Nonparametric Bayesian
| nver se Reinforcement L earning
for Multiple Reward Functions

Jaedeug Choi and Kee-Eung Kim
Department of Computer Science
Korea Advanced Institute of Science and Technology
Daejeon 305-701, Korea
j dchoi @i . kai st . ac. kr, keki m&s. kai st. ac. kr

Abstract

We present a nonparametric Bayesian approach to inverdena@ment learning
(IRL) for multiple reward functions. Most previous IRL algihms assume that
the behaviour data is obtained from an agent who is optigiairsingle reward
function, but this assumption is hard to guarantee in practiOur approach is
based on integrating the Dirichlet process mixture model Bayesian IRL. We
provide an efficient Metropolis-Hastings sampling aldanitutilizing the gradient
of the posterior to estimate the underlying reward funaj@nd demonstrate that
our approach outperforms previous ones via experimentsoimder of problem
domains.

1 Introduction

Inverse reinforcement learning (IRL) aims to find the ageatiderlying reward function given the
behaviour data and the model of environment [1]. IRL aldponi$ often assume that the behaviour
data is from an agent who behaves optimally without mistak#srespect to a single reward func-
tion. From the Markov decision process (MDP) perspective IRL can be defined as the problem
of finding the reward function given the trajectory data ofaptimal policy, consisting of state-
action histories. Under this assumption, a number of ssudie IRL have appeared in the liter-
ature [2, 3, 4, 5]. In addition, IRL has been applied to vasiguactical problems that includes
inferring taxi drivers’ route preferences from their GP$ad#], estimating patients’ preferences to
determine the optimal timing of living-donor liver tranapts [7], and implementing simulated users
to assess the quality of dialogue management systems [8].

In practice, the behaviour data is often gathered colleltifrom multiple agents whose reward
functions are potentially different from each other. Theoamnt of data generated from a single
agent may be severely limited, and hence we may suffer frensplarsity of data if we try to infer
the reward function individually. Moreover, even when wedanough data from a single agent,
the reward function may change depending on the situation.

However, most of the previous IRL algorithms assume thatbtleaviour data is generated by a
single agent optimizing a fixed reward function, althougér¢hare a few exceptions that address
IRL for multiple reward functions. Dimitrakakis and Rothid9] proposed a multi-task learning
approach, generalizing the Bayesian approach to IRL [4]thisywork, the reward functions are
individually estimated for each trajectory, which are assd to share a common prior. Other than
the common prior assumption, there is no effort to groupttajries that are likely to be generated
from the same or similar reward functions. On the other hBathes-Vromaret al. [10] took a more
direct approach that combines EM clustering with IRL altfori. The behaviour data are clustered

based on the inferred reward functions, where the rewarctifurs are defined per cluster. However,
the number of clusters (hence the number of reward fundtioes to be specified as a parameter in
order to use the approach.

In this paper, we present a nonparametric Bayesian appiasnh the Dirichlet process mixture
model in order to address the IRL problem with multiple resvamctions. We develop an efficient
Metropolis-Hastings (MH) sampler utilizing the gradierittbe reward function posterior to infer
reward functions from the behaviour data. In addition,rafteampleting IRL on the behaviour data,
we can efficiently estimate the reward function for a newetjry by computing the mean of the
reward function posterior given the pre-learned results.

2 Preliminaries

We assume that the environment is modeled as an NDR, T, R, v, by) where:S is the finite set
of states;A is the finite set of actions] (s, a, s’) is the state transition probability of changing to
states’ from states when actioru is taken;R(s, a) is the immediate reward of executing action
in states; v € [0, 1) is the discount factor,(s) denotes the probability of starting in stateFor
notational convenience, we use the veatet [r1, ..., rp] to denote the reward function.

A policy is a mappingr : S — A. The value of policyr is the expected discounted return of
executing the policy, defined 8™ = E[>";°, 7" R(s¢, at)|bo, 7). The value function of policyr

for each states is computed bW ™ (s) = R(s,7(s)) + v, cgT(s,7(s),s")V™(s") so that the
value is calculated by™ = > s bo(s)V 7 (s). Similarly, theQ-function is defined a®" (s, a) =
R(s,a) +7> . cs5T(s,a,s)V7(s"). Given an MDP, the agent’s objective is to execute an optimal
policy 7* that maximizes the value function for all the states, whichutd satisfy the Bellman
optimality equationy *(s) = maxsea [R(s,a) + 7Y cs T(s,a,s)V*(s')].

We assume that the agent’s behavior data is generated bytiexgan optimal policy with some
unknown reward function(si, given as the set’ of M trajectories where theu-th trajectory is an

H-step sequence of state-action paits; = {(Sm,1,@m,1); (Sm,2,@m2), -, (Sm H, amﬂ)}.2

2.1 Bayesian Inverse Reinforcement Learning (BIRL)

Ramachandran and Amir [4] proposed a Bayesian approachLtavifR the assumption that the
behaviour data is generated from a single reward functibe.prior encodes the the reward function
preference and the likelihood measures the compatibifitie@reward function with the data.

Assuming that the reward function entries are indepengefisitributed, the prior is defined as
P(r) = Hle P(rq). We can use various distributions for the reward prior. Fstance, the
uniform distribution can be used if we have no knowledge efgrence on rewards other than its
range, and the normal or Laplace distributions can be used grefer rewards to be close to some
specific values. The Beta distribution can also be used ifreet tewards as the parameter of the
Bernoulli distributionj.e. P(¢; = 1) = r4 with auxiliary binary random variablg; [11].

The likelihood is defined as an independent exponentialilbligion, analogous to the softmax dis-
tribution over actions:

M H M H ex *(Sem.hs@m hiT
P 1) = T T Ploralsnarn) = T, T, 220 s)

wheren is the confidence parameter of choosing optimal actiong#itd -; ») denotes the optimal
Q-function computed using reward functien

For the sake of exposition, we assume that the reward fun@idries are independently and
normally distributed with meam and variances? so that the prior is defined aB(r|u,o) =
HdDZIN(rd;u,a), but our approach to be presented in later sections can lerajzed to use
many other distributions for the prior. The posterior over teward functions is then formulated by

1D denotes the number of features. Note that we can assign individualdealues to every state-action
pair by using|S||A| indicator functions for features.

2Although we assume that all trajectories are of lenkjttior notational brevity, our formulation trivially
extends to different lengths.

D| —ec Initialize ¢ and {7 } 5,
for ¢ = 1 to Maxiter do
M for m =1to M do
¢ ~ Plcle—m, @)
ifc;, &€ comthen rex ~ P(r|u, o)
(CmyTenm) < (Ch, Tex,) With prob. of
P(Xm|"’c;‘n7"7>

m Py .
Q (e—teu | min{L, 5 e)

Qi r@(/u Algorithm 1: MH algorithm for DPM-BIRL
:H

Figure 1: Graphical model for BIRL.

oy Ty.d | oM for k =1to K do
Ne = X | e~ N(0,1
5 O, ~N O
" = i e+ 5 Viog f(ry) + Te
Hiy 7 — 7y with prob. ofmin{1 w}

P flrg)g(re,ry)

Figure 2: Graphical model for DPM-BIRL. _—

Bayes rule as follows:

P(r|X,n, p,0) oc P(X|r,n)P(r|u,0). 2

We can infer the reward function from the model by computimg posterior mean using a Markov
chain Monte Carlo (MCMC) algorithm [4] or the maximum-a-par$ori (MAP) estimates using a
gradient method [12]. Fig. 1 shows the graphical model usé&iRL.

3 Nonparametric Bayesian IRL for Multiple Reward Functions

In this section, we present our approach to IRL for multigi@ard functions. We assume that each
trajectory in the behaviour data is generated by an ageft aviixed reward function. In other
words, we assume that the reward function does not changawitrajectory. However, the whole
trajectories are assumed be generated by one or more ageose weward functions are distinct
from each other. We do not assume any information regardimghntrajectory is generated by
which agent as well as the number of agents. Hence, the gtalinder an unknown number of
reward functions from the unlabeled behaviour data.

A naive approach to this problem setting would be solvidgseparate and independent IRL prob-
lems by treating each trajectory as the sole behaviour dataemploying one of the well-known
IRL algorithms designed for a single reward function. We tlaan use an unsupervised learning
method with thell reward functions as data points. However, this approacHdsuifer from the
sparsity of data, since each trajectory may not containfecguft amount of data to infer the reward
function reliably, or the number of trajectories may not b@wgh for the unsupervised learning
method to yield a meaningful result. Babes-Vronebal. [10] proposed an algorithm that combines
EM clustering with IRL algorithm. It clusters trajectoriaad assumes that all the trajectories in a
cluster are generated by a single reward function. Howegeg consequence of using EM clus-
tering, we need to specify the number of clustérs the number of distinct reward functions) as a
parameter.

We take a nonparametric Bayesian approach to IRL using thehét process mixture model. Our

approach has three main advantages. First, we do not nepddifysthe number of distinct reward

functions due to the nonparametric nature of our model. B&coe can encode our preference
or domain knowledge on the reward function into the priocsiit is a Bayesian approach to IRL.

Third, we can acquire rich information from the behavioutadsuch as the distribution over the
reward functions.

3.1 Dirichlet Process Mixture Models

The Dirichlet process mixture (DPM) model [13] provides aparametric Bayesian framework for
clustering using mixture models with a countably infiniterher of mixture components. The prior
of the mixing distribution is given by the Dirichlet procesghich is a distribution over distributions

parameterized by base distributialy and concentration parameter The DPM model for a data
{x, }M_, using a set of latent parametdi&,, } A, can be defined as:

G|a, Go ~ DP(O[, Go),
0m|G ~G
O ~ F(01)

where(is the prior used to draw eadh, andF'(6,,,) is the parameterized distribution for datg .
This is equivalent to the following form witlk — oo:

pla ~ Dirichlet(a/K, ..., a/K)

Cm|p ~ Multinomial(ps, ..., pk)
o1 ~ Go
Tm|cm, § ~ F(¢c,,) 3)
wherep = {p,}/_, is the mixing proportion for the latent classes, € {1,..., K} is the class

assignment of:,,, so thatc,,, = k whenz,, is assigned to class ¢, is the parameter of the data
distribution for class:, ande¢ = {¢; } 5.

3.2 DPM-BIRL for Multiple Reward Functions

We address the IRL for multiple reward functions by extegd#iRL with the DPM model. We
place a Dirichlet process prior on the reward functiens The base distributioid7, is defined
as the reward function prioii.e. the product of the normal distribution for each reward entry

HdD=1N(7“k,d;u,0)- The cluster assignment, = k indicates that the trajectory;,,, belongs to

the clustelk, which represents that the trajectory is generated by thetagth the reward function
ri. We can thus regard the behavior data= {Xy, ..., Xy} as being drawn from the following
generative process:

1. The cluster assignmeay, is drawn by the first two equations in Eqgn. (3).

2. The reward functiom;, is drawn frodeDle(rkyd; iy T).

3. The trajectory,,, is drawn fromP(X,,|r., ,n) in Eqn. (1).
Fig. 2 shows the graphical model of DPM-BIRL. The joint posteof the cluster assignment=
{e,m}M_| and the set of reward functiods } &, is defined as:

PleAri} i X, m, i, 0,) = Plefa) TTiz, P(rilXegey, n. 1. 0) @)

whereX.) = {Xn|cm = kform =1,..., M} andP(r|X,n, u, o) are taken from Eqgn. (2).
The inference in DPM-BIRL can be done using the Metropolastihgs (MH) algorithm that sam-
ples each hidden variable in turn. First, note that we caelgassume that there afé distinct

values ofc,,’s so thatc,,, € {1,..., K} without loss of generality. The conditional distributian t
samplec,,, for the MH update can be defined as

P(cmle—m, {rk}kl'(zh)(vnaa) o P(Xp|re,, s n)P(cmlc—m,a)

(®)

Nem.c,, I ¢y = c;for somej
Pleple_m,a) o« ey T
(eme—m, @) {a, if ¢y, # c; forall j

wherec_,, = {¢|i # mfori =1,...,M}, P(X,|r.,,.n) is the likelihood defined in Eqgn. (1),
andn_pm ., = [{c; = ¢;li # mfori =1,..., M}|is the number of trajectories, excludidg,,,
assigned to the clustes. Note that if the sampled,, # c; for all j thenk’,, is assigned to a new
cluster. The conditional distribution to sampig for the MH update is defined as

P(rile,r—i, X,n, p,0) o< P(Xeqry|re: n)P(ri|p, o)
where P(X;)|re,n) is again the likelihood defined in Eqn. (1) an#(ri|u,0) =
15y N (reas 11, 0).

In Alg. 1, we present the MH algorithm for DPM-BIRL that usé®tabove MH updates. The
algorithm consists of two steps. The first step updates theter assignment. We sample new

assignment;, from Eqgn. (5). Ifc}, isnotinc_,,,i.e, ¢, # G for all j, we draw new reward
functionfrC from the reward prioP (7|, o). We then set,,, = ¢}, with the acceptance probability

X\r*
7

of min{1, Wrn’n)} since we are using a non-conjugate prior [13]. The seccepl gbdates

the reward functiongr; } X ,. We sample a new reward functiefj using the equation

L =7Tp+ %Vlog flry) +7e
wheree is a sample from the standard normal distributidi0, 1), 7 is a non-negative scalar for the
scaling parameter, ant{r},) is the target distribution of the MH updat&(X,) |7k, n) P(ri|u, o)
which is the unnormalized posterior of the reward functign We then setr;, = r; with the

acceptance probability efin{1, %} where

9(x,y) = Grzyor oxp (— gzl —y — 37*Vlog f()[13) -

This step is motivated by the Langevin algorithm [14] whigbleits local informationi(e. gradient)
of f in order to efficiently move towards the high probability imyg This algorithm is known to
be more efficient than random walk MH algorithms. We can camplie gradient off using the
results of Choi and Kim [12].

3.3 Information Transfer to a New Trajectory

Suppose that we would like to infer the reward function ofw tr@jectory after we finish IRL on the
behaviour data consisting @f trajectories. A naive approach would be running IRL fromasch
using all of theM + 1 trajectories. However, it would be more desirable to trangiie relevant
information from the pre-computed IRL results. In order tosth, Babes-Vromaet al. [10] use the
weighted average of cluster reward functions assuminglileatew trajectory is generated from the
same population of the behaviour data. Note that we can telavxassumption and allow the new
trajectory generated by a novel reward function, as a diesttlt of using DPM model.

Given the cluster assignmeatand the reward functionér; }_, computed from the behaviour
data, the conditional prior of the reward functierior the new trajectory can be defined as:
P(rle {r iy, p0,0) = 225 P(rln, o) + o iy nad(r — i) (6)

whereny, = |{Xn|em = kform = 1,..., M}| is the number of trajectories assigned to clugter
ando(x) is the Dirac delta function. Running Alg. 1 on the behavioatadt’, we already have a set

of N sampleg{c(™ {r(”)}K(")} drawn from the joint posterior. The conditional posteribro
for the new trajectoerneW is then:

P(r|Xnew, X, 0) x P(Xnew|r,n)P(r|X,0)
= P(Xpoulr 1) / P(rle, {ri} 1 o, 0)dP(e, (i}, X, ©)
n n (n
~ P(Xneulr, 1) & S0, P(r|{e™, {#{VEVIN | o, a)
K™ pf

= P(Xnew|7'777) [(HC.MMP(T“L’U) a+M Zn 1Zk 1 N (T _T'l(gn))

where® = {n, u, o, a}.

We can then re-draw samples ofusing the approximated posterior and take the sample averag
as the inferred reward function. However, we present a mifi@emt way of calculating the pos-
terior mean ofr without re-drawing the samples. Note that Egn. (6) is a mé&tf a continuous
distribution P(r|u, o) with a number of point mass distributions ¢n; }<_,. If we approximate
the continuous one by a point mass distributioa, P(r|u, o) =~ (), the posterior mean is ana-
lytically computable using the above approximation:

E[r|Xnew, X, 0] = [rdP(r|Xnew, X, O)

. K "
~ % |aP(XoeulT,n)7 +Zn 1Zk e P(XneW|7'k ST) (7)

whereZ is the normalizing constant. We chooge= argmax,. P(Xnew|r, n)P(7 |1, o), which is
the MAP estimate of the reward function for the new trajectahe,, only, ignoring the previous
behaviour datay'.

o BIRL
~ + — EM-MLIRL(3)
~ %~ EM-MLIRL(®

= — EM-MLIRL(
—8— DPM-BIRL(U)
—— DPM-BIRL(G

Average EVD
of clusters

I
¢
k
EVD for the new trajectory
o
I N

RN DU

2 Mz i 6 8 10 12 2 4 5 s 10 12 ‘2 4 & 8 10
of trajectories per agent # of trajectories per agent # of trajectories per agent

— 3
—y —4
2 4 5 8 10 12
of trajectories per agent

2) 5 s 10
of trajectories per agent

Figure 3: Results with increasing number of trajectoriesggent in the gridworld problem. DPM-
BIRL uses the uniform (U) and the standard normal (N) priors.

4 Experimental Results

We compared the performance of DPM-BIRL to the EM-MLIRL digfum [10] and the baseline
algorithm which runs BIRL separately on each trajectorye €kperiments consisted of two tasks:
The first task was finding multiple reward functions from thehaviour data with a number of
trajectories. The second task was inferring the rewardtfomainderlying a new trajectory, while
exploiting the results learned in the first task.

The performance of each algorithm was evaluated by the &geelue difference (EVD)

[V*(r4) — V™ (") (r4)| wherer# is the agent's ground truth reward functiar: is the learned
reward functiong* () is the optimal policy induced by reward functienandV ™ (r) is the value of
policy 7 measured using. The EVD thus measures the performance difference betviesagent’s
optimal policy and the optimal policy induced by the learmedard function. In the first task, we
evaluated the EVD for the true and learned reward functidresaoh trajectory and computed the
average EVD over the trajectories in the behaviour datahdrsecond task, we evaluated the EVD
for the new trajectory. The clustering quality on the bebavidata was evaluated by F-score and
normalized mutual information (NMI).

In all the experiments, we assumed that the reward functias limearly parameterized such that
R(s,a) = X2 r4¢a(s, a) with feature functions, : S x A — R, hencer = [r1,...,7p].

4.1 Gridworld Problem

In order to extensively evaluate our approach, we first paréal experiments on a small toy domain,
8 x 8 gridworld, where each of the 64 cells corresponds to the stdte agent can move north, south,
east, or west, but with probability of 0.2, it fails and moues random direction. The initial state is
randomly chosen from the states. The grid is partitioneal fiwin-overlapping regions of si2ex 2,
and the feature function is defined by a binary indicator fiemcfor each region. Random instances
of IRL with three reward functions were generated as foltoaach element of was sampled to
have a non-zero value with probability of 0.2 and the valudrégavn from the uniform distribution
between -1 and 1. We obtained the trajectories of 40 timesstapd measured the performance as
we increased the number of trajectories per reward function

Fig. 3 shows the averages and standard errors of the perfoemasults over 10 problem instances.
The left four panels in the figure present the results for tre fask of learning multiple reward
functions from the behaviour data. When the size of the belbawata is small, the clustering
performances of both DPM-BIRL and EM-MLIRL were not good egh due to the sparsity of
data, hence their EVD results were similar to that of the lrasalgorithm that independently runs
BIRL on each trajectory. However, as we increased the sitkeoflata, both DPM-BIRL and EM-
MLIRL achieved better EVD results than the baseline sineg tould utilize more information by
grouping the trajectories to infer the reward functions. f&SEM-MLIRL, we set the parameter
K used for the maximum number of clusters to 3 (ground truth(®>§, and 9 (3x). DPM-BIRL
achieved significantly better results than EM-MLIRL with @ the parameter settings, in terms of
EVD and clustering quality. The rightmost panel in the figpresent the results for the second task
of inferring the reward function for a new trajectory. DPMRR. clearly outperformed EM-MLIRL
since it exploits the rich information from the reward fuoatposterior. The relatively large error
bars of the EM-MLIRL results are due to the local convergenberent to EM clustering.

— — — EM-MLIRL(3)|
Sl . — - — EM-MLIRL(6)

- - — — EM-MLIRL(9)
DPM-BIRL(U

2 R DPM-BIRL(G;

Average EVD

0 20 40 60 80 100
Cpu time (sec) Speed: high

Figure 4. CPU timing results in the Figure 5: Screenshots &mulated-highway problem
gridworld problem. (left) andMario Bros (right).

Table 1: Results it5imulated-highway problem.
Average EVD F-score NMI # of clusters EVD fdfew

BIRL 0.52+0.05 n.a. n.a. n.a. 0.410.00
EM-MLIRL(3) 4.53+0.96 0.8@:0.05 0.74:0.09 2.2G6:0.20 4.14-0.88
EM-MLIRL(6) 0.89+0.57 0.96:0.02 0.96:0.03 3.16:0.18 0.82:0.53
DPM-BIRL(U) 0.35+0.04 0.98-0.01 0.9A-0.01 3.306:0.15 0.32:0.04
DPM-BIRL(N) 0.36+0.05 0.99:0.01 0.99-0.01 3.16t0.10 0.30:0.04

Fig. 4 compares the average CPU timing results of DPM-BIRLBM-MLIRL with 10 trajectories
per reward function. DPM-BIRL using Alg. 1 took much shotiere to converge than EM-MLIRL.
This is mainly due to the fact that, whereas EM-MLIRL perfarfull single-reward IRL multiple
times in each iteration, DPM-BIRL takes a sample from thetgroar leveraging the gradient that
does not involve a full IRL.

4.2 Simulated-highway Problem

The second set of experiments was conductedriml ated-highway problem [15] where the agent
drives on a three lane road. The left panel in Fig. 5 showseesshot of the problem. The agent
can move one lane left or right and drive at speeds 2 throuphit3t fails to change the lane with
probability of 0.2 and 0.4 respectively in speed 2 and 3. idl bther cars on the road constantly
drive at speed 1 and do not change the lane. The reward fanistidefined by using 6 binary
feature functions: one function for indicating the agentdlision with other cars, 3 functions for
indicating the agent’s current lane, 2 functions for intliegthe agent’s current speed. We generated
three agents having different driving styles. The first orefars driving at speed 3 in the left-most
lane and avoiding collisions. The second one prefers dyiginspeed 3 in the right-most lane and
avoiding collisions. The third one prefers driving at sp&ednd colliding with other cars. We
prepared 3 trajectories of 40 time steps per driver agenthffirst task and 20 trajectories of 40
time steps yielded by a driver randomly chosen among the tlorethe second task.

Thl. 1 presents the averages and standard errors of thesreser 10 sets of the behaviour data.
DPM-BIRL significantly outperformed the others while EM-NMRL suffered from the convergence
to a local optimum.

43 MarioBros.

For the third set of experiments, we used the open sourcdationof the gameMario Bros, which

is a challenging problem due to its huge state space. Thegagtel in Fig. 5 is a screenshot of the
game. Mario can move left, move right, or jump. Mario's gaato reach the end of the level by
traversing from left to right while collecting coins and &liog or killing enemies. We used 8 binary
feature functions, each being an indicator for: Mario sastdly reaching the end of the level;
Mario getting killed; Mario killing an enemy; Mario colleog a coin; Mario receiving damage by
an enemy; existence of a wall preventing Mario from movinthscurrent direction; Mario moving

to the right; Mario moving to the left. We collected the beioav data from 4 players: The expert
player is good at both collecting coins and killing enemiBEse coin collector likes to collect coins
but avoids killing enemies. The enemy Killer likes to killemies but avoids collecting coins. The

Table 2: Cluster assignmentsiario Bros.

c Expert player Coin collector Enemy Kkiller Speedy Gonzales
DPM-BIRL 1 1 1 1 2 2 3 3 4 5 5 5
EM-MLIRL(4) 1 1 1 1 1 2 2 2 1 3 3 3
EM-MLIRL(8) 1 1 1 1 2 2 3 3 1 3 3 3

Table 3: Results of DPM-BIRL iMario Bros.

Reward function entryr(;) Average feature counts
k from DPM-BIRL 1 2 3 4 5 1 2 3 4 5
Penemy-killed 1.00 -0.81 100 1.00 -1.00 310 1.60 280 1.90 0.5
(Peoin-collected 100 100 -100 -042 -100 2160 2155 755 785 6.75

speedy Gonzales avoids both collecting coins and killingnges. All the players commonly try
to reach the end of the level while acting according to thein @references. The behaviour data
consisted of 3 trajectories per player. Since only the simaulof the environment is available instead
of the complete model, we used the relative entropy IRL [1Bicl is a model-free IRL algorithm.

Thl. 2 presents the cluster assignment results. Each caleprasents each trajectory and the num-
ber denotes the cluster assignmept of trajectory X,,,. For example, DPM-BIRL produced 5
clusters and trajectorie¥,, . . ., X, are assigned to the cluster 1 representing the expert plBiyer
MLIRL failed to group the trajectories that align well withe players, even though we restarted it
100 times in order to mitigate the convergence to bad loctinap On the other hand, DPM-BIRL
was incorrect on only one trajectory, assigning a coin ctdlies trajectory to the expert player clus-
ter. Thl. 3 presents the reward function entrieg) learned from DPM-BIRL and the average
feature counts acquired by the players with the learnedrbfuactions. For the sake of brevity,
we present only two important featuresgnemy-killed, coin-collected) that determine the playin
style. To compute each player’s feature counts, we exeaurtedstep lookahead policy yielded by
each reward function; on the simulator in 20 randomly chosen levels. The rewardtfan entries
align well with each playing style. For example, the clugeepresents the coin collector, and its
reward function entry for killing an enemy is negative buttfor collecting a coin is positive.

As a demonstration, we implemented a small piece of softiveevisualizes the posterior proba-
bility of a gamer’s behavior belonging to one of the clusiaduding a new one. A demo video is
provided as supplementary material.

5 Conclusion

We proposed a nonparametric Bayesian approach to IRL fotipteukeward functions using the

Dirichlet process mixture model, which extends the presiBayesian approach to IRL assuming
a single reward function. We can learn an appropriate nurabegward functions from the be-

havior data due to the nonparametric nature and facilifatesporating domain knowledge on the
reward function by utilizing a Bayesian approach. We prestian efficient Metropolis-Hastings

sampling algorithm that draws samples from the posteriddM-BIRL, leveraging the gradient

of the posterior. We also provided an analytical way to comahe approximate posterior mean
for the information transfer task. In addition, we showeat thPM-BIRL outperforms the previous

approach in various problem domains.

Acknowledgments

This work was supported by National Research Foundationavé& (Grant# 2012-007881), the
Defense Acquisition Program Administration and AgencyDefense Development of Korea (Con-
tract# UD080042AD), and the SW Computing R&D Program of KIE2011-10041313) funded by
the Ministry of Knowledge Economy of Korea.

References

[1] Stuart Russell. Learning agents for uncertain environments (@&teabstract). |Rroceedings of COLT,
1998.

[2] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinfoneait learning. InProceedings of
ICML, 2000.

[3] Gergely Neu and Csaba Szepasy Apprenticeship learning using inverse reinforcement learning and
gradient methods. IRroceedings of UAI, 2007.

[4] Deepak Ramachandran and Eyal Amir. Bayesian inverse reierfioent learning. IRroceedings of 1JCAI,
2007.

[5] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and AnindDxy. Maximum entropy inverse
reinforcement learning. IRroceedings of AAAI, 2008.

[6] Brian D. Ziebart, Andrew L. Maas, Anind K. Dey, and J. AndrewgBall. Navigate like a cabbie: proba-
bilistic reasoning from observed context-aware behavioPrbteedings of the international conference
on Ubiquitous computing, 2008.

[7]1 Zeynep Erkin, Matthew D. Bailey, Lisa M. Maillart, Andrew J. Schaefand Mark S. Roberts. Eliciting
patients’ revealed preferences: An inverse Markov decision psaaasroach.Decision Analysis, 7(4),
2010.

[8] Senthilkumar Chandramohan, Matthieu Geist, Fabrice LefevreQdinter Pietquin. User simulation in
dialogue systems using inverse reinforcement learninrdoeedings of Interspeech, 2011.

[9] Christos Dimitrakakis and Constantin A. Rothkopf. Bayesian multitaskrse reinforcement learning.
In Proceedings of the European Workshop on Reinforcement Learning, 2011.

[10] Monica Babes-Vroman, Vukosi Marivate, Kaushik Subrarmanand Michael Littman. Apprenticeship
learning about multiple intentions. Proceedings of ICML, 2011.

[11] Peter Dayan and Geoffrey E. Hinton. Using expectation-maximizdgioreinforcement learnindNeural
Computation, 9(2), 1997.

[12] Jaedeug Choi and Kee-Eung Kim. MAP inference for Bayesia@rge reinforcement learning. Rro-
ceedings of NIPS, 2011.

[13] Radford M. Neal. Markov chain sampling methods for Dirichletqass mixture modelsJournal of
Computational and Graphical Statistics, 9(2), 2000.

[14] Gareth O. Roberts and Jeffrey S. Rosenthal. Optimal scaling ofedés approximations to langevin
diffusions. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(1), 1998.

[15] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via isgerinforcement learning. ro-
ceedings of ICML, 2004.

[16] Abdeslam Boularias, Jens Kober, and Jan Peters. Relativepgritneerse reinforcement learning. In
Proceedings of AISTATS, 2011.

