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Abstract

The ability to predict action content from neural signals in real time before the ac-
tion occurs has been long sought in the neuroscientific study of decision-making,
agency and volition. On-line real-time (ORT) prediction is important for under-
standing the relation between neural correlates of decision-making and conscious,
voluntary action as well as for brain-machine interfaces. Here, epilepsy patients,
implanted with intracranial depth microelectrodes or subdural grid electrodes for
clinical purposes, participated in a “matching-pennies” game against an opponent.
In each trial, subjects were given a 5 s countdown, after which they had to raise
their left or right hand immediately as the “go” signal appeared on a computer
screen. They won a fixed amount of money if they raised a different hand than
their opponent and lost that amount otherwise. The question we here studied was
the extent to which neural precursors of the subjects’ decisions can be detected in
intracranial local field potentials (LFP) prior to the onset of the action.

We found that combined low-frequency (0.1–5 Hz) LFP signals from 10 electrodes
were predictive of the intended left-/right-hand movements before the onset of the
go signal. Our ORT system predicted which hand the patient would raise 0.5 s
before the go signal with 68±3% accuracy in two patients. Based on these results,
we constructed an ORT system that tracked up to 30 electrodes simultaneously,
and tested it on retrospective data from 7 patients. On average, we could predict
the correct hand choice in 83% of the trials, which rose to 92% if we let the system
drop 3/10 of the trials on which it was less confident. Our system demonstrates—
for the first time—the feasibility of accurately predicting a binary action on single
trials in real time for patients with intracranial recordings, well before the action
occurs.
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1 Introduction

The work of Benjamin Libet [1, 2] and others [3, 4] has challenged our intuitive notions of the rela-
tion between decision making and conscious voluntary action. Using electrocorticography (EEG),
these experiments measured brain potentials from subjects that were instructed to flex their wrist at a
time of their choice and note the position of a rotating dot on a clock when they felt the urge to move.
The results suggested that a slow cortical wave measured over motor areas—termed “readiness po-
tential” [5], and known to precede voluntary movement [6]—begins a few hundred milliseconds be-
fore the average reported time of the subjective ‘urge’ to move. This suggested that action onset and
contents could be decoded from preparatory motor signals in the brain before the subject becomes
aware of an intention to move and of the contents of the action. However, the readiness potential
was computed by averaging over 40 or more trials aligned to movement onset after the fact. More
recently, it was shown that action contents can be decoded using functional magnetic-resonance
imaging (fMRI) several seconds before movement onset [7]. But, while done on a single-trial basis,
decoding the neural signals took place off-line, after the experiment was concluded, as the sluggish
nature of fMRI hemodynamic signals precluded real-time analysis. Moreover, the above studies
focused on arbitrary and meaningless action—purposelessly raising the left or right hand—while
we wanted to investigate prediction of reasoned action in more realistic, everyday situations with
consequences for the subject.

Intracranial recordings are good candidates for single-trial, ORT analysis of action onset and con-
tents [8, 9], because of the tight temporal pairing of LFP to the underlying neuronal signals. More-
over, such recordings are known to be cleaner and more robust, with signal-to-noise ratios up to
100 times larger than surface recordings like EEG [10, 11]. We therefore took advantage of a rare
opportunity to work with epilepsy patients implanted with intracranial electrodes for clinical pur-
poses. Our ORT system (Fig. 1) predicts, with far above chance accuracy, which one of two future
actions is about to occur on this one trial and feeds the prediction back to the experimenter, all
before the onset of the go signal that triggers the patient’s movement (see Experimental Methods).
We achieve relatively high prediction performance using only part of the data—learning from brain
activity in past trials only (Fig. 2) to predict future ones (Fig. 3)—while still running the analysis
quickly enough to act upon the prediction before the subject moved.

2 Experimental Methods

2.1 Subjects

Subjects in this experiment were 8 consenting intractable epilepsy patients that were implanted with
intracranial electrodes as part of their presurgical clinical evaluation (ages 18–60, 3 males). They
were inpatients in the neuro-telemetry ward at the Cedars Sinai Medical Center or the Huntington
Memorial Hospital, and are designated with CS or HMH after their patient numbers, respectively. Six
of them—P12CS, P15CS, P22CS and P29–31HMH were implanted with intracortical depth elec-
trodes targeting their bilateral anterior-cingulate cortex, amygdala, hippocampus and orbitofrontal
cortex. These electrodes had eight 40 µm microwires at their tips, 7 for recording and 1 serving as
a local ground. Two patients, P15CS and P22CS, had additional microwires in the supplementary
motor area. We utilized the LFP recorded from the microwires in this study. Two other patients,
P16CS and P19CS, were implanted with an 8×8 subdural grid (64 electrodes) over parts of their
temporal and prefrontal dorsolateral cortices. The data of one patient—P31HMH—was excluded
because microwire signals were too noisy for meaningful analysis. The institutional review boards
of Cedars Sinai Medical Center, the Huntington Memorial Hospital and the California Institute of
Technology approved the experiments.

During the experiment, the subject sat in a hospital bed in a semi-inclined “lounge chair” position.
The stimulus/analysis computer (bottom left of Fig. 4) displaying the game screen (bottom right
inset of Fig. 4) was positioned to be easily viewable for the subject. When playing against the
experimenter, the latter sat beside the bed. The response box was placed within easy reach of the
subject (Fig. 4).
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2.2 Experiment Design

As part of our focus on purposeful, reasoned action, we had the subjects play a matching-pennies
game—a 2-choice version of “rock paper scissors”—either against the experimenter or against a
computer. The subjects pressed down a button with their left hand and another with their right on a
response box. Then, in each trial, there was a 5 s countdown followed by a go signal, after which
they had to immediately lift one of their hands. It was agreed beforehand that the patient would win
the trial if she lifted a different hand than her opponent, and lose if she raised the same hand as her
opponent. Both players started off with a fixed amount of money, $5, and in each trial $0.10 was
deducted from the loser and awarded to the winner. If a player lifted her hand before the go signal,
did not lift her hand within 500 ms of the go signal, or lifted no hand or both hands at the go signal—
an error trial—she lost $0.10 without her opponent gaining any money. The subjects were shown the
countdown, the go signal, the overall score, and various instructions on a stimulus computer placed
before them (Fig. 4). Each game consisted of 50 trials. If, at the end of the game, the subject had
more money than her opponent, she received that money in cash from the experimenter.

Before the experimental session began, the experimenter explained the rules of the game to the sub-
ject, and she could practice playing the game until she was familiar with it. Consequently, patients
usually made only few errors during the games (<6% of the trials). Following the tutorial, the sub-
ject played 1–3 games against the computer and then once against the experimenter, depending on
their availability and clinical circumstances. The first 2 games of P12CS were removed because
the subject tended to constantly raise the right hand regardless of winning or losing. Two patients,
P15CS and P19CS, were tested in actual ORT conditions. In such sessions—3 games each—the
subjects always played against the experimenter. These ORT games were different from the other
games in two respects. First, a computer screen was placed behind the patient, in a location where
she could not see it. Second, the experimenter was wearing earphones (Fig. 1,4). Half a second be-
fore go-signal onset, an arrow pointing towards the hand that the system predicted the experimenter
had to raise to win the trial was displayed on that screen. Simultaneously, a monophonic tone was
played in the experimenter’s earphone ipsilateral to that hand. The experimenter then lifted that hand
at the go signal (see Supplemental Movie).
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Figure 1: A schematic diagram of the on-line real-time (ORT) system. Neural signals flow from
the patient through the Cheetah machine to the analysis/stimulus computer, which controls the input
and output of the game and computes the prediction of the hand the patient would raise at the go
signal. It displays it on a screen behind the patient and informs the experimenter which hand to raise
by playing a tone in his ipsilateral ear using earphones.
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3 The real-time system

3.1 Hardware and software overview

Neural data from the intracranial electrodes were transferred to a recording system (Neuralynx,
Digital Lynx), where it was collected and saved to the local Cheetah machine, down sampled
from 32 kHz to 2 kHz and buffered. The data were then transferred, through a dedicated 1 Gbps
local-area network, to the analysis/stimulus machine. This computer first band-pass-filtered the
data to the 0.1–5 Hz range (delta and lower theta bands) using a second-order zero-lag elliptic
filter with an attenuation of 40 dB (cf. Figs. 2a and 2b). We found that this frequency range—
generally comparable to that of the readiness potential—resulted in optimal prediction performance.
It then ran the analysis algorithm (see below) on the filtered data. This computer also controlled
the game screen, displaying the names of the players, their current scores and various instructions.
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Figure 2: The ORT-system’s training phase. Left (in
red) and right (in blue) raw signals (a) are low-pass fil-
tered (b). Mean±standard errors of signals preceed-
ing left- and right-hand movments (c) are used to com-
pute a left/right separability index (d), from which time
windows with good separation are found (e). Seven
classifiers are then applied to all the time windows (f)
and the best electrode/time-window/classifier combi-
nations are selected (g) and used in the prediction phase
(Fig. 3).

The analysis/stimulus computer further
controlled the response box, which con-
sisted of 4 LED-lit buttons. The but-
tons of the subject and her opponent
flashed red or blue whenever she or her
opponent won, respectively. Addition-
ally, the analysis/stimulus computer sent
a unique transistor-transistor logic (TTL)
pulse whenever the game screen changed
or a button was pressed on the response
box, which synchronized the timing of
these events with the LFP recordings.
In real-time game sessions, the analy-
sis/stimulus computer also displayed the
appropriate arrow on the computer screen
behind the subject and played the tone
to the appropriate ear of the experimenter
0.5 s before go-signal onset (Figs. 1,4).

The analysis software was based on a
machine-learning algorithm that trained
on past-trials data to predict the current
trial and is detailed below. The train-
ing phase included the first 70% of the
trials, with the prediction carried out on
the remaining 30% using the trained pa-
rameters, together with an online weight-
ing system (see below). The system ex-
amined only neural activity, and had no
access to the subject’s left/right-choice
history. After filtering all the training
trials (Fig. 2b), the system found the
mean and standard error over all leftward
and rightward training trials, separately
(Fig. 2c, left designated in red). It then
found the electrodes and time windows
where the left/right separation was high
(Fig. 2d,e; see below), and trained the clas-
sifiers on these time windows (Fig. 2f–g).
The best electrode/time-window/classifier
(ETC) combinations were then used to
predict the current trial in the prediction
phase (Fig. 3). The number of ETCs that
can be actively monitored is currently lim-
ited to 10 due to the computational power
of the real-time system.
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Figure 3: The ORT-system’s prediction phase. A new signal—from 5 to 0.5 seconds before the
go signal—is received in real time, and each electrode/time-window/classifier combination (ETC)
classifies it as resulting in left- or right-hand movement. These predictions are then compared to the
actual hand movement, with the weights associated with ETCs that correctly (incorrectly) predicted
increasing (decreasing).

3.2 Computing optimal left/right-separating time windows

The algorithm focused on finding the time windows with the best left/right separation for the dif-
ferent recording electrodes over the training set (Fig. 2c–e). That is, we wanted to predict whether
the signal aN (t) on trial N will result in a leftward or rightward movement—i.e., whether the la-
bel of the N th trial will be Lt or Rt, respectively. For each electrode, we looked at the N − 1
previous trials a1(t), a2(t), . . . , aN−1(t), and their associated labels as l1, l2, . . . , lN−1. Now, let
L(t) = {ai(t) | li = Lt}N−1

i=1 and R(t) = {ai(t) | li = Rt}N−1
i=1 be the set of previous leftward and

rightward trials in the training set, respectively. Furthermore, let Lm(t) (Rm(t)) and Ls(t) (Rs(t))
be the mean and standard error of L(t) (R(t)), respectively. We can now define the normalized
relative left/right separation for each electrode at time t (see Fig. 2d):

δ(t) =



[Lm(t)− Ls(t)]− [Rm(t) +Rs(t)]

Lm(t)−Rm(t)
if [Lm(t)− Ls(t)]− [Rm(t) +Rs(t)] > 0

− [Rm(t)−Rs(t)]− [Lm(t) + Ls(t)]

Rm(t)− Lm(t)
if [Rm(t)−Rs(t)]− [Lm(t) + Ls(t)] > 0

0 otherwise

Thus, δ(t) > 0 (δ(t) < 0) means that the leftward trials tend to be considerably higher (lower)
than rightward trials for that electrode at time t, while δ(t) = 0 suggests no left/right separation at
time t. We define a consecutive time period of |δ(t)| > 0 for t < prediction time (the time before
the go signal when we want the system to output a prediction; -0.5 s for the ORT trials) as a time
window (Fig. 2e). After all time windows are found for all electrodes, time windows less thanM ms

apart are combined into one. Then, for each time window from t1 to t2 we define a =
∫ t2
t1
|δ(t)|dt.

We then eliminate all time windows satisfying a < A. We found the values M = 200 ms and
A = 4, 500 µV ·ms to be optimal for real-time analysis. This resulted in 20–30 time windows over
all 64 electrodes that we monitored.
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Figure 4: The experimental setup in the clinic. At 400 ms before the go signal, the patient and
experimenter are watching the game screen (inset on bottom right) on the analysis/stimulus computer
(bottom left) and still pressing down the buttons of the response box. The realtime system already
computed a prediction, and thus displays an arrow on the screen behind the patient and plays a tone
in the experimenter’s ear ipsilateral to the hand it predicts he should raise to beat the patient (see
Supplemental Movie).

3.3 Classifiers selection and ETC determination

We used ensemble learning with 7 types of relatively simple binary classifiers (due to real-time
processing considerations) on every electrode’s time windows (Fig. 2f). Classifiers A to G would
classify aN (t) as Lt if:

(A) Defining aN,M , Lm,M and Rm,M as
∑
aN (t),

∑
Lm(t) and

∑
Rm(t) over time window M ,

(i) sign
(
Rm,M

)
6= sign

(
aN,M

)
= sign

(
Lm,M

)
, or

(ii) sign
(
Rm,M

)
= sign

(
aN,M

)
= sign

(
Lm,M

)
and

∣∣Lm,M

∣∣ > ∣∣Rm,M

∣∣, or
(iii) sign

(
Rm(t)

)
6= sign

(
SN,M

)
6= sign

(
Lm(t)

)
and

∣∣Lm,M

∣∣ < ∣∣Rm,M

∣∣;
(B)

∣∣mean
(
aN (t)

)
−mean

(
Lm(t)

)∣∣ < ∣∣mean
(
aN (t)

)
−mean

(
Rm(t)

)∣∣;
(C)

∣∣median
(
aN (t)

)
− median

(
Lm(t)

)∣∣ < ∣∣median
(
aN (t)

)
− median

(
Rm(t)

)∣∣ over the time
window;

(D)
∣∣aN (t)− Lm(t)

∣∣
L2
<
∣∣aN (t)−Rm(t)

∣∣
L2

over the time window;

(E) aN (t) is convex/concave like Lm(t) while Rm(t) is concave/convex, respectively;
(F) Linear support-vector machine (SVM) designates it as so; and
(G) k-nearest neighbors (KNN) with Euclidean distance designates it as so.

Each classifier is optimized for certain types of features. To estimate how well its classification
would generalize from the training to the test set, we trained and tested it using a 70/30 cross-
validation procedure within the training set. We tested each classifier on every time window of every
electrode, discarding those with accuracy <0.68, which left 12.0 ± 1.6% of the original 232 ± 18
ETCs, on average (±standard error). The training phase therefore ultimately output a set of S binary
ETC combinations (Fig. 2g) that were used in the prediction phase (Fig. 3).

3.4 The prediction-phase weighting system

In the prediction phase, each of the overall S binary ETCs calculates a prediction, ci ∈ {−1, 1} (for
right and left, respectively), independently at the desired prediction time. All classifiers are initially
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given the same weight, w1 = w2 = · · · = wS = 1. We then calculate ξ =
∑S

i=1 wi · ci and predict
left (right) if ξ > d (ξ < −d), or declare it an undetermined trial if −d < ξ < d. Here d is the
drop-off threshold for the prediction. Thus the larger d is, the more confident the system needs to be
to make a prediction, and the larger the proportion of trials on which the system abstains—the drop-
off rate. Weight wi associated with ETCi is increased (decreased) by 0.1 whenever ETCi predicts
the hand movement correctly (incorrectly). A constantly erring ETC would therefore be associated
with an increasingly small and then increasingly negative weight.

3.5 Implementation

The algorithm was implemented in MATLAB 2011a (MathWorks, Natick, MA) as well as in C++
on Visual Studio 2008 (Microsoft, Redmond, WA) for enhanced performance. The neural signals
were collected by the Digital Lynx S system using Cheetah 5.4.0 (Neuralynx, Redmond, WA). The
simulated-ORT system was also implemented in MATLAB 2011a. The simulated-ORT analyses
carried out in this paper used real patient data saved on the Digital Lynx system.
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Figure 5: Across-subjects average of the prediction accuracy of simulated-ORT versus time before
the go signal. The mean accuracies over time when the system predicts on every trial, is allowed
to drop 19% or 30% of the trials, are depicted in blue, green and red, respectively (±standard error
shaded). Values above the dashed horizontal line are significant at p = 0.05.

4 Results

We tested our prediction system in actual real time on 2 patients—P15CS and P19CS (a depth
and grid patient, respectively), with a prediction time of 0.5 s before the go signal (see Sup-
plementary Movie). Because of computational limitations, the ORT system could only track 10
electrodes with just 1 ETC per electrode in real time. For P15CS, we achieved an accuracy of
72±2% (±standard error; accuracy = number of accurately predicted trials / [total number of tri-
als - number of dropped trials]; p = 10−8, binomial test) without modifying the weights on-
line during the prediction (see Section 3.4). For P19CS we did not run patient-specific train-
ing of the ORT system, and used parameter values that were good on average over previous pa-
tients instead. The prediction accuracy was significantly above chance 63±2% (±standard er-
ror; p = 7 · 10−4, binomial test). To understand how much we could improve our accuracy
with optimized hardware/software, we ran the simulated-ORT at various prediction times along
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the 5 s countdown leading to the go signal. We further tested 3 drop-off rates—0, 0.19 and
0.30 (Fig. 5; drop-off rate = number of dropped trials / total number of trials; these resulted
from 3 drop-off thresholds—0, 0.1 and 0.2—respectively, see Section 3.4:). Running offline,
we were able to track 20–30 ETCs, which resulted in considerably higher accuracies (Figs. 5,6).
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Figure 6: Simulated-ORT accuracy over time for individual
patients with no drop off.

Averaged over all subjects, the accu-
racy rose from about 65% more than
4 s before the go signal to 83–92%
close to go-signal onset, depending
on the allowed drop-off rate. In par-
ticular, we found that for a predic-
tion time of 0.5 s before go-signal
onset, we could achieve accuracies
of 81±5% and 90±3% (±standard
error) for P15CS and P19CS, re-
spectively, with no drop off (Fig. 6).
We also analyzed the weights that
our weighting system assigned to the
different ETCs. We found that the
empirical distribution of weights to
ETCs associated with classifiers A to
G was, on average: 0.15, 0.12, 0.16,
0.22, 0.01, 0.26 and 0.07, respec-
tively. This suggests that the linear
SVM and L2-norm comparisons (of
aN to Lm and Rm) together make up
nearly half of the overall weights at-
tributed to the classifiers, while the
current concave/convex measure is of
little use as a classifier.

5 Discussion

We constructed an ORT system that, based on intracranial recordings, predicted which hand a per-
son would raise well before movement onset at accuracies much greater than chance in a com-
petitive environment. We further tested this system off-line, which suggested that with optimized
hardware/software, such action contents would be predictable in real time at relatively high accu-
racies already several seconds before movement onset. Both our prediction accuracy and drop-off
rates close to movement onset are superior to those achieved before movement onset with non-
invasive methods like EEG and fMRI [7, 12–14]. Importantly, our subjects played a matching pen-
nies game—a 2-choice version of rock-paper-scissors [15]—to keep their task realistic, with minor
though real consequences, unlike the Libet-type paradigms whose outcome bears no consequences
for the subjects. It was suggested that accurate online, real-time prediction before movement onset
is key to investigating the relation between the neural correlates of decisions, their awareness, and
voluntary action [16, 17]. Such prediction capabilities would facilitate many types of experiments
that are currently infeasible. For example, it would make it possible to study decision reversals on
a single-trial basis, or to test whether subjects can guess above chance which of their action con-
tents are predictable from their current brain activity, potentially before having consciously made up
their mind [16, 18]. Accurately decoding these preparatory motor signals may also result in earlier
and improved classification for brain-computer interfaces [13, 19, 20]. The work we present here
suggests that such ORT analysis might well be possible.
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