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Abstract

We consider the problem of estimating Shannon’s entropy H in the under-sampled
regime, where the number of possible symbols may be unknown or countably
infinite. Dirichlet and Pitman-Yor processes provide tractable prior distributions
over the space of countably infinite discrete distributions, and have found major
applications in Bayesian non-parametric statistics and machine learning. Here
we show that they provide natural priors for Bayesian entropy estimation, due
to the analytic tractability of the moments of the induced posterior distribution
over entropy H . We derive formulas for the posterior mean and variance of H
given data. However, we show that a fixed Dirichlet or Pitman-Yor process prior
implies a narrow prior on H , meaning the prior strongly determines the estimate
in the under-sampled regime. We therefore define a family of continuous mixing
measures such that the resulting mixture of Dirichlet or Pitman-Yor processes
produces an approximately flat prior over H . We explore the theoretical properties
of the resulting estimators and show that they perform well on data sampled from
both exponential and power-law tailed distributions.

1 Introduction

An important statistical problem in the study of natural systems is to estimate the entropy of an
unknown discrete distribution on the basis of an observed sample. This is often much easier than
the problem of estimating the distribution itself; in many cases, entropy can be accurately estimated
with fewer samples than the number of distinct symbols. Entropy estimation remains a difficult
problem, however, as there is no unbiased estimator for entropy, and the maximum likelihood es-
timator exhibits severe bias for small datasets. Previous work has tended to focus on methods for
computing and reducing this bias [1–5]. Here, we instead take a Bayesian approach, building on a
framework introduced by Nemenman et al [6]. The basic idea is to place a prior over the space of
probability distributions that might have generated the data, and then perform inference using the
induced posterior distribution over entropy. (See Fig. 1).

We focus on the setting where our data are a finite sample from an unknown, or possibly even count-
ably infinite, number of symbols. A Bayesian approach requires us to consider distributions over
the infinite-dimensional simplex, �1. To do so, we employ the Pitman-Yor (PYP) and Dirichlet
(DP) processes [7–9]. These processes provide an attractive family of priors for this problem, since:
(1) the posterior distribution over entropy has analytically tractable moments; and (2) distributions
drawn from a PYP can exhibit power-law tails, a feature commonly observed in data from social, bi-
ological, and physical systems [10–12]. However, we show that a fixed PYP prior imposes a narrow
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Figure 1: Graphical model illustrating the ingre-
dients for Bayesian entropy estimation. Arrows indi-
cate conditional dependencies between variables, and
the gray “plate” denotes multiple copies of a random
variable (with the number of copies N indicated at
bottom). For entropy estimation, the joint probabil-
ity distribution over entropy H , data x = {x

j

}, dis-
crete distribution ⇡ = {⇡

i

}, and parameter ✓ factor-
izes as: p(H,x,⇡, ✓) = p(H|⇡)p(x|⇡)p(⇡|✓)p(✓).
Entropy is a deterministic function of ⇡, so p(H|⇡) =
�(H �

P
i

⇡
i

log ⇡
i

).

prior over entropy, leading to severe bias and overly narrow credible intervals for small datasets. We
address this shortcoming by introducing a set of mixing measures such that the resulting Pitman-Yor
Mixture (PYM) prior provides an approximately non-informative (i.e., flat) prior over entropy.

The remainder of the paper is organized as follows. In Section 2, we introduce the entropy estimation
problem and review prior work. In Section 3, we introduce the Dirichlet and Pitman-Yor processes
and discuss key mathematical properties relating to entropy. In Section 4, we introduce a novel
entropy estimator based on PYM priors and derive several of its theoretical properties. In Section 5,
we show applications to data.

2 Entropy Estimation

Consider samples x := {x
j

}N
j=1

drawn iid from an unknown discrete distribution ⇡ := {⇡
i

}A
i=1

on
a finite or (countably) infinite alphabet X. We wish to estimate the entropy of ⇡,

H(⇡) = �
AX

i=1

⇡
i

log ⇡
i

, (1)

where we identify X = {1, 2, . . . ,A} as the set of alphabets without loss of generality (where the
alphabet size A may be infinite), and ⇡

i

> 0 denotes the probability of observing symbol i. We
focus on the setting where N ⌧ A.

A reasonable first step toward estimating H is to estimate the distribution ⇡. The sum of ob-
served counts n

k

=

P
N

i=1

1{xi=k} for each k 2 X yields the empirical distribution ˆ⇡, where
⇡̂
k

= n
k

/N . Plugging this estimate for ⇡ into eq. 1, we obtain the so-called “plugin” estimator:
ˆHplugin = �

P
⇡̂
i

log ⇡̂
i

, which is also the maximum-likelihood estimator. It exhibits substantial
negative bias in the undersampled regime.

2.1 Bayesian entropy estimation

The Bayesian approach to entropy estimation involves formulating a prior over distributions ⇡, and
then turning the crank of Bayesian inference to infer H using the posterior distribution. Bayes’ least
squares (BLS) estimators take the form:

ˆH(x) = E[H|x] =
Z

H(⇡)p(⇡|x) d⇡ (2)

where p(⇡|x) is the posterior over ⇡ under some prior p(⇡) and categorical likelihood p(x|⇡) =Q
j

p(x
j

|⇡), where p(x
j

= i) = ⇡
i

. The conditional p(H|⇡) = �(H �
P

i

⇡
i

log ⇡
i

), since H is
deterministically related to ⇡. To the extent that p(⇡) expresses our true prior uncertainty over the
unknown distribution that generated the data, this estimate is optimal in a least-squares sense, and
the corresponding credible intervals capture our uncertainty about H given the data.

For distributions with known finite alphabet size A, the Dirichlet distribution provides an obvious
choice of prior due to its conjugacy to the discrete (or multinomial) likelihood. It takes the form
p(⇡) /

QA
i=1

⇡↵�1

i

, for ⇡ on the A-dimensional simplex (⇡
i

� 1,
P

⇡
i

= 1), with concentration
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Figure 2: Power-law frequency distributions from neural signals and natural language. We compare
samples from the DP (red) and PYP (blue) priors for two datasets with heavy tails (black). In both
cases, we compare the empirical CDF with distributions sampled given d and ↵ fixed to their ML
estimates. For both datasets, the PYP better captures the heavy-tailed behavior of the data. Left:

Frequencies among N = 1.2e6 neural spike words from 27 simultaneously-recorded retinal ganglion
cells, binarized and binned at 10 ms [18]. Right: Frequency of N = 217826 words in the novel Moby
Dick by Herman Melville.

parameter ↵ [13]. Many previously proposed estimators can be viewed as Bayesian estimators with
a particular fixed choice of ↵. (See [14] for an overview).

2.2 Nemenman-Shafee-Bialek (NSB) estimator

In a seminal paper, Nemenman et al [6] showed that Dirichlet priors impose a narrow prior over
entropy. In the under-sampled regime, Bayesian estimates using a fixed Dirichlet prior are severely
biased, and have small credible intervals (i.e., they give highly confident wrong answers!). To ad-
dress this problem, [6] suggested a mixture-of-Dirichlets prior:

p(⇡) =

Z
p
Dir

(⇡|↵)p(↵)d↵, (3)

where p
Dir

(⇡|↵) denotes a Dir(↵) prior on ⇡. To construct an approximately flat prior on entropy,
[6] proposed the mixing weights on ↵ given by,

p(↵) / d

d↵
E[H|↵] = A 

1

(A↵+ 1)�  
1

(↵+ 1), (4)

where E[H|↵] denotes the expected value of H under a Dir(↵) prior, and  
1

(·) denotes the tri-
gamma function. To the extent that p(H|↵) resembles a delta function, eq. 3 implies a uniform prior
for H on [0, logA].The BLS estimator under the NSB prior can then be written as,

ˆH
nsb

= E[H|x] =
ZZ

H(⇡)p(⇡|x,↵) p(↵|x) d⇡ d↵ =

Z
E[H|x,↵]p(x|↵)p(↵)

p(x)
d↵, (5)

where E[H|x,↵] is the posterior mean under a Dir(↵) prior, and p(x|↵) denotes the evidence,
which has a Polya distribution. Given analytic expressions for E[H|x,↵] and p(x|↵), this estimate
is extremely fast to compute via 1D numerical integration in ↵. (See Appendix for details).

Next, we shall consider the problem of extending this approach to infinite-dimensional discrete
distributions. Nemenman et al proposed one such extension using an approximation to ˆH

nsb

in the
limit A ! 1,which we refer to as ˆH

nsb1 [15, 16]. Unfortunately, ˆH
nsb1 increases unboundedly

with N (as noted by [17]), and it performs poorly for the examples we consider.

3 Stick-Breaking Priors

To construct a prior over countably infinite discrete distributions we employ a class of distributions
from nonparametric Bayesian statistics known as stick-breaking processes [19]. In particular, we
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focus on two well-known subclasses of stick-breaking processes: the Dirichlet Process (DP) and
Pitman-Yor process (PYP). Both are stochastic processes whose samples are discrete probability
distributions [7, 20]. A sample from a DP or PYP may be written as

P1
i=1

⇡
i

�
�i , where ⇡ = {⇡

i

}
denotes a countably infinite set of ‘weights’ on a set of atoms {�

i

} drawn from some base probability
measure, where �

�i denotes a delta function on the atom �
i

.1 The prior distribution over ⇡ under
the DP and PYP is technically called the GEM distribution or the two-parameter Poisson-Dirichlet
distribution, but we will abuse terminology and refer to it more simply as script notation DP or PY.
The DP weight distribution DP(↵) may be described as a limit of the finite Dirichlet distributions
where the alphabet size grows and concentration parameter shrinks, A ! 1 and ↵0 ! 0, such that
↵

0

A ! ↵ [20]. The PYP generalizes the DP to allow power-law tails, and includes DP as a special
case [7].

Let PY(d,↵) denote the PYP weight distribution with discount parameter d and concentration pa-
rameter ↵ (also called the “Dirichlet parameter”), for d 2 [0, 1),↵ > �d. When d = 0, this reduces
to the DP weight distribution, denoted DP(↵). The name “stick-breaking” refers to the fact that
the weights of the DP and PYP can be sampled by transforming an infinite sequence of indepen-
dent Beta random variables in a procedure known as “stick-breaking” [21]. Stick-breaking provides
samples ⇡ ⇠ PY(d,↵) according to:

�
i

⇠ Beta(1� d,↵+ id) ⇡̃
i

=

i�1Y

k=1

(1� �
k

)�
i

, (6)

where ⇡̃
i

is known as the i’th size-biased sample from ⇡. (The ⇡̃
i

sampled in this manner are not
strictly decreasing, but decrease on average such that

P1
i=1

⇡̃
i

= 1 with probability 1). Asymptoti-
cally, the tails of a (sorted) sample from DP(↵) decay exponentially, while for PY(d,↵) with d 6= 0,
the tails approximately follow a power-law: ⇡

i

/ (i)
� 1

d ( [7], pp. 867)2. Many natural phenomena
such as city size, language, spike responses, etc., also exhibit power-law tails [10, 12]. (See Fig. 2).

3.1 Expectations over DP and PY weight distributions

A key virtue of PYP priors is a mathematical property called invariance under size-biased sampling,
which allows us to convert expectations over ⇡ on the infinite-dimensional simplex to one or two-
dimensional integrals with respect to the distribution of the first two size-biased samples [23, 24].
These expectations are required for computing the mean and variance of H under the prior (or
posterior) over ⇡.

Proposition 1 (Expectations with first two size-biased samples). For ⇡ ⇠ PY(d,↵) and arbitrary
integrable functionals f and g of ⇡,

E
(⇡|d,↵)

" 1X

i=1

f(⇡
i

)

#
= E

(⇡̃1|d,↵)


f(⇡̃

1

)

⇡̃
1

�
, (7)

E
(⇡|d,↵)

2

4
X

i,j 6=i

g(⇡
i

,⇡
j

)

3

5
= E

(⇡̃1,⇡̃2|d,↵) [g(⇡̃1

, ⇡̃
2

)(1� ⇡̃
1

)] , (8)

where ⇡̃
1

and ⇡̃
2

are the first two size-biased samples from ⇡.

The first result (eq. 7) appears in [7], and we construct an analogous proof for eq. 8 (see Appendix).
The direct consequence of this lemma is that first two moments of H(⇡) under the DP and PY
priors have closed forms , which can be obtained using (from eq. 6): ⇡̃

1

⇠ Beta(1� d,↵+ d), and
⇡̃
2

/(1�⇡̃
1

)|⇡̃
1

⇠ Beta(1�d,↵+2d), with f(⇡
i

) = �⇡
i

log(⇡
i

) for E[H], and f(⇡
i

) = ⇡2

i

(log ⇡
i

)

2

and g(⇡
i

,⇡
j

) = ⇡
i

⇡
j

(log ⇡
i

)(log ⇡
j

) for E[H2

].

1Here, we will assume the base measure is non-atomic, so that the atoms �
i

are distinct with probability
1. This allows us to ignore the base measure, making entropy of the distribution equal to the entropy of the
weights ⇡.

2Note that the power-law exponent is given incorrectly in [9, 22].
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Figure 3: Prior mean and standard deviation over entropy H under a fixed PY prior, as a function of
↵ and d. Note that expected entropy is approximately linear in log↵. Small prior standard deviations
(right) indicate that p(H(⇡)|d,↵) is highly concentrated around the prior mean (left).

3.2 Posterior distribution over weights

A second desirable property of the PY distribution is that the posterior p(⇡
post

|x, d,↵) takes the
form of a (finite) Dirichlet mixture of point masses and a PY distribution [8]. This makes it possible
to apply the above results to the posterior mean and variance of H .

Let n
i

denote the count of symbol i in an observed dataset. Then let ↵
i

= n
i

� d, N =

P
n
i

,
and A =

P
↵
i

=

P
i

n
i

� Kd = N � Kd, where K =

PA
i=1

1{ni>0} is the number of unique
symbols observed. Given data, the posterior over (countably infinite) discrete distributions, written
as ⇡

post

= (p
1

, p
2

, p
3

, . . . , p
K

, p⇤⇡), has the distribution (given in [19]):

(p
1

, p
2

, p
3

, . . . , p
K

, p⇤) ⇠ Dir(n
1

� d, n
2

� d, . . . , n
K

� d,↵+Kd) (9)
⇡ := (⇡

1

,⇡
2

,⇡
3

, . . . ) ⇠ PY(d,↵+Kd).

4 Bayesian entropy inference with PY priors

4.1 Fixed PY priors

Using the results of the previous section (eqs. 7 and 8), we can derive the prior mean and variance
of H under a PY(d,↵) prior on ⇡:

E[H(⇡)|d,↵] =  
0

(1 + ↵)�  
0

(1� d), (10)

var[H(⇡)|d,↵] = ↵+ d

(1 + ↵)2(1� d)
+

1� d

1 + ↵
 
1

(2� d)�  
1

(2 + ↵), (11)

where  
n

is the polygamma of n-th order (i.e.,  
0

is the digamma function). Fig. 3 shows these
functions for a range of d and ↵ values. These reveal the same phenomenon that [6] observed for
finite Dirichlet distributions: a PY prior with fixed (d,↵) induces a narrow prior over H . In the
undersampled regime, Bayesian estimates under PY priors will therefore be strongly determined by
the choice of (d,↵), and posterior credible intervals will be unrealistically narrow.3

4.2 Pitman-Yor process mixture (PYM) prior

The narrow prior on H induced by fixed PY priors suggests a strategy for constructing a non-
informative prior: mix together a family of PY distributions with some hyper-prior p(d,↵) selected
to yield an approximately flat prior on H . Following the approach of [6], we setting p(d,↵) propor-
tional to the derivative of the expected entropy. This leaves one extra degree of freedom, since large

3The only exception is near the corner d ! 1 and ↵ ! �d. There, one can obtain arbitrarily large prior
variance over H for given mean. However, these such priors have very heavy tails and seem poorly suited to
data with finite or exponential tails; we do not explore them further here.
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Figure 4: Expected entropy under Pitman-Yor and Pitman-Yor Mixture priors. (A) Left: expected
entropy as a function of the natural parameters (d,↵). Right: expected entropy as a function of
transformed parameters (h, �). (B) Sampled prior distributions (N = 5e3) over entropy implied
by three different PY mixtures: (1) p(�, h) / �(� � 1) (red), a mixture of PY(d, 0) distributions; (2)
p(�, h) / �(�) (blue), a mixture of DP(↵) distributions; and (3) p(�, h) / exp(� 10

1��

) (grey), which
provides a tradeoff between (1) & (2). Note that the implied prior over H is approximately flat.

prior entropies can arise either from large values of ↵ (as in the DP) or from values of d near 1. (See
Fig. 4A). We can explicitly control this trade-off by reparametrizing the PY distribution, letting

h =  
0

(1 + ↵)�  
0

(1� d), � =

 
0

(1)�  
0

(1� d)

 
0

(1 + ↵)�  
0

(1� d)
, (12)

where h > 0 is equal to the expected entropy of the prior (eq. 10) and � > 0 captures prior beliefs
about tail behavior of ⇡. For � = 0, we have the DP (d = 0); for � = 1 we have a PY(d, 0)
process (i.e., ↵ = 0). Where required, the inverse transformation to standard PY parameters is given
by: ↵ =  

0

�1

(h(1� �) +  
0

(1)) � 1, d = 1 �  
0

�1

( 
0

(1)� h�) , where  
0

�1

(·) denotes the
inverse digamma function.

We can construct an (approximately) flat improper prior over H on [0,1] by setting p(h, �) = q(�),
where q is any density on [0,1]. The induced prior on entropy is thus:

p(H) =

ZZ
p(H|⇡)pPY(⇡|�, h)p(�, h)d� dh, (13)

where pPY(⇡|�, h) denotes a PY distribution on ⇡ with parameters �, h. Fig. 4B shows samples
from this prior under three different choices of q(�), for h uniform on [0, 3]. We refer to the resulting
prior distribution over ⇡ as the Pitman-Yor mixture (PYM) prior. All results in the figures are
generated using the prior q(�) / max(1� �, 0).

4.3 Posterior inference

Posterior inference under the PYM prior amounts to computing the two-dimensional integral over
the hyperparameters (d,↵),

ˆHPYM = E[H|x] =
Z

E[H|x, d,↵]p(x|d,↵)p(↵, d)
p(x)

d(d,↵) (14)

Although in practice we parametrize our prior using the variables � and h, for clarity and consistency
with other literature we present results in terms of d and ↵. Just as the case with the prior mean, the
posterior mean E[H|x, d,↵] is given by a convenient analytic form (derived in the Appendix),

E[H|↵, d,x] =  
0

(↵+N + 1)� ↵+Kd

↵+N
 
0

(1� d)� 1

↵+N

"
KX

i=1

(n
i

� d) 
0

(n
i

� d+ 1)

#
.

(15)

The evidence, p(x|d,↵), is given by

p(x|d,↵) =

⇣Q
K�1

l=1

(↵+ ld)
⌘⇣Q

K

i=1

�(n
i

� d)
⌘
�(1 + ↵)

�(1� d)K�(↵+N)

. (16)
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We can obtain confidence regions for ˆHPYM by computing the posterior variance E[(H� ˆHPYM)

2|x].
The estimate takes the same form as eq. 14, except that we substitute var[H|x, d,↵] for E[H|x, d,↵].
Although var[H|x, d,↵] has an analytic closed form that is fast to compute, it is a lengthy expression
that we do not have space to reproduce here; we provide it in the Appendix.

4.4 Computation

In practice, the two-dimensional integral over ↵ and d is fast to compute numerically. Computation
of the integrand can be carried out more efficiently using a representation in terms of multiplicities
(also known as the empirical histogram distribution function [4]), the number of symbols that have
occurred with a given frequency in the sample. Letting m

k

= |{i : n
i

= k}| denote the total
number of symbols with exactly k observations in the sample gives the compressed statistic m =

[m
0

,m
1

, . . . ,m
M

]

>, where nmax is the largest number of samples for any symbol. Note that the
inner product [0, 1, . . . , nmax] ·m = N , the total number of samples.

The multiplicities representation significantly reduces the time and space complexity of our compu-
tations for most datasets, as we need only compute sums and products involving the number symbols
with distinct frequencies (at most nmax), rather than the total number of symbols K. In practice, we
compute all expressions not explicitly involving ⇡ using the multiplicities representation. For in-
stance, in terms of the multiplicities, the evidence takes the compressed form

p(x|d,↵) = p(m
1

, . . . ,m
M

|d,↵) =
�(1 + ↵)

Q
K�1

l=1

(↵+ ld)

�(↵+ n)

MY

i=1

✓
�(i� d)

i!�(1� d)

◆
mi M !

m
i

!

. (17)

4.5 Existence of posterior mean

Given that the PYM prior with p(h) / 1 on [0,1] is improper, the prior expectation E[H] does
not exist. It is therefore reasonable to ask what conditions on the data are sufficient to obtain finite
posterior expectation E[H|x]. We give an answer to this question in the following short proposition,
the proof of which we provide in Appendix B.
Theorem 1. Given a fixed dataset x of N samples and any bounded (potentially improper) prior
p(�, h), ˆHPYM < 1 when N �K � 2.

This result says that the BLS entropy estimate is finite whenever there are at least two “coinci-
dences”, i.e., two fewer unique symbols than samples, even though the prior expectation is infinite.

5 Results

We compare PYM to other proposed entropy estimators using four example datasets in Fig. 5. The
Miller-Maddow estimator is a well-known method for bias correction based on a first-order Taylor
expansion of the entropy functional. The CAE (“Coverage Adjusted Estimator”) addresses bias
by combining the Horvitz-Thompson estimator with a nonparametric estimate of the proportion
of total probability mass (the “coverage”) accounted for by the observed data x [17, 25]. When
d = 0, PYM becomes a DP mixture (DPM). It may also be thought of as NSB with a very large
A, and indeed the empirical performance of NSB with large A is nearly identical to that of DPM.
All estimators appear to converge except ˆH

nsb1 , the asymptotic extension of NSB discussed in
Section 2.2, which increases unboundedly with data size. In addition PYM performs competitively
with other estimators. Note that unlike frequentist estimators, PYM error bars in Fig. 5 arise from
direct compution of the posterior variance of the entropy.

6 Discussion

In this paper we introduced PYM, a novel entropy estimator for distributions with unknown support.
We derived analytic forms for the conditional mean and variance of entropy under a DP and PY
prior for fixed parameters. Inspired by the work of [6], we defined a novel PY mixture prior, PYM,
which implies an approximately flat prior on entropy. PYM addresses two major issues with NSB:
its dependence on knowledge of A and its inability (inherited from the Dirichlet distribution) to

7



20 90 400 10000

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4
Retinal Ganglion Cell Spike Trains

# of samples

E
nt

ro
py

 (n
at

s)

10 60 300 10000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
3RZHUïODZ

100 1600 18000 210000

4.5

5

5.5

6

6.5

7

7.5
Moby Dick words

E
nt

ro
py

 (n
at

s)

A B

DC
10 20 40 90 200

0.6

0.8

1

1.2

1.4

1.6

1.8
Exponential distribution

# of samples

plugin
MiMa
DPM
PYM
CAE
NSB�

Figure 5: Convergence of entropy estimators with sample size, on two simulated and two real datasets.
We write “MiMa” for “Miller-Maddow” and “NSB1” for ˆH

nsb1 . Note that DPM (“DP mixture”) is
simply a PYM with � = 0. Credible intervals are indicated by two standard deviation of the posterior
for DPM and PYM. (A) Exponential distribution ⇡

i

/ e�i. (B) Power law distribution with exponent 2
(⇡

i

/ i�2). (C) Word frequency from the novel Moby Dick. (D) Neural words from 8 simultaneously-
recorded retinal ganglion cells. Note that for clarity ˆH

nsb1 has been cropped from B and D. All plots
are average of 16 Monte Carlo runs.

account for the heavy-tailed distributions which abound in biological and other natural data. We
have shown that PYM performs well in comparison to other entropy estimators, and indicated its
practicality in example applications to data.

We note, however, that despite its strong performance in simulation and in many practical examples,
we cannot assure that PYM will always be well-behaved. There may be specific distributions for
which the PYM estimate is so heavily biased that the credible intervals fail to bracket the true en-
tropy. This reflects a general state of affairs for entropy estimation on countable distributions: any
convergence rate result must depend on restricting to a subclass of distributions [26]. Rather than
working within some analytically-defined subclass of discrete distributions (such as, for instance,
those with finite “entropy variance” [17]), we work within the space of distributions parametrized
by PY which spans both the exponential and power-law tail distributions. Although PY parameter-
izes a large class of distributions, its structure allows us to use the PY parameters to understand the
qualitative features of the distributions made likely under a choice of prior. We feel this is a key
feature for small-sample inference, where the choice of prior is most relevant. Moreover, in a forth-
coming paper, we demonstrate the consistency of PYM, and show that its small-sample flexibility
does not sacrifice desirable asymptotic properties.

In conclusion, we have defined the PYM prior through a reparametrization that assures an approx-
imately flat prior on entropy. Moreover, although parametrized over the space of countably-infinite
discrete distributions, the computation of PYM depends primarily on the first two conditional mo-
ments of entropy under PY. We derive closed-form expressions for these moments that are fast to
compute, and allow the efficient computation of both the PYM estimate and its posterior credible
interval. As we demonstrate in application to data, PYM is competitive with previously proposed
estimators, and is especially well-suited to neural applications, where heavy-tailed distributions are
commonplace.
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