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Abstract

We apply salient feature detection and tracking in videos tosimulate fixations and
smooth pursuit in human vision. With tracked sequences as input, a hierarchical
network of modules learns invariant features using a temporal slowness constraint.
The network encodes invariance which are increasingly complex with hierarchy.
Although learned from videos, our features are spatial instead of spatial-temporal,
and well suited for extracting features from still images. We applied our features to
four datasets (COIL-100, Caltech 101, STL-10, PubFig), andobserve a consistent
improvement of 4% to 5% in classification accuracy. With thisapproach, we
achieve state-of-the-art recognition accuracy 61% on STL-10 dataset.

1 Introduction

Our visual systems are amazingly competent at recognizing patterns in images. During their devel-
opment, training stimuli are not incoherent sequences of images, but natural visual streams modu-
lated by fixations [1]. Likewise, we expect a machine vision system to learn from coherent image
sequences extracted from the natural environment. Throughthis learning process, it is desired that
features become robust to temporal transfromations and perform significantly better in recognition.
In this paper, we build an unsupervised deep learning systemwhich exhibits theses properties, thus
achieving competitive performance on concrete computer vision benchmarks.

As a learning principle, sparsity is essential to understanding the statistics of natural images [2].
However, it remains unclear to what extent sparsity and subspace pooling [3, 4] could produce
invariance exhibited in higher levels of visual systems. Another approach to learning invariance is
temporal slowness [1, 5, 6, 7]. Experimental evidence suggests that high-level visual representations
become slow-changing and tolerant towards non-trivial transformations, by associating low-level
features which appear in a coherent sequence [5].

To learn features using slowness, a key observation is that during our visual fixations, moving objects
remain in visual focus for a sustained amount of time throughsmooth pursuit eye movements. This
mechanism ensures that the same object remains in visual exposure, avoiding rapid switching or
translations. Simulation for such a mechanism forms an essential part of our proposal. In natural
videos, we use spatial-temporal feature detectors to simulate fixations on salient features. At these
feature locations, we apply local contrast normalization [8], template matching [9] to find local
correspondences between successive video frames. This approach produces training sequences for
our unsupervised algorithm. As shown in Figure 1, training input to the neural network is free from
abrupt changes but contain non-trivial motion transformations.

In prior work [10, 11, 12], a single layer of features learnedusing temporal slowness results in
translation-invariant edge detectors, reminiscent of complex-cells. However, it remains unclear
whether higher levels of invariances [1], such as ones exhibited in IT, can be learned using temporal
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Figure 1: Simulating smooth pursuit eye movements. (Left) Sequences extracted from fixed spatial
locations in a video. (Right) Sequences produced by our tracking algorithm.

slowness. In this paper, we focus on developing algorithms that capture higher levels of invariance,
by learning multiple layers of representations. By stacking learning modules, we are able to learn
features that are increasingly invariant. Using temporal slowness, the first layer units become locally
translational invariant, similar to subspace or spatial pooling; the second layer units can then encode
more complex invariances such as out-of-plane transformations and non-linear warping.

Using this approach, we show a surprising result that despite being trained on videos, our features
encode complex invariances which translate to recognitionperformance on still images. We carry
out our experiments using the self-taught learning framework [13]. We first learn a set of features
using simulated fixations in unlabeled videos, and then apply the learned features to classification
tasks. The learned features improve accuracy by a significant 4% to 5% across four still image
recognition datasets. In particular, we show best classification results to date 61% on the STL-
10 [14] dataset. Finally, we quantify the invariance learned using temporal slowness and simulated
fixations by a set of control experiments.

2 Related work

Unsupervised learning image features from pixels is a relatively new approach in computer vision.
Nevertheless, there have been successful application of unsupervised learning algorithms such as
Sparse Coding [15, 16], Independent Component Analysis [17], even clustering algorithms [14] on
a convincing range of datasets. These algorithms often use such principles as sparsity and feature
orthogonality to learn good representations.

Recent work in deep learning such as Le et. al. [18] showed promising results for the application
of deep learning to vision. At the same time, these advances suggest challenges for learning deeper
layers [19] using purely unsupervised learning. Mobahi et.al. [20] showed that temporal slow-
ness could improve recognition on a video-like COIL-100 dataset. Despite being one of the first to
apply temporal slowness in deep architectures, the authorstrained a fully supervised convolutional
network and used temporal slowness as a regularizing step inthe optimization procedure. The in-
fluential work of Slow Feature Analysis (SFA) [7] was an earlyexample of unsupervised algorithm
using temporal slowness. SFA solves a constrained problem and optimizes for temporal slowness
by mapping data into a quadratic expansion and performing eigenvector decomposition. Despite its
elegance, SFA’s non-linear (quadratic) expansion is slow computationally when applied to high di-
mensional data. Applications of SFA to computer vision havehad limited success, applied primarily
to artificially generated graphics data [21]. Bergstra et. al. [12] proposed to train deep architectures
with temporal slowness and decorrelation, and illustratedtraining a first layer on MNIST digits.
[22, 23] proposed bi-linear models to represents natural images using a factorial code. Cadieu et.
al. [24] trained a two-layer algorithm to learn visual transformations in videos, with limited emphasis
on temporal slowness.

The computer vision literature has a number of works which, similar to us, use the idea of video
tracking to learn invariant features. Stavens et. al. [25] show improvement in performance when
SIFT/HOG parameters are optimized using tracked image patch sequences in specific application
domains. Leistner et. al. [26] used natural videos as “weakly supervised” signals to improve ran-
dom forest classifiers. Lee et. al. [27] introduced video-based descriptors used in hand-held visual
recognition systems. In contrast to these recent examples,our algorithm learns features directly
from raw image pixels, and adapts to pixel-level image statistics—in particular, it does not rely
on hand-designed preprocessing such as SIFT/HOG. Further,since it is implemented by a neural
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network, our method can also be used in conjunction with suchtechniques as fine-tuning with back-
propagation. [28, 29]

3 Learning Architecture

In this section, we describe the basic modules and the architecture of the learning algorithm. In
particular, our learning modules use a combination of temporal slowness and a non-degeneracy
principle similar to orthogonality [30, 31]. Each module implements a linear transformation fol-
lowed by a pooling step. The modules can be activated in a feed-forward manner, making them
suitable for forming a deep architecture. To learn invariant features with temporal slowness, we use
a two layer network, where the first layer is convolutional and replicates neurons with local receptive
field across dense grid locations, and the second (non-convolutional) layer is fully connected.

3.1 Learning Module

The input data to our learning module is a coherent sequence of image frames, and all frames in the
sequence are indexed byt. To learn hidden featuresp(t) from datax(t), the modules are trained by
solving the following unconstrained minimization problem:

minimize
W

λ

N−1
∑

t=1

‖p(t) − p
(t+1)‖1 +

N
∑

t=1

‖x(t) −WTWx
(t)‖22 (1)

The hidden featuresp(t) are mapped from datax(t) by a feed-forward pass in the network shown
Figure 2:

p
(t) =

√

H(Wx(t))2 (2)

This equation describesL2 pooling on a linear network layer. The square and square-root operations
are element-wise. This pooling mechanism is implemented bya subspace pooling matrixH with
a group size of two [30]. More specifically, each row ofH picks and sums two adjacent feature
dimensions in a non-overlapping fashion.

The second term in Equation 1 is from the Reconstruction ICA algorithm [31]. It helps avoid de-
generacy in the features, and plays a role similar to orthogonalization in Independent Component
Analysis [30]. The network encodes the datax

(t) by a matrix-vector multiplicationz(t) = Wx
(t),

and reconstructs the data with another feed-forward passx̂
(t) = WT

z
(t). This term can also be

interpreted as an auto-encoder reconstruction cost. (See [31] for details.)

Although the algorithm is driven by temporal slowness, sparsity also helps to obtain good features
from natural images. Thus, in practice, we further add to Equation 1 anL1-norm sparsity regular-
ization termγ

∑

N

t=1 ‖p
(t)‖1, to make sure the obtained features have sparse activations.

This basic algorithm trained on the Hans van Hateren’s natural video repository [24] produced ori-
ented edge filters. The learned features are highlyinvariant to local translations. The reason for
this is that temporal slowness requires hidden features to be slow-changing across time. Using the
visualization method of [24], in Figure 3, we vary the interpolation angle in-between pairs of pooled
features, and produce a motion of smooth translations. A video of this illustration is also available
online.1

3.2 Stacked Architecture

The first layer modules described in the last section are trained on a smaller patch size (16x16 pixels)
of locally tracked video sequences. To construct the set of inputs to the second stacked layer, first
layer features are replicated on a dense grid in a larger scale (32x32 pixels). The input to layer two
is extracted afterL2 pooling. This architecture produces an over-complete number of local 16x16
features across the larger feature area.

The two layer architecture is shown in Figure 4. Due to the high dimensionality of the first layer
outputs, we apply PCA to reduce their dimensions for the second layer algorithm. Afterwards,

1http://ai.stanford.edu/ wzou/slow/firstlayer invariance.avi

3



Figure 2: Neural network ar-
chitecture of the basic learn-
ing module

Figure 3: Translational invariance in first layer
features; columns correspond to interpolation an-
gleθ at multiples of 45 degrees

a fully connected module is trained with temporal slowness on the output of PCA. The stacked
architecture learns features in a signficantly larger 2-D area than the first layer algorithm, and able
to learn invariance to larger-scale transformations seen in videos.

Figure 4: Two-layer architecture of our algorithm used to learn invariance from videos.

3.3 Invariance Visualization

After unsupervised training with video sequences, we visualize the features learned by the two layer
network. On the left of Figure 5, we show the optimal stimuli which maximally activates each of
the first layer pooling units. This is obtained by analytically finding the input that maximizes the
output of a pooling unit (subject to the constraint that the inputx has unit norm,‖x‖2 = 1). The
optimal stimuli for units learned without slowness are shown at the top, and appears to give high
frequency grating-like patterns. At the bottom, we show theoptimal stimuli for features learned
with slowness; here, the optimal stimuli appear much smoother because the pairs of Gabor-like
features being pooled over are usually a quadrature pair. This implies that the pooling unit is robust
to changes in phase positions, which correspond to translations of the Gabor-like feature.

The second layer features are learned on top of the pooled first layer features. We visualize the
second layer features by plotting linear combinations of the first layer features’ optimal stimuli (as
shown on the left of Figure 5), and varying the interpolationangle as in [24]. The result is shown
on right of Figure 5, where each row corresponds to the visualization of a single pooling unit. Each
row corresponds to a motion sequence to which we would expectthe second layer features to be
roughly invariant. From this visualization, non-trivial invariances are observed such as non-linear
warping, rotation, local non-affine changes and large scaletranslations. A video animation of this
visualization is also available online2.

2http://ai.stanford.edu/ wzou/slow/secondlayer invariance.avi
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Figure 5: (Left) Comparison of optimal stimuli offirst layerpooling units (patch size 16x16) learned
without (top) and with (bottom) temporal slowness. (Right)visualization ofsecond layerfeatures
(patch size 32x32), with each row corresponding to one pooling unit. We observe a few non-trivial
invariances, such as warping (rows 9 and 10), rotation (firstrow), local non-affine changes (rows 3,
4, 6, 7), large scale translations (rows 2 and 5).

4 Experiments

Our experiments are carried out in a self-taught learning setting [13]. We first train the algorithm on
the Hans van Hateren natural scene videos, to learn a set of features. The learned features are then
used to classify single images in each of four datasets. Throughout this section, we use gray-scale
features to perform recognition.

4.1 Training with Tracked Sequences

To extract data from the Hans van Hateren natural video repository, we apply spatial-temporal
Difference-of-Gaussian blob detector and select areas of high response to simulate visual fixations.
After the initial frame is selected, the image patch is tracked across 20 frames using a tracker we
built and customized for this task. The tracker finds local correspondences by calculating Nor-
malized Cross Correlation (NCC) of patches across time which are processed with local contrast
normalization.

The first layer algorithm is learned on 16x16 patches with 128features (pooled from 256 linear
bases). The bases are then convolved within the larger 32x32image patches with a stride of 2. PCA
is used to first reduce the dimensions of the response maps to 300 before learning the second layer.
The second layer learns 150 features (pooled from 300 linearbases).

4.2 Vision Datasets

COIL-100 contains images of 100 objects, each with 72 views.We followed testing protocols in [32,
20]. The videos we trained on to obtain the temporal slownessfeatures were based on the van
Hataren videos, and were thus unrelated to COIL-100. The classification experiment is performed
on all 100 objects.

In Caltech 101, we followed the common experiment setup given in [33]: we pick 30 images per
class as training set, and randomly pick 50 per class (if fewer than 50 left, take the rest) as test set.
This is performed 10 times and we report the average classification accuracy.

The STL-10 [34] dataset contains 10 object classes with 5000training and 8000 test images. There
are 10 pre-defined folds of training images, with 500 images in each fold. In each fold, a classifier
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Table 1: Acc. COIL-100 (unrelated video)
Method Acc.
VTU [32] 79.1%
ConvNet regularized with video [20] 79.77%
Our results without video 82.0%
Our results using video 87.0%
Performance increase by training on video+5.0%

Table 2: Ave. acc. Caltech 101
Method Ave. acc.
Two-layer ConvNet [36] 66.9%
ScSPM [37] 73.2%
Hierarchical sparse-coding [38] 74.0%
Macrofeatures [39] 75.7%
Our results without video 66.5%
Our results using video 74.6%
Performance increase with video +8.1%

Table 3: Ave. acc. STL-10
Method Ave. acc.
Reconstruction ICA [31] 52.9%
Sparse Filtering [40] 53.5%
SC features, K-means encoding [16] 56.0%
SC features, SC encoding [16] 59.0%
Local receptive field selection [19] 60.1%
Our result without video 56.5%
Our result using video 61.0%
Performance increase with video +4.5%

Table 4: Acc. PubFig faces
Method Acc.
Our result without video 86%
Our result using video 90.0%
Performance increase with video+4.0%

is trained on a specific set of 500 training images, and testedon all 8000 testing images. Similar
to prior work, the evaluation metric we report is average accuracy across 10 folds. The dataset is
suitable for developing unsupervised feature learning andself-taught learning algorithms, since the
number of supervised training labels is relatively small.

PubFig [35] is a face recognition dataset with 58,797 imagesof 200 persons. Face images contain
large variation in pose, expression, background and image conditions. Since some of the URL links
provided by the authors were broken, we only compare our results using video against our own
baseline result without video. 10% of the downloaded data was used as the test set.

4.3 Test Pipeline

On still images, we apply our trained network to extract features at dense grid locations. A linear
SVM classifier is trained on features from both first and second layers. We did not apply fine-tuning.
For COIL-100, we cross validate the average pooling size. A simple four-quadrant pooling is used
for STL-10 and PubFig datasets. For Caltech 101, we use a three layer spatial pyramid.

4.4 Recognition Results

We report results on COIL-100, Caltech 101, STL-10 and PubFig datasets in tables 1, 2, 3 and 4.

In these experiments, the hyper-parameters are cross-validated. However, performance is not partic-
ularly sensitive to the weighting between temporal slowness objective compared to reconstruction
objective in Equation 1, as we will illustrate in Section 4.5.2. For each dataset, we compare results
using features trained with and without the temporal slowness objective term in Equation 1. Despite
the feature being learned from natural videos and then beingtransferred to different recognition tasks
(i.e., self-taught learning), they give excellent performance in our experiments. The application of
temporal slowness increases recognition accuracy consistently by 4% to 5%, bringing our results to
be competitive with the state-of-the-art.

4.5 Control Experiments

4.5.1 Effect of Fixation Simulation and Tracking

We carry out a control experiment to elucidate the difference between features learned using our
fixation and smooth pursuit method for extracting video frames (as in Figure 1, right) compared
to features learned using non-tracked sequences (Figure 1,left). As shown on the left of Figure 6,
training on tracked sequences reduces the translation invariance learned in the second layer. In
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comparison to other forms of invariances, translation is less useful because it is easy to encode with
spatial pooling [17]. Instead, the features encode other invariance such as different forms of non-
linear warping. The advantage of using tracked data is reflected in object recognition performance
on the STL-10 dataset. Shown on the right of Figure 6, recognition accuracy is increased by a
considerable margin by training on tracked sequences.

Figure 6: (Left) Comparison of second layer invariance visualization when training data was ob-
tained with tracking and without; (Right) Ave. acc. on STL-10 with features trained on tracked
sequences compared to non-tracked;λ in this plot is slowness weighting parameter from Equation 1

.
4.5.2 Importance of Temporal Slowness to Recognition Performance

To understand how much the slowness principle helps to learngood features, we vary the slowness
parameter across a range of values to observe its effect on recognition accuracy. Figure 7 shows
recognition accuracy on STL-10, plotted as a function of a slowness weighting parameterλ in the
first and second layers. On both layers, accuracy increases considerably withλ, and then levels off
slowly as the weighting parameter becomes large. The performance also appears to be reasonably
robust to the choice ofλ, so long as the parameter is in the high-value regime.

Figure 7: Performance on STL-10 versus the amount of temporal slowness, on the first layer (left)
and second layer (right); in these plotsλ is the slowness weighting parameter from Equation 1;
different colored curves are shown for differentλ values in the other layer.

4.5.3 Invariance Tests

We quantify invariance encoded in the unsupservised learned features with invariance tests. In this
experiment, we take the approach described in [4] and measure the change in features as input image
undergoes transformations. A patch is extracted from a natural image, and transformed through tran-
lation, rotation and zoom. We measure the Mean Squared Error(MSE) between theL2 normalized
feature vector of the transformed patch and the feature vector of the original patch3. The normalized
MSE is plotted against the amount of translation, rotation,and zoom. Results of invariance tests are

3MSE is normalized against feature dimensions, and averaged across 100 randomly sampled patches. Since
the largest distortion makes almost a completely uncorrelated patch, for all features, MSE is normalized against
the value at the largest distortion.
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shown in Figure 84. In these plots, lower curves indicates higher levels of invariance. Our features
trained with temporal slowness have better invariance properties compared to features learned only
using sparity, and SIFT5. Further, simulation of fixation with feature detection andtracking has a
visible effect on feature invariance. Specifically, as shown on the left of Figure 8, feature tracking
reduces translation invariance in agreement with our analysis in Section 4.5.1. At the same time,
middle and right plots of Figure 8 show that feature trackingincreases the non-trivial rotation and
zoom invariance in the second layer of our temporal slownessfeatures.

Figure 8: Invariance tests comparing our temporal slownessfeatures using tracked and non-tracked
sequences, against SIFT and features trained only with sparsity, shown for different transformations:
Translation (left), Rotation (middle) and Zoom (right).

5 Conclusion

We have described an unsupervised learning algorithm for learning invariant features from video
using the temporal slowness principle. The system is improved by using simulated fixations and
smooth pursuit to generate the video sequences provided to the learning algorithm. We illustrate
by virtual of visualization and invariance tests, that the learned features are invariant to a collection
of non-trivial transformations. With concrete recognition experiments, we show that the features
learned from natural videos not only apply to still images, but also give competitive results on a
number of object recognition benchmarks. Since our features can be extracted using a feed-forward
neural network, they are also easy to use and efficient to compute.
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