
S.1 Proofs

S.1.1 Lemma 3.1

Proof. From the matrix inversion lemma we have

A−1 =
1

α
I− 1

α2
ΦT
x

(
1

β
I +

1

α
ΦxΦ

T
x

)−1

Φx =
1

α
I− 1

α2
ΦT
x

(
1

β
I +

1

α
KT
x

)−1

Φx (16)

=
1

α
I− 1

α2
ΦT
x

(
1

β
VVT +

1

α
VΛVT

)−1

Φx =
1

α
I− 1

α2
ΦT
xV

(
1

β
I +

1

α
Λ

)−1

VTΦx

=
1

α
I−ΦT

xV diag

{
αλi +

α2

β

}−1

VTΦx (17)

Now suppose that A−
1
2 = 1√

α
I − ΦT

xVDVTΦx for unknown diagonal matrix D. Squaring, we
obtain

1

α
I− 2√

α
ΦT
xVDVTΦx + ΦT

xVDVTKxVDVTΦx (18)

=
1

α
I− 2√

α
ΦT
xVDVTΦx + ΦT

xVDVTVΛVTVDVTΦx (19)

=
1

α
I− 2√

α
ΦT
xVDVTΦx + ΦT

xVDΛDVTΦx (20)

=
1

α
I−ΦT

xV

(
2√
α

D−DΛD

)
VTΦx (21)

=
1

α
I−ΦT

xV diag

{
2di√
α
− λid2

i

}
VTΦx . (22)

To solve the di we equate

1

αλi + α2

β

=
2di√
α
− λid2

i , (23)

which is quadratic in di. Solving yields

di =
1

λi

(
1√
α
± 1√

α+ βλi

)
. (24)

Selecting the minus (vs the plus) will produce a pd matrix. We obtain

A−
1
2 =

1√
α

I + ΦT
xV diag

{
1

λi

(
1√

α+ βλi
− 1√

α

)}
VTΦx =

1√
α

I + ΦT
xCΦx . (25)

It follows

ΦxA
− 1

2 =
1√
α

Φx + KxV diag

{
1

λi

(
1√

α+ βλi
− 1√

α

)}
VTΦx (26)

=
1√
α

Φx + VΛVTV diag

{
1

λi

(
1√

α+ βλi
− 1√

α

)}
VTΦx (27)

=
1√
α

VVTΦx + V diag

{
1√

α+ βλi
− 1√

α

}
VTΦx (28)

= V

(
1√
α

I + diag

{
1√

α+ βλi
− 1√

α

})
VTΦx (29)

= V diag

{
1√

α+ βλi

}
VTΦx = BΦx (30)
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S.1.2 Lemma 3.2

Proof. Observe:

Q̃T Q̃ = (I− ŨŨT + ŨG̃ŨT )T (I− ŨŨT + ŨG̃ŨT ) (31)

= I−ŨŨT+ŨG̃ŨT−ŨŨT+ŨŨT−ŨG̃ŨT+ŨG̃T ŨT−ŨG̃T ŨT+ŨŨT (32)
= I (33)

S.1.3 Theorem 3.3

We begin with preliminary definitions. For V ∈ St(N, r), we define

R̊(V) , {Y : Y ∈ St(N, r) and ∃A ∈ O(r) such that Y = VA}
N̊ (V) , {Y : Y ∈ St(N,N − r) and VTY = 0r×(N−r)} .

It follows immediately that Y ∈ R̊(V)⇔ V ∈ R̊(Y) and Y ∈ N̊ (V)⇔ V ∈ N̊ (Y).

Given Q ∈ O(N), we would like to know if Q can be expressed as IN −V(Ir −G)VT for some
orthogonal G. If so, we can write Q = IN −V(Ir −G)VT = IN − (VA)(Ir −ATGA)(VA)T ,
A orthogonal, implying that Q can be decomposed via any member of R̊(V). When this decompo-
sition is possible, we say Q is supported by R̊(V).

Lemma S.1.1. Given Q ∈ O(N) and V ∈ St(N, r). Q is supported by R̊(V) if and only if for any
V⊥ ∈ N̊ (V) we have VT

⊥QV⊥ = IN−r .

Proof. (⇒) With Q supported by R̊(V), there exists G ∈ O(r) such that Q = IN−V(Ir−G)VT .
It follows that VT

⊥QV⊥ = VT
⊥V⊥ −VT

⊥V(Ir −G)VTV⊥ = IN−r − 0 = IN−r.
(⇐) The matrix V̄ = (V | V⊥) is an element of O(N). We may therefore write

Q = V̄V̄TQV̄V̄T = V̄

(
VT

VT
⊥

)
Q (V | V⊥) V̄T = V̄

(
VTQV VTQV⊥
VT
⊥QV VT

⊥QV⊥

)
V̄T (34)

= V̄

(
VTQV VTQV⊥
VT
⊥QV I

)
V̄T . (35)

Whenever an orthogonal matrix contains an ij-th element of ±1, the remaining i-th row and j-th
column elements are 0. With V̄TQV̄ orthogonal, the identity block in the bottom-right corner
implies that VTQV⊥ = 0 and VT

⊥QV = 0. The result is a block diagonal orthogonal matrix; the
first block is VTQV and the second is identity. It follows that G = VTQV ∈ O(r). We have

Q = V̄

(
VTQV 0

0 I

)
V̄T = (V | V⊥)

(
VTQV 0

0 I

)(
VT

VT
⊥

)
(36)

= V⊥VT
⊥ + VVTQVVT (37)

= (V⊥VT
⊥ + VVT )− (VVT + VGVT ) (38)

= IN −V(Ir −G)VT (39)

The above simplification follows from IN = V̄V̄T = VVT + V⊥VT
⊥.

Corollary S.1.2. IN is supported by R̊(V).

We can now proceed to the optimization problem. The objective of interest, f : O(N)
m → R, is

f(Q1, . . . ,Qm) =
∑
i<j

‖ZiQi − ZjQj‖2F . (40)

The next two lemmas are independent of f , but necessary for the final theorem.
Lemma S.1.3. For Y1:m, we have 1

m

∑m
i=1 Yi = arg minC

∑m
i=1 ‖Yi −C‖2F .
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Proof. Taking the derivative with respect to C and setting equal to zero, we have:

0 = 2

m∑
i=1

(C−Yi) ⇒ C =
1

m

m∑
i=1

Yi (41)

Lemma S.1.4. For C = 1
m

∑m
i=1 Yi we have

∑m
i<j ‖Yi −Yj‖2F = 1

2

∑m
i,j ‖Yi −Yj‖2F =

m
∑m
i=1 ‖Yi −C‖2F .

Proof. The first equality is due to

2

m∑
i<j

‖Yi −Yj‖2F =

m∑
i<j

‖Yi −Yj‖2F +

m∑
i>j

‖Yi −Yj‖2F +

m∑
i=1

‖Yi −Yi‖2F . (42)

The second equality is due to

m∑
i=1

m∑
j=1

‖Yi −Yj‖2F =

m∑
i=1

 m∑
j=1

tr(YT
i Yi)− 2 tr(YT

i Yj) + tr(YT
j Yj)

 (43)

=

m∑
i=1

m tr(YT
i Yi)− 2m tr(YT

i C) +

m∑
j=1

tr(YT
j Yj)

 (44)

=

(
m

m∑
i=1

tr(YT
i Yi)

)
−
(
2m2 tr(CTC)

)
+

m m∑
j=1

tr(YT
j Yj)

 (45)

=

(
2m

m∑
i=1

tr(YT
i Yi)

)
−
(
2m2 tr(CTC)

)
(46)

and

m

m∑
i=1

‖Yi −C‖2F = m
m∑
i=1

tr(YT
i Yi)− 2 tr(YT

i C) + tr(CTC) (47)

=

(
m

m∑
i=1

tr(YT
i Yi)

)
−
(
2m2 tr(CTC)

)
+
(
m2 tr(CTC)

)
(48)

=

(
m

m∑
i=1

tr(YT
i Yi)

)
−
(
m2 tr(CTC)

)
(49)

Lemma S.1.5. Let R1:m ∈ O(N) and let A ⊆ {1, 2, . . . ,m}. The following algorithm, which
updates Ri to R′i, results in f(R1:m) ≥ f(R′1:m):

1. C← 1
m

∑m
i=1 ZiRi

2. for each j ∈ {1, 2, . . . ,m}\A: R′j ← Rj

3. for each j ∈ A: R′j ← arg minQ∈O(N) ‖ZjQ−C‖2F
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Proof. Let C′ = 1
m

∑m
i=1 ZiR

′
i. We have

f(R1:m) = m

m∑
i=1

‖ZiRi −C‖2F from Lemma S.1.4 (50)

≥ m
m∑
i=1

‖ZiR′i −C‖2F from the algorithm (51)

≥ m
m∑
i=1

‖ZiR′i −C′‖2F from Lemma S.1.3 (52)

= f(R′1:m) from Lemma S.1.4 . (53)

Lemma S.1.6. f is bounded by below.

Proof. f is the sum of nonnegative entries, so it is lower bounded by 0.

Lemma S.1.7. For R ∈ O(N), f(Q1,Q2, . . . ,Qm) = f(Q1R,Q2R, . . . ,QmR).

Proof. The Frobenius norm is unitariliy invariant: ‖ZiQiR− ZjQjR‖2F = ‖ZiQi − ZjQj‖2F .

In what follows, we use f(Q1:m) = 1
2

∑m
i,j ‖ZiQi − ZjQj‖2F (Lemma S.1.4). With respect to Qk,

the unconstrained derivative is

∂f

∂Qk
= −ZTk

m∑
i=1

ZiQi (54)

Thus, a critical point (S1, . . . ,Sm) must satisfy [5]:

STkZTk

m∑
i=1

ZiSi ∈ SN (55)

for each k, where SN denotes the set of N ×N symmetric matrices.
Lemma S.1.8. For R ∈ O(N), if (S1, . . . ,Sm) is a critical point of f , then so is (S1R, . . . ,SmR).

Proof. For each k we have Fk = STkZTk
∑m
i=1 ZiSi symmetric. If Fk is symmetric then so is

RTFkR = (SkR)TZTk
∑m
i=1 Zi(SiR).

Let r = mt and let W = [ZT1 ZT2 · · · ZTm]T ∈ Rr×N have SVD UΣVT , where U ∈ O(r)

and V ∈ St(N, r). In the notation of kernel hyperalignment, we have Zi = ΦiA
− 1

2
i and Φ0 =

[ΦT
1 ΦT

2 · · · ΦT
m]T .

Lemma S.1.9. Zi = ZiVVT .

Proof. Let Ei = [0t×t · · ·0t×t︸ ︷︷ ︸
i−1

It 0t×t · · ·0t×t︸ ︷︷ ︸
m−i

]T . We have Zi = ET
i W = ET

i UΣVT and

ZiVVT = (ET
i W)VVT = ET

i UΣVTVVT = ET
i UΣVT .

Theorem S.1.10. Any global minimizer of f can be mapped to another global minimizer whose
entries are supported by R̊(V).

Proof. Let (S̃1, . . . , S̃m) be a global minimizer of f . Because f is differentiable and bounded by
below, (S̃1, . . . , S̃m) is a critical point. We form Si = S̃iS

T
1 . From Lemmas S.1.7 and S.1.8 S1:m

is also a global minimizer and a critical point. With (S1,S2, . . . ,Sm) = (I,S2, . . . ,Sm), we have

STkZTk

m∑
i=1

ZiSi = STkZTkM ∈ SN , (56)

13



where M =
∑m
i=1 ZiSi. Every symmetric matrix is diagonalizable [11] so there exists unitary Pk

and diagonal Dk such that

STkZTkM = MTZkSk = PkDkP
T
k . (57)

Using Lemma S.1.9 we obtain

MTZkVVTSk = PkDkP
T
k (58)

MTZkVVT = PkDkP
T
k STk (59)

SkM
TZkVVT = SkPkDkP

T
k STk (60)

SkM
TZkVVT = (SkPk)Dk(SkPk)T . (61)

Let V⊥ ∈ N̊ (V). With SkM
TZkVVT symmetric and (SkM

TZkVVT )V⊥ = 0, it follows that
SkPk = [VAk | V⊥] for some Ak ∈ O(r) and (N − r) of the eigenvalues are zero. We may
therefore use

Sk = [VAk | V⊥]PT
k , Pk = [STkVAk | STkV⊥] and Dk =

(
D̄k 0
0 0

)
, (62)

where D̄k is r × r diagonal.

We now wish to show that MSTkV⊥ = 0 for each k. We first note that
m∑
j=1

MTZjSj =

m∑
j=1

MTZjVVTSj =

m∑
j=1

PjDjP
T
j (63)

= MT
m∑
j=1

ZjSj = MTM =
∑
i,j

STi ZTi ZjSj . (64)

We have

VT
⊥SkM

TMSTkV⊥ = VT
⊥Sk

 m∑
j=1

PjDjP
T
j

STkV⊥ (65)

= VT
⊥ (VAk | V⊥) PT

k

 m∑
j=1

PjDjP
T
j

Pk

(
AT
kVT

VT
⊥

)
V⊥ (66)

= (0 | I)

 m∑
j=1

(PT
kPj)

(
D̄j 0
0 0

)
(PT

j Pk)

(0
I

)
(67)

= (0 | I)

 m∑
j=1

(
∗ 0
0 0

)(0
I

)
(68)

= (0 | I)

(
∗ 0
0 0

)(
0
I

)
(69)

= 0 . (70)

It follows that

‖MSTkV⊥‖2F = tr(VT
⊥SkM

TMSTkV⊥) = tr(0) = 0 (71)

and so necessarily we have MSTkV⊥ = 0 (a norm separates points). With S1 = I we also have
MV⊥ = 0.

The minimizer S1:m is fixed and consequently so is M. Let C = 1
mM be the centroid of the

mappings. Corollary S.1.2 tells us that S1 = I is supported by R̊(V) so we consider S2:m. For each
k = 2, 3, . . . ,m we generate a new Sk by solving arg minQ∈O(N) ‖ZkQ−C‖2F . Lemma S.1.5
guarantees that this new point will not increase the objective and so it will also be a global minimizer.
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Starting with k = 2 we seek an orthogonal Q to minimize ‖Z2Q−C‖2F = CONST−2 tr(QTZT2 C)
or maximize tr(QTZT2 M). The problem at hand is the classical orthogonal Procrustes problem. A
solution is found with full left and right singular matrices of Y = ZT2 M. Now, VT

⊥Y = 0 because
ZT2 = VVTZT2 from Lemma S.1.9. Furthermore, YV⊥ = 0 because MV⊥ = 0. Thus, the
SVD of Y admits respective left and right singular matrices [VB | V⊥] and [VB′ | V⊥] for some
orthogonal B and B′. It follows that Q∗ = [VB | V⊥][VB′ | V⊥]T is a valid minimizer with
which we update S2. This process is then repeated for k = 3, . . . ,m. Finally, we note that

VT
⊥[VB | V⊥][VB′ | V⊥]TV⊥ = [0 | I][0 | I]T = I , (72)

so from Lemma S.1.1, the updates produce a global minimizer supported by R̊(V).

S.2 Derivation of (11)

RT
i ΦT

i Ψ =
1

|A|
∑
j∈A

([
I−ΦT

0 K−1
0 Φ0 + ΦT

0 K
− 1

2
0 GT

i K
− 1

2
0 Φ0

]
ΦT
i Bi

BjΦj

[
I−ΦT

0 K−1
0 Φ0 + ΦT

0 K
− 1

2
0 ĜjK

− 1
2

0 Φ0

])
(73)

= CONST +
1

|A|
∑
j∈A

(
ΦT

0 K
− 1

2
0 GT

i K
− 1

2
0 Φ0Φ

T
i BiBjΦj

[
I−ΦT

0 K−1
0 Φ0 + ΦT

0 K
− 1

2
0 ĜjK

− 1
2

0 Φ0

])
, (74)

and so

tr(RT
i ΦT

i Φ0) + CONST

= tr

 1

|A|
∑
j∈A

GT
i K
− 1

2
0 K0iBiBjΦj

(
I−ΦT

0 K−1
0 Φ0 + ΦT

0 K
− 1

2
0 ĜjK

− 1
2

0 Φ0

)
ΦT

0 K
− 1

2
0


= tr

(
GT
i K
− 1

2
0 K0iBi

[
1

|A|
∑
j∈A

Bj

(
ΦjΦ

T
0 −ΦjΦ

T
0 K−1

0 Φ0Φ
T
0

+ ΦjΦ
T
0 K
− 1

2
0 ĜjK

− 1
2

0 Φ0Φ
T
0

)]
K
− 1

2
0

)
= tr

(
GT
i K
− 1

2
0 K0iBi

[
1

|A|
∑
j∈A

Bj

(
Kj0 −Kj0K

−1
0 K0 + Kj0K

− 1
2

0 ĜjK
− 1

2
0 K0

)]
K
− 1

2
0

)

= tr

GT
i K
− 1

2
0 K0iBi

 1

|A|
∑
j∈A

BjKj0K
− 1

2
0 Ĝj

 (75)

= tr

GT
i B̃T

i

 1

|A|
∑
j∈A

B̃jĜj

 (76)
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S.3 The Orthogonal Procrustes Problem for n ≥ 2t

We can use the approach taken in formulating the kernel hyperalignment algorithm for solving
arg minR∈O(n) ‖XR−Y‖2F . Here, X,Y ∈ Rt×n and n ≥ 2t. We form plane support via[
XT | YT

]T ∈ R2t×n.

Let
[
XT | YT

]T
have SVD ŪΣ̄V̄T with Σ̄ r × r diagonal, where r is the rank of the matrix.

Impose R = In − V̄(Ir − G)V̄T for some G ∈ O(n). It follows that we wish to maximize
tr(V̄TGT V̄XTY) = tr(GT V̄TXTYV̄). Thus, we take the full SVD of V̄TXTYV̄ = ŨΣ̃ṼT

and set G? = ŨṼT .

In total, this solution requires 2 SVDs: one of a 2t×nmatrix and one of an r×rmatrix. Respectively,
these SVDs cost O(4t2n) and O(r3) operations. By construction r ≤ 2t, so the total SVD cost in
the worst case is O(4t2n+ 8t3), which is linear in n.

As a final note, the storage requirement for the dense R is n2 entries. However, given the imposed
decomposition, the storage reduces to nr for V̄ and r2 for G, yielding a total of nr+r2. Necessarily,
there is always a storage benefit because nr + r2 ≥ n2 ⇒ n/r ≤ (1+

√
5)/2 ≈ 1.618 (Golden

Ratio). With r ≤ 2t ≤ n, we have n/r ≥ 2 > (1+
√

5)/2.

S.4 Kernels used for experiments

Recall that n is the number of voxels.

• Linear

〈x1,x2〉 (77)

• Quadratic ( n

22.5
+ 〈x1,x2〉

)2

(78)

• Gaussian

exp

{
‖x1 − x2‖22

22455

}
(79)

• Sigmoid

tanh

(
7

n
〈x1,x2〉

)
(80)
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