
Nonparametric Bayesian
Inverse Reinforcement Learning
for Multiple Reward Functions

Jaedeug Choi and Kee-Eung Kim
Department of Computer Science

Korea Advanced Institute of Science and Technology
Daejeon 305-701, Korea

jdchoi@ai.kaist.ac.kr, kekim@cs.kaist.ac.kr

Abstract

We present a nonparametric Bayesian approach to inverse reinforcement learning
(IRL) for multiple reward functions. Most previous IRL algorithms assume that
the behaviour data is obtained from an agent who is optimizing a single reward
function, but this assumption is hard to guarantee in practice. Our approach is
based on integrating the Dirichlet process mixture model into Bayesian IRL. We
provide an efficient Metropolis-Hastings sampling algorithm utilizing the gradient
of the posterior to estimate the underlying reward functions, and demonstrate that
our approach outperforms previous ones via experiments on anumber of problem
domains.

1 Introduction

Inverse reinforcement learning (IRL) aims to find the agent’s underlying reward function given the
behaviour data and the model of environment [1]. IRL algorithms often assume that the behaviour
data is from an agent who behaves optimally without mistakeswith respect to a single reward func-
tion. From the Markov decision process (MDP) perspective, the IRL can be defined as the problem
of finding the reward function given the trajectory data of anoptimal policy, consisting of state-
action histories. Under this assumption, a number of studies on IRL have appeared in the liter-
ature [2, 3, 4, 5]. In addition, IRL has been applied to various practical problems that includes
inferring taxi drivers’ route preferences from their GPS data [6], estimating patients’ preferences to
determine the optimal timing of living-donor liver transplants [7], and implementing simulated users
to assess the quality of dialogue management systems [8].

In practice, the behaviour data is often gathered collectively from multiple agents whose reward
functions are potentially different from each other. The amount of data generated from a single
agent may be severely limited, and hence we may suffer from the sparsity of data if we try to infer
the reward function individually. Moreover, even when we have enough data from a single agent,
the reward function may change depending on the situation.

However, most of the previous IRL algorithms assume that thebehaviour data is generated by a
single agent optimizing a fixed reward function, although there are a few exceptions that address
IRL for multiple reward functions. Dimitrakakis and Rothkopf [9] proposed a multi-task learning
approach, generalizing the Bayesian approach to IRL [4]. Inthis work, the reward functions are
individually estimated for each trajectory, which are assumed to share a common prior. Other than
the common prior assumption, there is no effort to group trajectories that are likely to be generated
from the same or similar reward functions. On the other hand,Babeş-Vromanet al. [10] took a more
direct approach that combines EM clustering with IRL algorithm. The behaviour data are clustered

1

based on the inferred reward functions, where the reward functions are defined per cluster. However,
the number of clusters (hence the number of reward functions) has to be specified as a parameter in
order to use the approach.

In this paper, we present a nonparametric Bayesian approachusing the Dirichlet process mixture
model in order to address the IRL problem with multiple reward functions. We develop an efficient
Metropolis-Hastings (MH) sampler utilizing the gradient of the reward function posterior to infer
reward functions from the behaviour data. In addition, after completing IRL on the behaviour data,
we can efficiently estimate the reward function for a new trajectory by computing the mean of the
reward function posterior given the pre-learned results.

2 Preliminaries

We assume that the environment is modeled as an MDP〈S,A, T,R, γ, b0〉 where:S is the finite set
of states;A is the finite set of actions;T (s, a, s′) is the state transition probability of changing to
states′ from states when actiona is taken;R(s, a) is the immediate reward of executing actiona
in states; γ ∈ [0, 1) is the discount factor;b0(s) denotes the probability of starting in states. For
notational convenience, we use the vectorr = [r1, . . . , rD] to denote the reward function.1

A policy is a mappingπ : S → A. The value of policyπ is the expected discounted return of
executing the policy, defined asV π = E [

∑∞
t=0 γtR(st, at)|b0, π]. The value function of policyπ

for each states is computed byV π(s) = R(s, π(s)) + γ
∑

s′∈S T (s, π(s), s′)V π(s′) so that the
value is calculated byV π =

∑

s∈S b0(s)V
π(s). Similarly, theQ-function is defined asQπ(s, a) =

R(s, a) + γ
∑

s′∈S T (s, a, s′)V π(s′). Given an MDP, the agent’s objective is to execute an optimal
policy π∗ that maximizes the value function for all the states, which should satisfy the Bellman
optimality equation:V ∗(s) = maxa∈A

[

R(s, a) + γ
∑

s′∈S T (s, a, s′)V ∗(s′)
]

.

We assume that the agent’s behavior data is generated by executing an optimal policy with some
unknown reward function(s)R, given as the setX of M trajectories where them-th trajectory is an
H-step sequence of state-action pairs:Xm = {(sm,1, am,1), (sm,2, am,2), . . . , (sm,H , am,H)}.2

2.1 Bayesian Inverse Reinforcement Learning (BIRL)

Ramachandran and Amir [4] proposed a Bayesian approach to IRL with the assumption that the
behaviour data is generated from a single reward function. The prior encodes the the reward function
preference and the likelihood measures the compatibility of the reward function with the data.

Assuming that the reward function entries are independently distributed, the prior is defined as
P (r) =

∏D
d=1 P (rd). We can use various distributions for the reward prior. For instance, the

uniform distribution can be used if we have no knowledge or preference on rewards other than its
range, and the normal or Laplace distributions can be used ifwe prefer rewards to be close to some
specific values. The Beta distribution can also be used if we treat rewards as the parameter of the
Bernoulli distribution,i.e. P (ξd = 1) = rd with auxiliary binary random variableξd [11].

The likelihood is defined as an independent exponential distribution, analogous to the softmax dis-
tribution over actions:

P (X|r, η) =
∏M

m=1

∏H
h=1 P (am,h|sm,hr, η) =

∏M
m=1

∏H
h=1

exp(ηQ∗(sm,h,am,h;r))
P

a′ exp(ηQ∗(sm,h,a′;r)) (1)

whereη is the confidence parameter of choosing optimal actions andQ∗(·, ·; r) denotes the optimal
Q-function computed using reward functionr.

For the sake of exposition, we assume that the reward function entries are independently and
normally distributed with meanµ and varianceσ2 so that the prior is defined asP (r|µ, σ) =
∏D

d=1 N (rd;µ, σ), but our approach to be presented in later sections can be generalized to use
many other distributions for the prior. The posterior over the reward functions is then formulated by

1D denotes the number of features. Note that we can assign individual reward values to every state-action
pair by using|S||A| indicator functions for features.

2Although we assume that all trajectories are of lengthH for notational brevity, our formulation trivially
extends to different lengths.

2

Figure 1: Graphical model for BIRL.

Figure 2: Graphical model for DPM-BIRL.

Algorithm 1: MH algorithm for DPM-BIRL

Initialize c and{rk}
K
k=1

for t = 1 to MaxIter do
for m = 1 to M do

c∗m ∼ P (c|c−m, α)
if c∗m /∈ c−m then rc∗m

∼ P (r|µ, σ)
〈cm, rcm〉 ← 〈c

∗
m, rc∗m

〉 with prob. of

min{1,
P (Xm|rc∗m

,η)

P (Xm|rcm ,η)
}

for k = 1 to K do
ǫ ∼ N (0, 1)

r∗
k ← rk + τ2

2
∇ log f(rk) + τǫ

rk ← r∗
k with prob. ofmin{1,

f(r∗

k)g(r∗

k,rk)

f(rk)g(rk,r∗

k
)
}

Bayes rule as follows:

P (r|X , η, µ, σ) ∝ P (X|r, η)P (r|µ, σ). (2)

We can infer the reward function from the model by computing the posterior mean using a Markov
chain Monte Carlo (MCMC) algorithm [4] or the maximum-a-posteriori (MAP) estimates using a
gradient method [12]. Fig. 1 shows the graphical model used in BIRL.

3 Nonparametric Bayesian IRL for Multiple Reward Functions

In this section, we present our approach to IRL for multiple reward functions. We assume that each
trajectory in the behaviour data is generated by an agent with a fixed reward function. In other
words, we assume that the reward function does not change within a trajectory. However, the whole
trajectories are assumed be generated by one or more agents whose reward functions are distinct
from each other. We do not assume any information regarding which trajectory is generated by
which agent as well as the number of agents. Hence, the goal isto infer an unknown number of
reward functions from the unlabeled behaviour data.

A naive approach to this problem setting would be solvingM separate and independent IRL prob-
lems by treating each trajectory as the sole behaviour data and employing one of the well-known
IRL algorithms designed for a single reward function. We canthen use an unsupervised learning
method with theM reward functions as data points. However, this approach would suffer from the
sparsity of data, since each trajectory may not contain a sufficient amount of data to infer the reward
function reliably, or the number of trajectories may not be enough for the unsupervised learning
method to yield a meaningful result. Babeş-Vromanet al. [10] proposed an algorithm that combines
EM clustering with IRL algorithm. It clusters trajectoriesand assumes that all the trajectories in a
cluster are generated by a single reward function. However,as a consequence of using EM clus-
tering, we need to specify the number of clusters (i.e. the number of distinct reward functions) as a
parameter.

We take a nonparametric Bayesian approach to IRL using the Dirichlet process mixture model. Our
approach has three main advantages. First, we do not need to specify the number of distinct reward
functions due to the nonparametric nature of our model. Second, we can encode our preference
or domain knowledge on the reward function into the prior since it is a Bayesian approach to IRL.
Third, we can acquire rich information from the behaviour data such as the distribution over the
reward functions.

3.1 Dirichlet Process Mixture Models

The Dirichlet process mixture (DPM) model [13] provides a nonparametric Bayesian framework for
clustering using mixture models with a countably infinite number of mixture components. The prior
of the mixing distribution is given by the Dirichlet process, which is a distribution over distributions

3

parameterized by base distributionG0 and concentration parameterα. The DPM model for a data
{xm}M

m=1 using a set of latent parameters{θm}M
m=1 can be defined as:

G|α,G0 ∼ DP (α,G0),

θm|G ∼ G

xm|θm ∼ F (θm)

whereG is the prior used to draw eachθm andF (θm) is the parameterized distribution for dataxm.
This is equivalent to the following form withK → ∞:

p|α ∼ Dirichlet(α/K, . . . , α/K)

cm|p ∼ Multinomial(p1, . . . , pK)

φk ∼ G0

xm|cm,φ ∼ F (φcm
) (3)

wherep = {pk}
K
k=1 is the mixing proportion for the latent classes,cm ∈ {1, . . . ,K} is the class

assignment ofxm so thatcm = k whenxm is assigned to classk, φk is the parameter of the data
distribution for classk, andφ = {φk}K

k=1.

3.2 DPM-BIRL for Multiple Reward Functions

We address the IRL for multiple reward functions by extending BIRL with the DPM model. We
place a Dirichlet process prior on the reward functionsrk. The base distributionG0 is defined
as the reward function prior,i.e. the product of the normal distribution for each reward entry
∏D

d=1 N (rk,d;µ, σ). The cluster assignmentcm = k indicates that the trajectoryXm belongs to
the clusterk, which represents that the trajectory is generated by the agent with the reward function
rk. We can thus regard the behavior dataX = {X1, . . . ,XM} as being drawn from the following
generative process:

1. The cluster assignmentcm is drawn by the first two equations in Eqn. (3).

2. The reward functionrk is drawn from
∏D

d=1 N (rk,d;µ, σ).

3. The trajectoryXm is drawn fromP (Xm|rcm
, η) in Eqn. (1).

Fig. 2 shows the graphical model of DPM-BIRL. The joint posterior of the cluster assignmentc =
{cm}M

m=1 and the set of reward functions{rk}
K
k=1 is defined as:

P (c, {rk}
K
k=1|X , η, µ, σ, α) = P (c|α)

∏K
k=1 P (rk|Xc(k), η, µ, σ) (4)

whereX
c(k) = {Xm|cm = k for m = 1, . . . ,M} andP (rk|X , η, µ, σ) are taken from Eqn. (2).

The inference in DPM-BIRL can be done using the Metropolis-Hastings (MH) algorithm that sam-
ples each hidden variable in turn. First, note that we can safely assume that there areK distinct
values ofcm’s so thatcm ∈ {1, . . . ,K} without loss of generality. The conditional distribution to
samplecm for the MH update can be defined as

P (cm|c−m, {rk}
K
k=1,X , η, α) ∝ P (Xm|rcm

, η)P (cm|c−m, α)

P (cm|c−m, α) ∝

{

n−m,cj
, if cm = cj for somej

α, if cm 6= cj for all j
(5)

wherec−m = {ci|i 6= m for i = 1, . . . ,M}, P (Xm|rcm
, η) is the likelihood defined in Eqn. (1),

andn−m,cj
= |{ci = cj |i 6= m for i = 1, . . . ,M}| is the number of trajectories, excludingXm,

assigned to the clustercj . Note that if the sampledcm 6= cj for all j thenXm is assigned to a new
cluster. The conditional distribution to samplerk for the MH update is defined as

P (rk|c, r−k,X , η, µ, σ) ∝ P (X
c(k)|rk, η)P (rk|µ, σ)

where P (X
c(k)|rk, η) is again the likelihood defined in Eqn. (1) andP (rk|µ, σ) =

∏D
d=1 N (rk,d;µ, σ).

In Alg. 1, we present the MH algorithm for DPM-BIRL that uses the above MH updates. The
algorithm consists of two steps. The first step updates the cluster assignmentc. We sample new

4

assignmentc∗m from Eqn. (5). Ifc∗m is not in c−m, i.e., c∗m 6= cj for all j, we draw new reward
functionrc∗m

from the reward priorP (r|µ, σ). We then setcm = c∗m with the acceptance probability

of min{1,
P (Xm|rc∗m

,η)

P (Xm|rcm ,η)}, since we are using a non-conjugate prior [13]. The second step updates

the reward functions{rk}
K
k=1. We sample a new reward functionr∗

k using the equation

r∗
k = rk + τ2

2 ∇ log f(rk) + τǫ

whereǫ is a sample from the standard normal distributionN (0, 1), τ is a non-negative scalar for the
scaling parameter, andf(rk) is the target distribution of the MH updateP (X

c(k)|rk, η)P (rk|µ, σ)
which is the unnormalized posterior of the reward functionrk. We then setrk = r∗

k with the

acceptance probability ofmin{1,
f(r∗

k)g(r∗

k,rk)
f(rk)g(rk,r∗

k)} where

g(x,y) = 1
(2πτ2)D/2 exp

(

− 1
2τ2 ||x − y − 1

2τ2∇ log f(x)||22
)

.

This step is motivated by the Langevin algorithm [14] which exploits local information (i.e. gradient)
of f in order to efficiently move towards the high probability region. This algorithm is known to
be more efficient than random walk MH algorithms. We can compute the gradient off using the
results of Choi and Kim [12].

3.3 Information Transfer to a New Trajectory

Suppose that we would like to infer the reward function of a new trajectory after we finish IRL on the
behaviour data consisting ofM trajectories. A naive approach would be running IRL from scratch
using all of theM + 1 trajectories. However, it would be more desirable to transfer the relevant
information from the pre-computed IRL results. In order to do so, Babeş-Vromanet al. [10] use the
weighted average of cluster reward functions assuming thatthe new trajectory is generated from the
same population of the behaviour data. Note that we can relaxthis assumption and allow the new
trajectory generated by a novel reward function, as a directresult of using DPM model.

Given the cluster assignmentc and the reward functions{rk}
K
k=1 computed from the behaviour

data, the conditional prior of the reward functionr for the new trajectory can be defined as:

P (r|c, {rk}
K
k=1, µ, σ, α) = α

α+M
P (r|µ, σ) + 1

α+M

∑K
k=1 nkδ(r − rk) (6)

wherenk = |{Xm|cm = k for m = 1, . . . ,M}| is the number of trajectories assigned to clusterk
andδ(x) is the Dirac delta function. Running Alg. 1 on the behaviour dataX , we already have a set
of N samples{c(n), {r

(n)
k }K(n)

k=1 }N
n=1 drawn from the joint posterior. The conditional posterior of r

for the new trajectoryXnew is then:

P (r|Xnew,X ,Θ) ∝ P (Xnew|r, η)P (r|X ,Θ)

= P (Xnew|r, η)

∫

P (r|c, {rk}
K
k=1, µ, σ, α)dP (c, {rk}

K
k=1|X ,Θ)

≈ P (Xnew|r, η) 1
N

∑N
n=1 P (r|{c(n), {r

(n)
k }K(n)

k=1 }N
n=1, µ, σ, α)

= P (Xnew|r, η)

[

α
α+M

P (r|µ, σ) + 1
α+M

∑N
n=1

∑K(n)

k=1
n

(n)
k

N
δ(r − r

(n)
k)

]

whereΘ = {η, µ, σ, α}.

We can then re-draw samples ofr using the approximated posterior and take the sample average
as the inferred reward function. However, we present a more efficient way of calculating the pos-
terior mean ofr without re-drawing the samples. Note that Eqn. (6) is a mixture of a continuous
distributionP (r|µ, σ) with a number of point mass distributions on{rk}

K
k=1. If we approximate

the continuous one by a point mass distribution,i.e., P (r|µ, σ) ≈ δ(r̂), the posterior mean is ana-
lytically computable using the above approximation:

E[r|Xnew,X ,Θ] =
∫

rdP (r|Xnew,X ,Θ)

≈ 1
Z

[

αP (Xnew|r̂, η)r̂ +
∑N

n=1

∑K(n)

k=1
n

(n)
k

N
P (Xnew|r

(n)
k , η)r

(n)
k

]

(7)

whereZ is the normalizing constant. We chooser̂ = argmax
r
P (Xnew|r, η)P (r|µ, σ), which is

the MAP estimate of the reward function for the new trajectory Xnew only, ignoring the previous
behaviour dataX .

5

2 4 6 8 10 12
0

0.5

1

1.5

of trajectories per agent

A
ve

ra
ge

 E
V

D

2 4 6 8 10 12
0.7

0.8

0.9

1

of trajectories per agent

F
−

sc
or

e

2 4 6 8 10 12
0.7

0.8

0.9

1

of trajectories per agent

N
M

I

2 4 6 8 10 12
2

3

4

5

of trajectories per agent

of

 c
lu

st
er

s

BIRL
EM−MLIRL(3)
EM−MLIRL(6)
EM−MLIRL(9)
DPM−BIRL(U)
DPM−BIRL(G)

2 4 6 8 10 12
0

0.5

1

1.5

of trajectories per agent

E
V

D
 fo

r
th

e
ne

w
 tr

aj
ec

to
ry

Figure 3: Results with increasing number of trajectories per agent in the gridworld problem. DPM-
BIRL uses the uniform (U) and the standard normal (N) priors.

4 Experimental Results

We compared the performance of DPM-BIRL to the EM-MLIRL algorithm [10] and the baseline
algorithm which runs BIRL separately on each trajectory. The experiments consisted of two tasks:
The first task was finding multiple reward functions from the behaviour data with a number of
trajectories. The second task was inferring the reward function underlying a new trajectory, while
exploiting the results learned in the first task.

The performance of each algorithm was evaluated by the expected value difference (EVD)
|V ∗(rA) − V π∗(rL)(rA)| whererA is the agent’s ground truth reward function,rL is the learned
reward function,π∗(r) is the optimal policy induced by reward functionr, andV π(r) is the value of
policy π measured usingr. The EVD thus measures the performance difference between the agent’s
optimal policy and the optimal policy induced by the learnedreward function. In the first task, we
evaluated the EVD for the true and learned reward functions of each trajectory and computed the
average EVD over the trajectories in the behaviour data. In the second task, we evaluated the EVD
for the new trajectory. The clustering quality on the behaviour data was evaluated by F-score and
normalized mutual information (NMI).

In all the experiments, we assumed that the reward function was linearly parameterized such that
R(s, a) =

∑D
d=1 rdφd(s, a) with feature functionsφd : S × A → R, hencer = [r1, . . . , rD].

4.1 Gridworld Problem

In order to extensively evaluate our approach, we first performed experiments on a small toy domain,
8×8 gridworld, where each of the 64 cells corresponds to the state. The agent can move north, south,
east, or west, but with probability of 0.2, it fails and movesin a random direction. The initial state is
randomly chosen from the states. The grid is partitioned into non-overlapping regions of size2× 2,
and the feature function is defined by a binary indicator function for each region. Random instances
of IRL with three reward functions were generated as follows: each element ofr was sampled to
have a non-zero value with probability of 0.2 and the value isdrawn from the uniform distribution
between -1 and 1. We obtained the trajectories of 40 time steps and measured the performance as
we increased the number of trajectories per reward function.

Fig. 3 shows the averages and standard errors of the performance results over 10 problem instances.
The left four panels in the figure present the results for the first task of learning multiple reward
functions from the behaviour data. When the size of the behaviour data is small, the clustering
performances of both DPM-BIRL and EM-MLIRL were not good enough due to the sparsity of
data, hence their EVD results were similar to that of the baseline algorithm that independently runs
BIRL on each trajectory. However, as we increased the size ofthe data, both DPM-BIRL and EM-
MLIRL achieved better EVD results than the baseline since they could utilize more information by
grouping the trajectories to infer the reward functions. Asfor EM-MLIRL, we set the parameter
K used for the maximum number of clusters to 3 (ground truth), 6(2x), and 9 (3x). DPM-BIRL
achieved significantly better results than EM-MLIRL with all of the parameter settings, in terms of
EVD and clustering quality. The rightmost panel in the figurepresent the results for the second task
of inferring the reward function for a new trajectory. DPM-BIRL clearly outperformed EM-MLIRL
since it exploits the rich information from the reward function posterior. The relatively large error
bars of the EM-MLIRL results are due to the local convergenceinherent to EM clustering.

6

0 20 40 60 80 100
0

1

2

3

Cpu time (sec)

A
ve

ra
ge

 E
V

D

EM−MLIRL(3)
EM−MLIRL(6)
EM−MLIRL(9)
DPM−BIRL(U)
DPM−BIRL(G)

Figure 4: CPU timing results in the
gridworld problem.

Speed: high

Time step: 79

Speed: high

Time step: 79

Speed: high

Time step: 79

Speed: high

Time step: 79

Speed: high

Time step: 79

Speed: high

Time step: 79

Speed: high

Time step: 79

Speed: high

Time step: 79

Speed: high

Time step: 79

Speed: high

Time step: 79

Speed: high

Time step: 79

Speed: high

Time step: 79

Figure 5: Screenshots ofSimulated-highway problem
(left) andMario Bros (right).

Table 1: Results inSimulated-highway problem.
Average EVD F-score NMI # of clusters EVD forXnew

BIRL 0.52±0.05 n.a. n.a. n.a. 0.41±0.00
EM-MLIRL(3) 4.53±0.96 0.80±0.05 0.74±0.09 2.20±0.20 4.14±0.88
EM-MLIRL(6) 0.89±0.57 0.96±0.02 0.96±0.03 3.10±0.18 0.82±0.53
DPM-BIRL(U) 0.35±0.04 0.98±0.01 0.97±0.01 3.30±0.15 0.32±0.04
DPM-BIRL(N) 0.36±0.05 0.99±0.01 0.99±0.01 3.10±0.10 0.30±0.04

Fig. 4 compares the average CPU timing results of DPM-BIRL and EM-MLIRL with 10 trajectories
per reward function. DPM-BIRL using Alg. 1 took much shortertime to converge than EM-MLIRL.
This is mainly due to the fact that, whereas EM-MLIRL performs full single-reward IRL multiple
times in each iteration, DPM-BIRL takes a sample from the posterior leveraging the gradient that
does not involve a full IRL.

4.2 Simulated-highway Problem

The second set of experiments was conducted inSimulated-highway problem [15] where the agent
drives on a three lane road. The left panel in Fig. 5 shows a screenshot of the problem. The agent
can move one lane left or right and drive at speeds 2 through 3,but it fails to change the lane with
probability of 0.2 and 0.4 respectively in speed 2 and 3. All the other cars on the road constantly
drive at speed 1 and do not change the lane. The reward function is defined by using 6 binary
feature functions: one function for indicating the agent’scollision with other cars, 3 functions for
indicating the agent’s current lane, 2 functions for indicating the agent’s current speed. We generated
three agents having different driving styles. The first one prefers driving at speed 3 in the left-most
lane and avoiding collisions. The second one prefers driving at speed 3 in the right-most lane and
avoiding collisions. The third one prefers driving at speed2 and colliding with other cars. We
prepared 3 trajectories of 40 time steps per driver agent forthe first task and 20 trajectories of 40
time steps yielded by a driver randomly chosen among the three for the second task.

Tbl. 1 presents the averages and standard errors of the results over 10 sets of the behaviour data.
DPM-BIRL significantly outperformed the others while EM-MLIRL suffered from the convergence
to a local optimum.

4.3 Mario Bros.

For the third set of experiments, we used the open source simulator of the gameMario Bros, which
is a challenging problem due to its huge state space. The right panel in Fig. 5 is a screenshot of the
game. Mario can move left, move right, or jump. Mario’s goal is to reach the end of the level by
traversing from left to right while collecting coins and avoiding or killing enemies. We used 8 binary
feature functions, each being an indicator for: Mario successfully reaching the end of the level;
Mario getting killed; Mario killing an enemy; Mario collecting a coin; Mario receiving damage by
an enemy; existence of a wall preventing Mario from moving inthe current direction; Mario moving
to the right; Mario moving to the left. We collected the behaviour data from 4 players: The expert
player is good at both collecting coins and killing enemies.The coin collector likes to collect coins
but avoids killing enemies. The enemy killer likes to kill enemies but avoids collecting coins. The

7

Table 2: Cluster assignments inMario Bros.
c Expert player Coin collector Enemy killer Speedy Gonzales

DPM-BIRL 1 1 1 1 2 2 3 3 4 5 5 5
EM-MLIRL(4) 1 1 1 1 1 2 2 2 1 3 3 3
EM-MLIRL(8) 1 1 1 1 2 2 3 3 1 3 3 3

Table 3: Results of DPM-BIRL inMario Bros.
Reward function entry (rk,d) Average feature counts

k from DPM-BIRL 1 2 3 4 5 1 2 3 4 5

φenemy-killed 1.00 -0.81 1.00 1.00 -1.00 3.10 1.60 2.80 1.90 0.55
φcoin-collected 1.00 1.00 -1.00 -0.42 -1.00 21.60 21.55 7.55 7.85 6.75

speedy Gonzales avoids both collecting coins and killing enemies. All the players commonly try
to reach the end of the level while acting according to their own preferences. The behaviour data
consisted of 3 trajectories per player. Since only the simulator of the environment is available instead
of the complete model, we used the relative entropy IRL [16] which is a model-free IRL algorithm.

Tbl. 2 presents the cluster assignment results. Each columnrepresents each trajectory and the num-
ber denotes the cluster assignmentcm of trajectoryXm. For example, DPM-BIRL produced 5
clusters and trajectoriesX1, . . . ,X4 are assigned to the cluster 1 representing the expert player. EM-
MLIRL failed to group the trajectories that align well with the players, even though we restarted it
100 times in order to mitigate the convergence to bad local optima. On the other hand, DPM-BIRL
was incorrect on only one trajectory, assigning a coin collector’s trajectory to the expert player clus-
ter. Tbl. 3 presents the reward function entries (rk,d) learned from DPM-BIRL and the average
feature counts acquired by the players with the learned reward functions. For the sake of brevity,
we present only two important features (d=enemy-killed, coin-collected) that determine the playing
style. To compute each player’s feature counts, we executedann-step lookahead policy yielded by
each reward functionrk on the simulator in 20 randomly chosen levels. The reward function entries
align well with each playing style. For example, the cluster2 represents the coin collector, and its
reward function entry for killing an enemy is negative but that for collecting a coin is positive.

As a demonstration, we implemented a small piece of softwarethat visualizes the posterior proba-
bility of a gamer’s behavior belonging to one of the clustersincluding a new one. A demo video is
provided as supplementary material.

5 Conclusion

We proposed a nonparametric Bayesian approach to IRL for multiple reward functions using the
Dirichlet process mixture model, which extends the previous Bayesian approach to IRL assuming
a single reward function. We can learn an appropriate numberof reward functions from the be-
havior data due to the nonparametric nature and facilitatesincorporating domain knowledge on the
reward function by utilizing a Bayesian approach. We presented an efficient Metropolis-Hastings
sampling algorithm that draws samples from the posterior ofDPM-BIRL, leveraging the gradient
of the posterior. We also provided an analytical way to compute the approximate posterior mean
for the information transfer task. In addition, we showed that DPM-BIRL outperforms the previous
approach in various problem domains.

Acknowledgments

This work was supported by National Research Foundation of Korea (Grant# 2012-007881), the
Defense Acquisition Program Administration and Agency forDefense Development of Korea (Con-
tract# UD080042AD), and the SW Computing R&D Program of KEIT(2011-10041313) funded by
the Ministry of Knowledge Economy of Korea.

8

References

[1] Stuart Russell. Learning agents for uncertain environments (extended abstract). InProceedings of COLT,
1998.

[2] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. InProceedings of
ICML, 2000.

[3] Gergely Neu and Csaba Szepesvári. Apprenticeship learning using inverse reinforcement learning and
gradient methods. InProceedings of UAI, 2007.

[4] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. InProceedings of IJCAI,
2007.

[5] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K.Dey. Maximum entropy inverse
reinforcement learning. InProceedings of AAAI, 2008.

[6] Brian D. Ziebart, Andrew L. Maas, Anind K. Dey, and J. Andrew Bagnell. Navigate like a cabbie: proba-
bilistic reasoning from observed context-aware behavior. InProceedings of the international conference
on Ubiquitous computing, 2008.

[7] Zeynep Erkin, Matthew D. Bailey, Lisa M. Maillart, Andrew J. Schaefer, and Mark S. Roberts. Eliciting
patients’ revealed preferences: An inverse Markov decision process approach.Decision Analysis, 7(4),
2010.

[8] Senthilkumar Chandramohan, Matthieu Geist, Fabrice Lefevre, andOlivier Pietquin. User simulation in
dialogue systems using inverse reinforcement learning. InProceedings of Interspeech, 2011.

[9] Christos Dimitrakakis and Constantin A. Rothkopf. Bayesian multitask inverse reinforcement learning.
In Proceedings of the European Workshop on Reinforcement Learning, 2011.

[10] Monica Babeş-Vroman, Vukosi Marivate, Kaushik Subramanian, and Michael Littman. Apprenticeship
learning about multiple intentions. InProceedings of ICML, 2011.

[11] Peter Dayan and Geoffrey E. Hinton. Using expectation-maximization for reinforcement learning.Neural
Computation, 9(2), 1997.

[12] Jaedeug Choi and Kee-Eung Kim. MAP inference for Bayesian inverse reinforcement learning. InPro-
ceedings of NIPS, 2011.

[13] Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture models.Journal of
Computational and Graphical Statistics, 9(2), 2000.

[14] Gareth O. Roberts and Jeffrey S. Rosenthal. Optimal scaling of discrete approximations to langevin
diffusions.Journal of the Royal Statistical Society: Series B (Statistical Methodology), 60(1), 1998.

[15] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforcement learning. InPro-
ceedings of ICML, 2004.

[16] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning. In
Proceedings of AISTATS, 2011.

9

