists \delta > 0$ such that

$$\|\hat{\mathbf{t}} - \hat{\mathbf{t}}^*\| < \delta \implies \operatorname{regret}^{\ell}_{\mathbf{p}}(\operatorname{pred}(\hat{\mathbf{t}})) - \operatorname{regret}^{\ell}_{\mathbf{p}}(\operatorname{pred}(\hat{\mathbf{t}}^*)) < \epsilon \,.$$

This gives

$$\inf_{\hat{\mathbf{t}}\in\widehat{\mathcal{T}}, \operatorname{regret}_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}})) \geq \operatorname{regret}_{\mathbf{p}}^{\ell}(\operatorname{pred}(\hat{\mathbf{t}}^{*})) + \epsilon} \mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}}) \geq \inf_{\hat{\mathbf{t}}\in\widehat{\mathcal{T}}, \|\hat{\mathbf{t}}-\hat{\mathbf{t}}^{*}\| \geq \delta} \mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}})$$
(21)

>
$$\inf_{\hat{\mathbf{t}}\in\widehat{\mathcal{T}}} \mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}}),$$
 (22)

where the last inequality holds since $\mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}})$ is a strictly convex function of $\hat{\mathbf{t}}$ and $\hat{\mathbf{t}}^*$ is its unique minimizer. The above sequence of inequalities give us that

$$\inf_{\hat{\mathbf{t}}\in\widehat{\mathcal{T}}, \operatorname{pred}(\hat{\mathbf{t}})\notin \operatorname{argmin}_t \mathbf{p}^\top \boldsymbol{\ell}_t} \mathbf{p}^\top \boldsymbol{\psi}(\hat{\mathbf{t}}) > \inf_{\hat{\mathbf{t}}\in\widehat{\mathcal{T}}} \mathbf{p}^\top \boldsymbol{\psi}(\hat{\mathbf{t}}).$$
(23)

Since this holds for all $\mathbf{p} \in \Delta_n$, we have that ψ is classification calibrated w.r.t. ℓ over Δ_n .

Proof of Theorem 13

The proof uses the following lemma:

Lemma 16. Let $\ell : [n] \times [k] \to \mathbb{R}^n_+$. Let $\mathbf{p} \in \operatorname{relint}(\Delta_n)$. Then for any $t_1, t_2 \in \arg\min_{t'} \mathbf{p}^\top \ell_{t'}$ (i.e. such that $\mathbf{p} \in \mathcal{Q}^\ell_{t_1} \cap \mathcal{Q}^\ell_{t_2}$), $\mu_{\mathcal{Q}^\ell_{t_1}}(\mathbf{p}) = \mu_{\mathcal{Q}^\ell_{t_2}}(\mathbf{p})$.

Proof. Let $t_1, t_2 \in \arg\min_{t'} \mathbf{p}^\top \boldsymbol{\ell}_{t'}$ (i.e. $\mathbf{p} \in \mathcal{Q}_{t_1}^{\ell} \cap \mathcal{Q}_{t_2}^{\ell}$). Now

$$\mathcal{Q}_{t_1}^{\ell} = \left\{ \mathbf{q} \in \mathbb{R}^n : -\mathbf{q} \le \mathbf{0}, \mathbf{e}^\top \mathbf{q} = 1, (\boldsymbol{\ell}_{t_1} - \boldsymbol{\ell}_t)^\top \mathbf{q} \le 0 \; \forall t \in [k] \right\}.$$

Moreover, we have $-\mathbf{p} < \mathbf{0}$, and $(\boldsymbol{\ell}_{t_1} - \boldsymbol{\ell}_t)^\top \mathbf{p} = 0$ iff $\mathbf{p} \in \mathcal{Q}_t^{\ell}$. Let $\{t \in [k] : \mathbf{p} \in \mathcal{Q}_t^{\ell}\} = \{\tilde{t}_1, \ldots, \tilde{t}_r\}$ for some $r \in [k]$. Then by Lemma 14, we have

$$\mu_{Q_{t_{t}}^{\ell}} = \operatorname{nullity}(\mathbf{A}_{1}),$$

where $\mathbf{A}_1 \in \mathbb{R}^{(r+1) \times n}$ is a matrix containing r rows of the form $(\boldsymbol{\ell}_{t_1} - \boldsymbol{\ell}_{\tilde{t}_j})^{\top}, j \in [r]$ and the all ones row. Similarly, we get

$$\mu_{Q_{t_0}^\ell} = \operatorname{nullity}(\mathbf{A}_2),$$

where $\mathbf{A}_2 \in \mathbb{R}^{(r+1)\times n}$ is a matrix containing r rows of the form $(\boldsymbol{\ell}_{t_2} - \boldsymbol{\ell}_{\tilde{t}_j})^{\top}$, $j \in [r]$ and the all ones row. It can be seen that the subspaces spanned by the first r rows of \mathbf{A}_1 and \mathbf{A}_2 are both equal to the subspace parallel to the affine space containing $\boldsymbol{\ell}_{\tilde{t}_1}, \ldots, \boldsymbol{\ell}_{\tilde{t}_r}$. Thus both \mathbf{A}_1 and \mathbf{A}_2 have the same row space and hence the same null space and nullity, and therefore $\mu_{\mathcal{Q}_{t_1}^{\ell}}(\mathbf{p}) = \mu_{\mathcal{Q}_{t_2}^{\ell}}(\mathbf{p})$. \Box

Proof. (Proof of Theorem 13 for $\mathbf{p} \in \operatorname{relint}(\Delta_n)$ such that $\inf_{\mathbf{z} \in S_{\psi}} \mathbf{p}^{\top} \mathbf{z}$ is achieved in S_{ψ})

Let $d \in \mathbb{N}$ be such that there exists a convex surrogate target space $\widehat{\mathcal{T}} \subseteq \mathbb{R}^d$ and a convex surrogate loss $\psi : \widehat{\mathcal{T}} \to \mathbb{R}^n_+$ that is classification calibrated with respect to ℓ over Δ_n . As noted previously, we can equivalently view ψ as being defined as $\psi : \mathbb{R}^d \to \overline{\mathbb{R}}^n_+$, with $\psi_y(\hat{\mathbf{t}}) = \infty$ for $\hat{\mathbf{t}} \notin \widehat{\mathcal{T}}$ (and all $y \in [n]$). If $d \ge n - 1$, we are done. Therefore in the following, we assume d < n - 1.

Let $\mathbf{p} \in \operatorname{relint}(\Delta_n)$. Note that $\inf_{\mathbf{z} \in S_{\psi}} \mathbf{p}^\top \mathbf{z}$ always exists (since both \mathbf{p} and ψ are non-negative). It can be shown that this infimum is attained in $\operatorname{cl}(S_{\psi})$, i.e. $\exists \mathbf{z}^* \in \operatorname{cl}(S_{\psi})$ such that $\inf_{\mathbf{z} \in S_{\psi}} \mathbf{p}^\top \mathbf{z} = \mathbf{p}^\top \mathbf{z}^*$. In the following, we give a proof for the case when this infimum is attained within S_{ψ} ; the proof for the general case where the infimum is attained in $\operatorname{cl}(S_{\psi})$ is similar but more technical,

requiring extensions of the positive normals and the necessary condition of Theorem 6 to sequences of points in S_{ψ} (complete details will be provided in a longer version of the paper).

For the rest of the proof, we assume \mathbf{p} is such that the infimum $\inf_{\mathbf{z}\in\mathcal{S}_{\psi}}\mathbf{p}^{\top}\mathbf{z}$ is achieved in \mathcal{S}_{ψ} . In this case, it is easy to see that the infimum must then be achieved in \mathcal{R}_{ψ} (e.g. see [18]). Thus $\exists \mathbf{z}^* = \psi(\hat{\mathbf{t}}^*)$ for some $\hat{\mathbf{t}}^* \in \widehat{\mathcal{T}}$ such that $\inf_{\mathbf{z}\in\mathcal{S}_{\psi}}\mathbf{p}^{\top}\mathbf{z} = \mathbf{p}^{\top}\mathbf{z}^*$, and therefore $\mathbf{p}\in\mathcal{N}_{\mathcal{S}_{\psi}}(\mathbf{z}^*)$. This gives (e.g. see discussion before proof of Lemma 8)

$$\mathbf{0} \in \partial(\mathbf{p}^{\top} \boldsymbol{\psi}(\hat{\mathbf{t}}^*)) = \sum_{y=1}^n p_y \partial \psi_y(\hat{\mathbf{t}}^*)$$

Thus for each $y \in [n]$, $\exists \mathbf{w}_y \in \partial \psi_y(\hat{\mathbf{t}}^*)$ such that $\sum_{y=1}^n p_y \mathbf{w}_y = \mathbf{0}$. Now let $\mathbf{A} = [\mathbf{w}_1 \dots \mathbf{w}_n] \in \mathbb{R}^{d \times n}$, and let

$$\mathcal{H} = \left\{ \mathbf{q} \in \Delta_n : \mathbf{A}\mathbf{q} = \mathbf{0} \right\} = \left\{ \mathbf{q} \in \mathbb{R}^n : \mathbf{A}\mathbf{q} = \mathbf{0}, \mathbf{e}^\top \mathbf{q} = 1, -\mathbf{q} \le \mathbf{0} \right\}$$

where e is the $n \times 1$ all ones vector. We have $p \in H$, and moreover, -p < 0. Therefore, by Lemma 14, we have

$$\mu_{\mathcal{H}}(\mathbf{p}) = \operatorname{nullity}\left(\begin{bmatrix}\mathbf{A}\\\mathbf{e}^{\top}\end{bmatrix}\right) \geq n - (d+1).$$

Now,

$$\mathbf{q} \in \mathcal{H} \implies \mathbf{A}\mathbf{q} = \mathbf{0} \implies \mathbf{0} \in \sum_{y=1}^n q_y \partial \psi_y(\hat{\mathbf{t}}^*) \implies \mathbf{q}^\top \mathbf{z}^* = \inf_{\mathbf{z} \in \mathcal{S}_\psi} \mathbf{q}^\top \mathbf{z} \implies \mathbf{q} \in \mathcal{N}_{\mathcal{S}_\psi}(\mathbf{z}^*),$$

which gives $\mathcal{H} \subseteq \mathcal{N}_{S_{\psi}}(\mathbf{z}^*)$. Moreover, by Theorem 6, we have that $\exists t_0 \in [k]$ such that $\mathcal{N}_{S_{\psi}}(\mathbf{z}^*) \subseteq \mathcal{Q}_{t_0}^{\ell}$. This gives $\mathcal{H} \subseteq \mathcal{Q}_{t_0}^{\ell}$, and therefore

$$\mu_{\mathcal{Q}_{t_{\alpha}}^{\ell}}(\mathbf{p}) \geq \mu_{\mathcal{H}}(\mathbf{p}) \geq n-d-1.$$

By Lemma 16, we then have that for all t such that $\mathbf{p} \in \mathcal{Q}_t^{\ell}$,

$$\mu_{\mathcal{Q}_t^{\ell}}(\mathbf{p}) = \mu_{\mathcal{Q}_{t_0}^{\ell}}(\mathbf{p}) \ge n - d - 1,$$

which gives

$$d \geq n - \mu_{\mathcal{Q}_{4}^{\ell}}(\mathbf{p}) - 1.$$

This completes the proof for the case when $\inf_{\mathbf{z}\in S_{\psi}} \mathbf{p}^{\top}\mathbf{z}$ is achieved in S_{ψ} . As noted above, the proof for the case when this infimum is attained in $cl(S_{\psi})$ but not in S_{ψ} requires more technical details which will be provided in a longer version of the paper.

Proof of Lemma 14

Proof. We will show that $\mathcal{F}_{\mathcal{C}}(\mathbf{p}) \cap (-\mathcal{F}_{\mathcal{C}}(\mathbf{p})) = \text{Null}\left(\begin{bmatrix}\mathbf{A}^{1}\\\mathbf{A}^{3}\end{bmatrix}\right)$, from which the lemma follows.

First, let $\mathbf{v} \in \text{Null}\left(\begin{bmatrix}\mathbf{A}^{1}\\\mathbf{A}^{3}\end{bmatrix}\right)$. Then for $\epsilon > 0$, we have $\mathbf{A}^{1}(\mathbf{p} + \epsilon \mathbf{v}) = \mathbf{A}^{1}\mathbf{p} + \epsilon \mathbf{A}^{1}\mathbf{v} = \mathbf{A}^{1}\mathbf{p} + \mathbf{0} = \mathbf{b}^{1}$

 $\begin{aligned} \mathbf{A}^2(\mathbf{p} + \epsilon \mathbf{v}) &< \mathbf{b}^2 \quad \text{for small enough } \epsilon, \text{ since } \mathbf{A}^2 \mathbf{p} < \mathbf{b}^2 \\ \mathbf{A}^3(\mathbf{p} + \epsilon \mathbf{v}) &= \mathbf{A}^3 \mathbf{p} + \epsilon \mathbf{A}^3 \mathbf{v} = \mathbf{A}^3 \mathbf{p} + \mathbf{0} = \mathbf{b}^3 \,. \end{aligned}$

Thus $\mathbf{v} \in \mathcal{F}_{\mathcal{C}}(\mathbf{p})$. Similarly, we can show $-\mathbf{v} \in \mathcal{F}_{\mathcal{C}}(\mathbf{p})$. Thus $\mathbf{v} \in \mathcal{F}_{\mathcal{C}}(\mathbf{p}) \cap (-\mathcal{F}_{\mathcal{C}}(\mathbf{p}))$, giving $\operatorname{Null}\left(\begin{bmatrix}\mathbf{A}^{1}\\\mathbf{A}^{3}\end{bmatrix}\right) \subseteq \mathcal{F}_{\mathcal{C}}(\mathbf{p}) \cap (-\mathcal{F}_{\mathcal{C}}(\mathbf{p}))$.

Now let $\mathbf{v} \in \mathcal{F}_{\mathcal{C}}(\mathbf{p}) \cap (-\mathcal{F}_{\mathcal{C}}(\mathbf{p}))$. Then for small enough $\epsilon > 0$, we have both $\mathbf{A}^{1}(\mathbf{p} + \epsilon \mathbf{v}) \leq \mathbf{b}^{1}$ and $\mathbf{A}^{1}(\mathbf{p} - \epsilon \mathbf{v}) \leq \mathbf{b}^{1}$. Since $\mathbf{A}^{1}\mathbf{p} = \mathbf{b}^{1}$, this gives $\mathbf{A}^{1}\mathbf{v} = \mathbf{0}$. Similarly, for small enough $\epsilon > 0$, we have $\mathbf{A}^{3}(\mathbf{p} + \epsilon \mathbf{v}) = \mathbf{b}^{3}$; since $\mathbf{A}^{3}\mathbf{p} = \mathbf{b}^{3}$, this gives $\mathbf{A}^{3}\mathbf{v} = \mathbf{0}$. Thus $\begin{bmatrix} \mathbf{A}^{1} \\ \mathbf{A}^{3} \end{bmatrix} \mathbf{v} = \mathbf{0}$, giving $\mathcal{F}_{\mathcal{C}}(\mathbf{p}) \cap (-\mathcal{F}_{\mathcal{C}}(\mathbf{p})) \subseteq \operatorname{Null}(\begin{bmatrix} \mathbf{A}^{1} \\ \mathbf{A}^{3} \end{bmatrix})$.