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Abstract

We apply salient feature detection and tracking in videasrtaulate fixations and
smooth pursuit in human vision. With tracked sequencesas,im hierarchical
network of modules learns invariant features using a teal@owness constraint.
The network encodes invariance which are increasingly ¢exnpith hierarchy.
Although learned from videos, our features are spatiatabbf spatial-temporal,
and well suited for extracting features from stillimages &pplied our features to
four datasets (COIL-100, Caltech 101, STL-10, PubFig),@skrve a consistent
improvement of 4% to 5% in classification accuracy. With thpproach, we
achieve state-of-the-art recognition accuracy 61% on $0ldataset.

1 Introduction

Our visual systems are amazingly competent at recogniattgnms in images. During their devel-
opment, training stimuli are not incoherent sequences afjgs, but natural visual streams modu-
lated by fixations [1]. Likewise, we expect a machine visigatem to learn from coherent image
sequences extracted from the natural environment. Thrthigtearning process, it is desired that
features become robust to temporal transfromations aridrpesignificantly better in recognition.
In this paper, we build an unsupervised deep learning systieich exhibits theses properties, thus
achieving competitive performance on concrete computgonibenchmarks.

As a learning principle, sparsity is essential to undeditanthe statistics of natural images [2].
However, it remains unclear to what extent sparsity and gad®s pooling [3, 4] could produce

invariance exhibited in higher levels of visual systemsothier approach to learning invariance is
temporal slowness [1, 5, 6, 7]. Experimental evidence sstgdkat high-level visual representations
become slow-changing and tolerant towards non-trivialgfarmations, by associating low-level

features which appear in a coherent sequence [5].

To learn features using slowness, a key observation is thatglour visual fixations, moving objects
remain in visual focus for a sustained amount of time thragmlboth pursuit eye movements. This
mechanism ensures that the same object remains in visuasessy avoiding rapid switching or
translations. Simulation for such a mechanism forms annéiség@art of our proposal. In natural
videos, we use spatial-temporal feature detectors to atefikations on salient features. At these
feature locations, we apply local contrast normalizati8y femplate matching [9] to find local
correspondences between successive video frames. Thizaapproduces training sequences for
our unsupervised algorithm. As shown in Figure 1, trainimguit to the neural network is free from
abrupt changes but contain non-trivial motion transforomest.

In prior work [10, 11, 12], a single layer of features learnging temporal slowness results in
translation-invariant edge detectors, reminiscent of mlemcells. However, it remains unclear
whether higher levels of invariances [1], such as ones &elilin IT, can be learned using temporal
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Figure 1: Simulating smooth pursuit eye movements. (Leffjugnces extracted from fixed spatial
locations in a video. (Right) Sequences produced by oukittgalgorithm.

slowness. In this paper, we focus on developing algorithvasdapture higher levels of invariance,

by learning multiple layers of representations. By stagkearning modules, we are able to learn

features that are increasingly invariant. Using tempdoaVisess, the first layer units become locally

translational invariant, similar to subspace or spatialipg; the second layer units can then encode
more complex invariances such as out-of-plane transféomaand non-linear warping.

Using this approach, we show a surprising result that desiing trained on videos, our features
encode complex invariances which translate to recognfiemfiormance on still images. We carry
out our experiments using the self-taught learning framkJ3]. We first learn a set of features
using simulated fixations in unlabeled videos, and thenyaiby@ learned features to classification
tasks. The learned features improve accuracy by a signiféd®nto 5% across four still image
recognition datasets. In particular, we show best classific results to date 61% on the STL-
10 [14] dataset. Finally, we quantify the invariance ledransing temporal slowness and simulated
fixations by a set of control experiments.

2 Reated work

Unsupervised learning image features from pixels is aivelgtnew approach in computer vision.
Nevertheless, there have been successful applicationsefpenvised learning algorithms such as
Sparse Coding [15, 16], Independent Component Analysis €/&n clustering algorithms [14] on
a convincing range of datasets. These algorithms oftenude@inciples as sparsity and feature
orthogonality to learn good representations.

Recent work in deep learning such as Le et. al. [18] showenthising results for the application
of deep learning to vision. At the same time, these advangggest challenges for learning deeper
layers [19] using purely unsupervised learning. Mobahi at.[20] showed that temporal slow-
ness could improve recognition on a video-like COIL-100adat. Despite being one of the first to
apply temporal slowness in deep architectures, the auttared a fully supervised convolutional
network and used temporal slowness as a regularizing sty ioptimization procedure. The in-
fluential work of Slow Feature Analysis (SFA) [7] was an eakample of unsupervised algorithm
using temporal slowness. SFA solves a constrained probitehoptimizes for temporal slowness
by mapping data into a quadratic expansion and performiggneiector decomposition. Despite its
elegance, SFAs non-linear (quadratic) expansion is slomputationally when applied to high di-
mensional data. Applications of SFA to computer vision haae limited success, applied primarily
to artificially generated graphics data [21]. Bergstra bf12] proposed to train deep architectures
with temporal slowness and decorrelation, and illustratathing a first layer on MNIST digits.
[22, 23] proposed bi-linear models to represents naturab@s using a factorial code. Cadieu et.
al. [24] trained a two-layer algorithm to learn visual triommations in videos, with limited emphasis
on temporal slowness.

The computer vision literature has a number of works whiahjlar to us, use the idea of video
tracking to learn invariant features. Stavens et. al. [28\simprovement in performance when
SIFT/HOG parameters are optimized using tracked imagenpquences in specific application
domains. Leistner et. al. [26] used natural videos as “wealpervised” signals to improve ran-
dom forest classifiers. Lee et. al. [27] introduced videsdubadescriptors used in hand-held visual
recognition systems. In contrast to these recent examplesalgorithm learns features directly
from raw image pixels, and adapts to pixel-level image stias—in particular, it does not rely
on hand-designed preprocessing such as SIFT/HOG. Fusineg it is implemented by a neural



network, our method can also be used in conjunction with sectniques as fine-tuning with back-
propagation. [28, 29]

3 Learning Architecture

In this section, we describe the basic modules and the aothie of the learning algorithm. In
particular, our learning modules use a combination of tamdpslowness and a non-degeneracy
principle similar to orthogonality [30, 31]. Each moduleglements a linear transformation fol-
lowed by a pooling step. The modules can be activated in affa@drd manner, making them
suitable for forming a deep architecture. To learn invdriaatures with temporal slowness, we use
a two layer network, where the first layer is convolutional agplicates neurons with local receptive
field across dense grid locations, and the second (hon-kdioumal) layer is fully connected.

3.1 LearningModule

The input data to our learning module is a coherent sequéhnoege frames, and all frames in the
sequence are indexed hyTo learn hidden featurgs'*) from datax(?), the modules are trained by
solving the following unconstrained minimization problem

N-—-1 N
minjmize A >~ [ — pEHV]y + 3 x® — WTWx()3 (1)

(=1 =1
The hidden featurep® are mépped from data*) by a feed-forward pass in the network shown
Figure 2:

p) = \/H(Wx®)>2 @

This equation describds, pooling on a linear network layer. The square and squareegerations
are element-wise. This pooling mechanism is implemented bybspace pooling matrii with

a group size of two [30]. More specifically, each row f picks and sums two adjacent feature
dimensions in a non-overlapping fashion.

The second term in Equation 1 is from the Reconstruction I@&rithm [31]. It helps avoid de-
generacy in the features, and plays a role similar to orthaligation in Independent Component
Analysis [30]. The network encodes the dat& by a matrix-vector multiplicatiom® = Wx(®,
and reconstructs the data with another feed-forward géids= W7z®*). This term can also be
interpreted as an auto-encoder reconstruction cost. (R¢édr details.)

Although the algorithm is driven by temporal slowness, sipaalso helps to obtain good features
from natural images. Thus, in practice, we further add todfign 1 anL-norm sparsity regular-

ization termy S ||[p® |1, to make sure the obtained features have sparse activations

This basic algorithm trained on the Hans van Hateren’s ahtideo repository [24] produced ori-
ented edge filters. The learned features are highlgiriant to local translations The reason for
this is that temporal slowness requires hidden featureg &ldw-changing across time. Using the
visualization method of [24], in Figure 3, we vary the intelgtion angle in-between pairs of pooled
featur(is, and produce a motion of smooth translations. Aovif this illustration is also available
online:

3.2 Stacked Architecture

The first layer modules described in the last section anedthdn a smaller patch size (16x16 pixels)
of locally tracked video sequences. To construct the setpmits to the second stacked layer, first
layer features are replicated on a dense grid in a largee $82k32 pixels). The input to layer two
is extracted aftel.; pooling. This architecture produces an over-complete rarroblocal 16x16
features across the larger feature area.

The two layer architecture is shown in Figure 4. Due to thdnldgnensionality of the first layer
outputs, we apply PCA to reduce their dimensions for the rs&¢dayer algorithm. Afterwards,

Yhttp://ai.stanford.edu/ wzou/slow/fitkiyer_invariance.avi
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Figure 2: Neural network ar- Figure 3: Translational invariance in first layer
chitecture of the basic learn- features; columns correspond to interpolation an-
ing module gle 6 at multiples of 45 degrees

a fully connected module is trained with temporal slownesghe output of PCA. The stacked
architecture learns features in a signficantly larger 2-&adhan the first layer algorithm, and able
to learn invariance to larger-scale transformations seeidieos.
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Figure 4: Two-layer architecture of our algorithm used &rteinvariance from videos.

3.3 Invariance Visualization

After unsupervised training with video sequences, we Vizeighe features learned by the two layer
network. On the left of Figure 5, we show the optimal stimuliigh maximally activates each of
the first layer pooling units. This is obtained by analytigdinding the input that maximizes the
output of a pooling unit (subject to the constraint that thgutx has unit norm||x||; = 1). The
optimal stimuli for units learned without slowness are shat the top, and appears to give high
frequency grating-like patterns. At the bottom, we show dp&mal stimuli for features learned
with slowness; here, the optimal stimuli appear much snaotfecause the pairs of Gabor-like
features being pooled over are usually a quadrature pai.ifiplies that the pooling unit is robust
to changes in phase positions, which correspond to tramstadf the Gabor-like feature.

The second layer features are learned on top of the pooledafysr features. We visualize the
second layer features by plotting linear combinations effitst layer features’ optimal stimuli (as
shown on the left of Figure 5), and varying the interpolatiogle as in [24]. The result is shown
on right of Figure 5, where each row corresponds to the \izatédn of a single pooling unit. Each
row corresponds to a motion sequence to which we would expecsecond layer features to be
roughly invariant. From this visualization, non-triviaiviariances are observed such as non-linear
warping, rotation, local non-affine changes and large drafeslations. A video animation of this
visualization is also available onlifie

2http://ai.stanford.edu/ wzou/slow/secalayer.invariance.avi
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Figure 5: (Left) Comparison of optimal stimuli &fst layerpooling units (patch size 16x16) learned
without (top) and with (bottom) temporal slowness. (Righgualization ofsecond layefeatures
(patch size 32x32), with each row corresponding to one pgalnit. We observe a few non-trivial
invariances, such as warping (rows 9 and 10), rotation (s}, local non-affine changes (rows 3,
4,6, 7), large scale translations (rows 2 and 5).

4 Experiments

Our experiments are carried out in a self-taught learnittinge 13]. We first train the algorithm on
the Hans van Hateren natural scene videos, to learn a seaitofés. The learned features are then
used to classify single images in each of four datasets. ubfraut this section, we use gray-scale
features to perform recognition.

4.1 Training with Tracked Sequences

To extract data from the Hans van Hateren natural video repgswe apply spatial-temporal
Difference-of-Gaussian blob detector and select areagbfriesponse to simulate visual fixations.
After the initial frame is selected, the image patch is teatlcross 20 frames using a tracker we
built and customized for this task. The tracker finds locatespondences by calculating Nor-
malized Cross Correlation (NCC) of patches across time hwhie processed with local contrast
normalization.

The first layer algorithm is learned on 16x16 patches with fE28ures (pooled from 256 linear
bases). The bases are then convolved within the larger 3gx@ge patches with a stride of 2. PCA
is used to first reduce the dimensions of the response ma@tbeore learning the second layer.
The second layer learns 150 features (pooled from 300 lineses).

4.2 Vision Datasets

COIL-100 contains images of 100 objects, each with 72 vié¥esfollowed testing protocols in [32,
20]. The videos we trained on to obtain the temporal slowresasires were based on the van
Hataren videos, and were thus unrelated to COIL-100. Thesifleation experiment is performed
on all 100 objects.

In Caltech 101, we followed the common experiment setuprging33]: we pick 30 images per
class as training set, and randomly pick 50 per class (if feagn 50 left, take the rest) as test set.
This is performed 10 times and we report the average claaificaccuracy.

The STL-10 [34] dataset contains 10 object classes with H@d@ing and 8000 test images. There
are 10 pre-defined folds of training images, with 500 imagessaich fold. In each fold, a classifier



Table 2: Ave. acc. Caltech 101

Table 1: Acc. COIL-100 (unrelated video) Method Ave. acc.
Method Acc. Two-layer ConvNet [36] 66.9%
VTU [32] 79.1% ScSPM [37] 73.2%
ConvNet regularized with video [20] 79.77% Hierarchical sparse-coding [38]] 74.0%
Our results without video 82.0% Macrofeatures [39] 75.7%
Our results using video 87.0% Our results without video 66.5%
Performance increase by training on video+5.0% Our results using video 74.6%
Performance increase with vidgo +8.1%

Table 3: Ave. acc. STL-10

Method Ave. acc.

Reconstruction ICA [31] 52.9% Table 4: Acc. PubFig faces
Sparse Filtering [40] 53.5%

SC features, K-means encoding [16] 56.0% Method _ ACC.
SC features, SC encoding [16] 59.0% Our result without video 86%
Local receptive field selection [19] | 60.1% Our result using video 90.0%

Our result without video 56.5% Performance increase with vidgo+4.0%

Our result using video 61.0%
Performance increase with video +4.5%

is trained on a specific set of 500 training images, and testeall 8000 testing images. Similar

to prior work, the evaluation metric we report is averageuaacy across 10 folds. The dataset is
suitable for developing unsupervised feature learningsatidtaught learning algorithms, since the
number of supervised training labels is relatively small.

PubFig [35] is a face recognition dataset with 58,797 imarfeX00 persons. Face images contain
large variation in pose, expression, background and imagditons. Since some of the URL links
provided by the authors were broken, we only compare ourteessing video against our own
baseline result without video. 10% of the downloaded datawezd as the test set.

4.3 Test Pipeline

On still images, we apply our trained network to extractdeas at dense grid locations. A linear
SVM classifier is trained on features from both first and sddayers. We did not apply fine-tuning.
For COIL-100, we cross validate the average pooling sizeinfke four-quadrant pooling is used
for STL-10 and PubFig datasets. For Caltech 101, we use a ldyer spatial pyramid.

4.4 Recognition Results

We report results on COIL-100, Caltech 101, STL-10 and Pgibdktasets in tables 1, 2, 3 and 4.

In these experiments, the hyper-parameters are crostatedi. However, performance is not partic-
ularly sensitive to the weighting between temporal slowrasiective compared to reconstruction
objective in Equation 1, as we will illustrate in Section 2.5For each dataset, we compare results
using features trained with and without the temporal si@srabjective term in Equation 1. Despite
the feature being learned from natural videos and then lieingferred to different recognition tasks
(i.e., self-taught learning), they give excellent perfarmoe in our experiments. The application of
temporal slowness increases recognition accuracy censlisby 4% to 5%, bringing our results to
be competitive with the state-of-the-art.

45 Control Experiments
451 Effect of Fixation Simulation and Tracking

We carry out a control experiment to elucidate the diffeeshetween features learned using our
fixation and smooth pursuit method for extracting video feanfas in Figure 1, right) compared
to features learned using non-tracked sequences (Figle&)1,As shown on the left of Figure 6,

training on tracked sequences reduces the translationianez learned in the second layer. In



comparison to other forms of invariances, translationss leseful because it is easy to encode with
spatial pooling [17]. Instead, the features encode othariance such as different forms of non-
linear warping. The advantage of using tracked data is tefiieio object recognition performance
on the STL-10 dataset. Shown on the right of Figure 6, red¢mgnaccuracy is increased by a
considerable margin by training on tracked sequences.
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Figure 6: (Left) Comparison of second layer invariance aiation when training data was ob-
tained with tracking and without; (Right) Ave. acc. on STQ-With features trained on tracked
sequences compared to non-trackkd this plot is slowness weighting parameter from Equation 1

45.2 Importance of Temporal Slownessto Récognition Per formance

To understand how much the slowness principle helps to lgaod features, we vary the slowness
parameter across a range of values to observe its effectcogniion accuracy. Figure 7 shows
recognition accuracy on STL-10, plotted as a function ofoavekss weighting parametarin the
first and second layers. On both layers, accuracy increasesderably with\, and then levels off
slowly as the weighting parameter becomes large. The pedioce also appears to be reasonably
robust to the choice of, so long as the parameter is in the high-value regime.
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Figure 7: Performance on STL-10 versus the amount of terhplmaness, on the first layer (left)
and second layer (right); in these plotss the slowness weighting parameter from Equation 1;
different colored curves are shown for differentalues in the other layer.

453 Invariance Tests

We quantify invariance encoded in the unsupservised lediestures with invariance tests. In this
experiment, we take the approach described in [4] and med#seichange in features as inputimage
undergoes transformations. A patch is extracted from aaldtnage, and transformed through tran-
lation, rotation and zoom. We measure the Mean Squared @V®E) between thd., normalized
feature vector of the transformed patch and the featur@wetthe original patch. The normalized
MSE is plotted against the amount of translation, rotatéom zoom. Results of invariance tests are

3MSE is normalized against feature dimensions, and averaged a@®@saridomly sampled patches. Since
the largest distortion makes almost a completely uncorrelated patchi,fieatares, MSE is normalized against
the value at the largest distortion.



shown in Figure 8 In these plots, lower curves indicates higher levels dfiiimnce. Our features
trained with temporal slowness have better invariancegna@s compared to features learned only
using sparity, and SIFY. Further, simulation of fixation with feature detection d@ratking has a
visible effect on feature invariance. Specifically, as sham the left of Figure 8, feature tracking
reduces translation invariance in agreement with our amain Section 4.5.1. At the same time,
middle and right plots of Figure 8 show that feature trackimgeases the non-trivial rotation and
zoom invariance in the second layer of our temporal slowfesgsires.
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Figure 8: Invariance tests comparing our temporal slowfezgsires using tracked and non-tracked
sequences, against SIFT and features trained only witlsispahown for different transformations:
Translation (left), Rotation (middle) and Zoom (right).

5 Conclusion

We have described an unsupervised learning algorithm &nieg invariant features from video
using the temporal slowness principle. The system is ingutdwy using simulated fixations and
smooth pursuit to generate the video sequences providdtetiearning algorithm. We illustrate
by virtual of visualization and invariance tests, that tearhed features are invariant to a collection
of non-trivial transformations. With concrete recognitiexperiments, we show that the features
learned from natural videos not only apply to still imagest &lso give competitive results on a
number of object recognition benchmarks. Since our featca@ be extracted using a feed-forward
neural network, they are also easy to use and efficient to atenp
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