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Abstract

We study statistical risk minimization problems under a version of privacy in
which the data is kept confidential even from the learner. In this local privacy
framework, we establish sharp upper and lower bounds on the convergence rates
of statistical estimation procedures. As a consequence, we exhibit a precise trade-
off between the amount of privacy the data preserves and the utility, measured by
convergence rate, of any statistical estimator.

1 Introduction

There are natural tensions between learning and privacy that arise whenever a learner must aggregate
data across multiple individuals. The learner wishes to make optimal use of each data point, but the
providers of the data may wish to limit detailed exposure, either to the learner or to other individuals.
It is of great interest to characterize such tensions in the form of quantitative tradeoffs that can be
both part of the public discourse surrounding the design of systems that learn from data and can be
employed as controllable degrees of freedom whenever such a system is deployed.

We approach this problem from the point of view of statistical decision theory. The decision-
theoretic perspective offers a number of advantages. First, the use of loss functions and risk functions
provides a compelling formal foundation for defining “learning,” one that dates back to Wald [28] in
the 1930’s, and which has seen continued development in the context of research on machine learn-
ing over the past two decades. Second, by formulating the goals of a learning system in terms of
loss functions, we make it possible for individuals to assess whether the goals of a learning system
align with their own personal utility, and thereby determine the extent to which they are willing to
sacrifice some privacy. Third, an appeal to decision theory permits abstraction over the details of
specific learning procedures, providing (under certain conditions) minimax lower bounds that apply
to any specific procedure. Finally, the use of loss functions, in particular convex loss functions, in
the design of a learning system allows powerful tools of optimization theory to be brought to bear.

In more formal detail, our framework is as follows. Given a compact convex set Θ ⊂ Rd, we
wish to find a parameter value θ ∈ Θ achieving good average performance under a loss function
" : X ×Rd → R+. Here the value "(X, θ) measures the performance of the parameter vector θ ∈ Θ
on the sample X ∈ X , and "(x, ·) : Rd → R+ is convex for x ∈ X . We measure the expected
performance of θ ∈ Θ via the risk function

R(θ) := E["(X, θ)]. (1)

In the standard formulation of statistical risk minimization, a method M is given n samples
X1, . . . , Xn, and outputs an estimate θn approximately minimizing R(θ). Instead of allowing M
access to the samples Xi, however, we study the effect of giving only a perturbed view Zi of each
datum Xi, quantifying the rate of convergence of R(θn) to infθ∈Θ R(θ) as a function of both the
number of samples n and the amount of privacy Zi provides for Xi.
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There is a long history of research at the intersection of privacy and statistics, where there is a natural
competition between maintaining the privacy of elements in a dataset {X1, . . . , Xn} and the output
of statistical procedures. Study of this issue goes back at least to the 1960s, when Warner [29]
suggested privacy-preserving methods for survey sampling. Recently, there has been substantial
work on privacy—focusing on a measure known as differential privacy [12]—in statistics, computer
science, and other fields. We cannot hope to do justice to the large body of related work, referring
the reader to the survey by Dwork [10] and the statistical framework studied by Wasserman and
Zhou [30] for background and references.

In this paper, we study local privacy [13, 17], in which each datum Xi is kept private from the

method M. The goal of many types of privacy is to guarantee that the output θ̂n of the method M
based on the data cannot be used to discover information about the individual samples X1, . . . , Xn,
but locally private algorithms access only disguised views of each datum Xi. Local algorithms
are among the most classical approaches to privacy, tracing back to Warner’s work on randomized
response [29], and rely on communication only of some disguised view Zi of each true sample Xi.
Locally private algorithms are natural when the providers of the data—the population sampled to
give X1, . . . , Xn—do not trust even the statistician or statistical method M, but the providers are
interested in the parameters θ∗ minimizing R(θ). For example, in medical applications, a participant
may be embarrassed about his use of drugs, but if the loss " is able to measure the likelihood of
developing cancer, the participant has high utility for access to the optimal parameters θ∗. In essence,
we would like the statistical procedure M to learn from the data X1, . . . , Xn but not about it.

Our goal is to understand the fundamental tradeoffs between maintaining privacy while still retain-
ing the utility of the statistical inference method M. Though intuitively there must be some tradeoff,
quantifying it precisely has been difficult. In the machine learning literature, Chaudhuri et al. [7]
develop differentially private empirical risk minimization algorithms, and Dwork and Lei [11] and
Smith [26] analyze similar statistical procedures, but do not show that there must be negative effects
of privacy. Rubinstein et al. [24] are able to show that it is impossible to obtain a useful parameter
vector θ that is substantially differentially private; it is unclear whether their guarantees are improv-
able. Recent work by Hall et al. [15] gives sharp minimax rates of convergence for differentially
private histogram estimation. Blum et al. [5] also give lower bounds on the closeness of certain
statistical quantities computed from the dataset, though their upper and lower bounds do not match.
Sankar et al. [25] provide rate-distortion theorems for utility models involving information-theoretic
quantities, which has some similarity to our risk-based framework, but it appears challenging to
map their setting onto ours. The work most related to ours is probably that of Kasiviswanathan et al.
[17], who show that that locally private algorithms coincide with concepts that can be learned with
polynomial sample complexity in Kearns’s statistical query (SQ) model. In contrast, our analysis
addresses sharp rates of convergence, and applies to estimators for a broad class of convex risks (1).

2 Main results and approach

Our approach to local privacy is based on a worst-case measure of mutual information, where we
view privacy preservation as a game between the providers of the data—who wish to preserve
privacy—and nature. Recalling that the method sees only the perturbed version Zi of Xi, we adopt
a uniform variant of the mutual information I(Zi;Xi) between the random variables Xi and Zi

as our measure for privacy. This use of mutual information is by no means original [13, 25], but
because standard mutual information has deficiencies as a measure of privacy [e.g. 13], we say the
distribution Q generating Z from X is private only if I(X;Z) is small for all possible distributions
P on X (possibly subject to constraints). This is similar to the worst-case information approach of
Evfimievski et al. [13], which limits privacy breaches. (In the long version of this paper [9] we also
consider differentially private algorithms.)

The central consequences of our main results are, under standard conditions on the loss functions ",
sharp upper and lower bounds on the possible convergence rates for estimation procedures when we
wish to guarantee a level of privacy I(Xi;Zi) ≤ I∗. We show there are problem dependent constants
a(Θ, ") and b(Θ, ") such that the rates of convergence of all possible procedures are lower bounded

by a(Θ, ")/
√
nI∗ and that there exist procedures achieving convergence rates of b(Θ, ")/

√
nI∗,

where the ratio b(Θ, ")/a(Θ, ") is upper bounded by a universal constant. Thus, we establish and
quantify explicitly the tradeoff between statistical estimation and the amount of privacy.
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We show that stochastic gradient descent is one procedure that achieves the optimal convergence
rates, which means additionally that our upper bounds apply in streaming and online settings, re-
quiring only a fixed-size memory footprint. Our subsequent analysis builds on this favorable prop-
erty of gradient-based methods, whence we focus on statistical estimation procedures that access
data through the subgradients of the loss functions ∂"(X, θ). This is a natural restriction. Gradients
of the loss " are asymptotically sufficient [18] (in an asymptotic sense, gradients contain all of the
statistical information for risk minimization problems), stochastic gradient-based estimation proce-
dures are (sample) minimax optimal and Bahadur efficient [23, 1, 27, Chapter 8], many estimation
procedures are gradient-based [20, 6], and distributed optimization procedures that send gradient
information across a network to a centralized procedure M are natural [e.g. 3]. Our mechanism
gives M access to a vector Zi that is a stochastic (sub)gradient of the loss evaluated on the sample
Xi at a parameter θ of the method’s choosing:

E[Zi | Xi, θ] ∈ ∂"(Xi, θ), (2)

where ∂"(Xi, θ) denotes the subgradient set of the function θ '→ "(Xi, θ). In a sense, the unbiased-
ness of the subgradient inclusion (2) is information-theoretically necessary [1].

To obtain upper and lower bound on the convergence rate of estimation procedures, we provide a
two-part analysis. One part requires studying saddle points of the mutual information I(X;Z) (as a
function of the distributions P of X and Q(· | X) of Z) under natural constraints that allow inference
of the optimal parameters θ∗ for the risk R. We show that for certain classes of loss functions " and
constraints on the communicated version Zi of the data Xi, there is a unique distribution Q(· | Xi)
that attains the smallest possible mutual information I(X;Z) for all distributions on X . Using this
unique distribution, we can adapt information-theoretic techniques for obtaining lower bounds on
estimation [31, 1] to derive our lower bounds. The uniqueness results for the conditional distribution
Q show that no algorithm guaranteeing privacy between M and the samples Xi can do better. We
can obtain matching upper bounds by application of known convergence rates for stochastic gradient
and mirror descent algorithms [20, 21], which are computationally efficient.

3 Optimal learning rates and tradeoffs

Having outlined our general approach, we turn in this section to providing statements of our main
results. Before doing so, we require some formalization of our notions of privacy and error measures,
which we now provide.

3.1 Optimal Local Privacy

We begin by describing in slightly more detail the communication protocol by which information
about the random variables X is communicated to the procedure M. We assume throughout that
there exist two d-dimensional compact sets C,D, where C ⊂ intD ⊂ Rd, and we have that
∂"(x, θ) ⊂ C for all θ ∈ Θ and x ∈ X . We wish to maximally “disguise” the random variable
X with the random variable Z satisfying Z ∈ D. Such a setting is natural; indeed, many online
optimization and stochastic approximation algorithms [34, 21, 1] assume that for any x ∈ X and
θ ∈ Θ, if g ∈ ∂"(x, θ) then ‖g‖ ≤ L for some norm ‖·‖. We may obtain privacy by allowing a
perturbation to the subgradient g so long as the perturbation lives in a (larger) norm ball of radius
M ≥ L, so that C = {g ∈ Rd : ‖g‖ ≤ L} ⊂ D = {g ∈ Rd : ‖g‖ ≤ M}.

Now let X have distribution P , and for each x ∈ X , let Q(· | x) denote the regular conditional
probability measure of Z given that X = x. Let Q(·) denote the marginal probability defined by
Q(A) = EP [Q(A | X)]. The mutual information between X and Z is the expected Kullback-
Leibler (KL) divergence between Q(· | X) and Q(·):

I(P,Q) = I(X;Z) := EP [Dkl (Q(· | X)||Q(·))] . (3)

We view the problem of privacy as a game between the adversary controlling P and the data owners,
who use Q to obscure the samples X . In particular, we say a distribution Q guarantees a level of
privacy I∗ if and only if supP I(P,Q) ≤ I∗. (Evfimievski et al. [13, Definition 6] present a similar
condition.) Thus we seek a saddle point P ∗, Q∗ such that

sup
P

I(P,Q∗) ≤ I(P ∗, Q∗) ≤ inf
Q

I(P ∗, Q), (4)
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where the first supremum is taken over all distributions P on X such that ∇"(X, θ) ∈ C with
P -probability 1, and the infimum is taken over all regular conditional distributions Q such that if
Z ∼ Q(· | X), then Z ∈ D and EQ[Z | X, θ] = ∇"(X, θ). Indeed, if we can find P ∗ and Q∗

satisfying the saddle point (4), then the trivial direction of the max-min inequality yields

sup
P

inf
Q

I(P,Q) = I(P ∗, Q∗) = inf
Q

sup
P

I(P,Q).

To fully formalize this idea and our notions of privacy, we define two collections of probability
measures and associated losses. For sets C ⊂ D ⊂ Rd, we define the source set

P (C) := {Distributions P such that suppP ⊂ C} (5a)

and the set of regular conditional distributions (r.c.d.’s), or communicating distributions,

Q (C,D) :=
{

r.c.d.’s Q s.t. suppQ(· | c) ⊂ D and

∫

D
zdQ(z | c) = c for c ∈ C

}
. (5b)

The definitions (5a) and (5b) formally define the sets over which we may take infima and suprema
in the saddle point calculations, and they capture what may be communicated. The condi-
tional distributions Q ∈ Q (C,D) are defined so that if ∇"(x, θ) ∈ C then EQ[Z | X, θ] :=∫
D zdQ (z | ∇"(x, θ)) = ∇"(x, θ). We now make the following key definition:

Definition 1. The conditional distribution Q∗ satisfies optimal local privacy for the sets
C ⊂ D ⊂ Rd at level I∗ if

sup
P

I(P,Q∗) = inf
Q

sup
P

I(P,Q) = I∗,

where the supremum is taken over distributions P ∈ P (C) and the infimum is taken over regular
conditional distributions Q ∈ Q (C,D).

If a distribution Q∗ satisfies optimal local privacy, then it guarantees that even for the worst possible
distribution on X , the information communicated about X is limited. In a sense, Definition 1
captures the natural competition between privacy and learnability. The method M specifies the
set D to which the data Z it receives must belong; the “teachers,” or owners of the data X , choose
the distribution Q to guarantee as much privacy as possible subject to this constraint. Using this
mechanism, if we can characterize a unique distribution Q∗ attaining the infimum (4) for P ∗ (and
by extension, for any P ), then we may study the effects of privacy between the method M and X .

3.2 Minimax error and loss functions

Having defined our privacy metric, we now turn to our original goal: quantification of the effect
privacy has on statistical estimation rates. Let M denote any statistical procedure or method (that
uses n stochastic gradient samples) and let θn denote the output of M after receiving n such samples.
Let P denote the distribution according to which samples X are drawn. We define the (random) error
of the method M on the risk R(θ) = E["(X, θ)] after receiving n sample gradients as

εn(M, ",Θ, P ) := R(θn)− inf
θ∈Θ

R(θ) = EP ["(X, θn)]− inf
θ∈Θ

EP ["(X, θ)]. (6)

In our settings, in addition to the randomness in the sampling distribution P , there is additional
randomness from the perturbation applied to stochastic gradients of the objective "(X, ·) to mask X
from the statistitician. Let Q denote the regular conditional probability—the channel distribution—
whose conditional part is defined on the range of the subgradient mapping ∂"(X, ·). As the output
θn of the statistical procedure M is a random function of both P and Q, we measure the expected
sub-optimality of the risk according to both P and Q. Now, let L be a collection of loss functions,
where L(P ) denotes the losses " : suppP ×Θ → R belonging to L. We define the minimax error

ε∗n(L,Θ) := inf
M

sup
"∈L(P ),P

EP,Q[εn(M, ",Θ, P )], (7)

where the expectation is taken over the random samples X ∼ P and Z ∼ Q(· | X). We characterize
the minimax error (7) for several classes of loss functions L(P ), giving sharp results when the
privacy distribution Q satisfies optimal local privacy.

We assume that our collection of loss functions obey certain natural smoothness conditions, which
are often (as we see presently) satisfied. We define the class of losses as follows.
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Definition 2. Let L > 0 and p ≥ 1. The set of (L, p)-loss functions are those measurable functions
" : X ×Θ → R such that x ∈ X , the function θ '→ "(x, θ) is convex and

|"(x, θ)− "(x, θ′)| ≤ L ‖θ − θ′‖q (8)

for any θ, θ′ ∈ Θ, where q is the conjugate of p: 1/p+ 1/q = 1.

A loss " satisfies the condition (8) if and only if for all θ ∈ Θ, we have the inequality ‖g‖p ≤ L for

any subgradient g ∈ ∂"(x, θ) (e.g. [16]). We give a few standard examples of such loss functions.
First, we consider finding a multi-dimensional median, in which case the data x ∈ Rd and "(x, θ) =
L ‖θ − x‖1. This loss is L-Lipschitz with respect to the "1 norm, so it belongs to the class of (L,∞)
losses. A second example includes classification problems, using either the hinge loss or logistic
regression loss. In these cases, the data comes in pairs x = (a, b), where a ∈ Rd is the set of
regressors and b ∈ {−1, 1} is the label; the losses are

"(x, θ) = [1− b 〈a, θ〉]+ or "(x, θ) = log (1 + exp(−b 〈a, θ〉))

By computing (sub)gradients, we may verify that each of these belong to the class of (L, p)-losses
if and only if the data a satisfies ‖a‖p ≤ L, which is a common assumption [7, 24].

The privacy-guaranteeing channel distributions Q∗ we construct in Section 4 are motivated by our
concern with the (L, p) families of loss functions. In our model of computation, the learning method
M queries the loss "(Xi, ·) at the point θ; the owner of the datum Xi then computes the subgradient
∂"(Xi, θ) and returns a masked version Zi with the property that E[Zi | Xi, θ] ∈ ∂"(Xi, θ). In
the following two theorems, we give lower bounds on ε∗n for the (L,∞) and (L, 1) families of loss
functions under the constraint that the channel distribution Q must guarantee that a limited amount
of information I(Xi;Zi) is communicated: the channel distribution Q satisfies our Definition 1 of
optimal local privacy.

3.3 Main theorems

We now state our two main theorems, deferring proofs to Appendix B. Our first theorem applies to
the class of (L,∞) loss functions (recall Definition 2). We assume that the set to which the perturbed
data Z must belong is [−M∞,M∞]d, where M∞ ≥ L. We state two variants of the theorem, as one
gives sharper results for an important special case.

Theorem 1. Let L be the collection of (L,∞) loss functions and assume the conditions of the
preceding paragraph. Let Q satisfy be optimally private for the collection L. Then

(a) If Θ contains the "∞ ball of radius r,

ε∗n(L,Θ) ≥
1

163
·
M∞rd√

n
.

(b) If Θ = {θ ∈ Rd : ‖θ‖1 ≤ r},

ε∗n(L,Θ) ≥
rM∞

√
log(2d)

17
√
n

.

For our second theorem, we assume that the loss functions L consist of (L, 1) losses, and that the
perturbed data must belong to the "1 ball of radius M1, i.e., Z ∈ {z ∈ Rd | ‖z‖1 ≤ M1}. Setting
M = M1/L, we define (these constants relate to the optimal local privacy distribution for "1-balls)

γ := log

(
2d− 2 +

√
(2d− 2)2 + 4(M2 − 1)

2(M − 1)

)

, and ∆(γ) :=
eγ − e−γ

eγ + e−γ + 2(d− 1)
. (9)

Theorem 2. Let L be the collection of (L, 1) loss functions and assume the conditions of the pre-
ceding paragraph. Let Q be optimally locally private for the collection L. Then

ε∗n(L,Θ) ≥
1

163
·

rL
√
d√

n∆(γ)
.
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Remarks We make two main remarks about Theorems 1 and 2. First, we note that each result
yields a minimax rate for stochastic optimization problems when there is no random distribution Q.
Indeed, in Theorem 1, we may take M∞ = L, in which case (focusing on the second statement of

the theorem) we obtain the lower bound rL
√

log(2d)/17
√
n when Θ = {θ ∈ Rd : ‖θ‖1 ≤ r}.

Mirror descent algorithms [20, 21] attain a matching upper bound (see the long version of this
paper [9, Sec. 3.3] for more substantial explanation). Moreover, our analysis is sharper than previous
analyses [1, 20], as none (to our knowledge) recover the logarithmic dependence on the dimension
d, which is evidently necessary. Theorem 2 provides a similar result when we take M1 ↓ L, though
in this case stochastic gradient descent attains the matching upper bound.

Our second set of remarks are somewhat more striking. In these, we show that the lower bounds in
Theorems 1 and 2 give sharp tradeoffs between the statistical rate of convergence for any statistical
procedure and the desired privacy of a user. We present two corollaries establishing this tradeoff. In
each corollary, we look ahead to Section 4 and use one of Propositions 1 or 2 to derive a bijection
between the size M∞ or M1 of the perturbation set and the amount of privacy—as measured by the
worst case mutual information I∗—provided. We then combine Theorems 1 and 2 with results on
stochastic approximation to demonstrate the tradeoffs.

Corollary 1. Let the conditions of Theorem 1(b) hold, and assume that M∞ ≥ 2L. Assume Q∗

satisfies optimal local privacy at information level I∗. For universal constants c ≤ C,

c ·
rL

√
d log d√
nI∗

≤ ε∗n(L,Θ) ≤ C ·
rL

√
d log d√
nI∗

.

Proof Since Θ ⊆ {θ ∈ Rd : ‖θ‖1 ≤ r}, mirror descent [2, 21, 20, Chapter 5], using n un-
biased stochastic gradient samples whose "∞ norms are bounded by M∞, obtains convergence
rate O(M∞r

√
log d/

√
n). This matches the second statement of Theorem 1. Now fix our desired

amount of mutual information I∗. From the remarks following Proposition 1, if we must guarantee
that I∗ ≥ supP I(P,Q) for any distribution P and loss function " whose gradients are bounded in
"∞-norm by L, we must (by the remarks following Proposition 1) have

I∗ 2
dL2

M2
∞

.

Up to higher-order terms, to guarantee a level of privacy with mutual information I∗, we must allow

gradient noise up to M∞ = L
√

d/I∗. Using the bijection between M∞ and the maximal allowed

mutual information I∗ under local privacy that we have shown, we substitute M∞ = L
√
d/

√
I∗

into the upper and lower bounds that we have already attained.

Similar upper and lower bounds can be obtained under the conditions of part (a) of Theorem 1,
where we need not assume Θ is an "1-ball, but we lose a factor of

√
log d in the lower bound. Now

we turn to a parallel result, but applying Theorem 2 and Proposition 2.

Corollary 2. Let the conditions of Theorem 2 hold and assume that M1 ≥ 2L. Assume that Q∗

satisfies optimal local privacy at information level I∗. For universal constants c ≤ C,

c ·
rLd√
nI∗

≤ ε∗n(L,Θ) ≤ C ·
rLd√
nI∗

.

Proof By the conditions of optimal local privacy (Proposition 2 and Corollary 3), to have I∗ ≥
supP I(P,Q) for any loss " whose gradients are bounded in "1-norm by L, we must have

I∗ 2
dL2

2M2
1

,

using Corollary 3. Rewriting this, we see that we must have M1 = L
√
d/2I∗ (to higher-order

terms) to be able to guarantee an amount of privacy I∗. As in the "∞ case, we have a bijection
between the multiplier M1 and the amount of information I∗ and can apply similar techniques.
Indeed, stochastic gradient descent (SGD) enjoys the following convergence guarantees (e.g. [21]).
Let Θ ⊆ Rd be contained in the "∞ ball of radius r and the gradients of the loss " belong to the

"1-ball of radius M1. Then SGD has ε∗n(L,Θ) ≤ CM1r
√
d/

√
n. Now apply the lower bound

provided by Theorem 2 and substitute for M1.
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4 Saddle points, optimal privacy, and mutual information

In this section, we explore conditions for a distribution Q∗ to satisfy optimal local privacy, as given
by Definition 1. We give characterizations of necessary and sufficient conditions based on the com-
pact sets C ⊂ D for distributions P ∗ and Q∗ to achieve the saddle point (4). Our results can be
viewed as rate distortion theorems [14, 8] (with source P and channel Q) for certain compact al-
phabets, though as far as we know, they are all new. Thus we sometimes refer to the conditional
distribution Q, which is designed to maintain the privacy of the data X by communication of Z, as
the channel distribution. Since we wish to bound I(X;Z) for arbitrary losses ", we must address the
case when "(X, θ) = 〈θ, X〉, in which case ∇"(X, θ) = X; by the data-processing inequality [14,
Chapter 5] it is thus no loss of generality to assume that X ∈ C and that E[Z | X] = X .

We begin by defining the types of sets C and D that we use in our characterization of privacy. As
we see in Section 3, such sets are reasonable for many applications. We focus on the case when the
compact sets C and D are (suitably symmetric) norm balls:

Definition 3. Let C ⊂ Rd be a compact convex set with extreme points ui ∈ Rd, i ∈ I for some
index set I . Then C is rotationally invariant through its extreme points if ‖ui‖2 = ‖uj‖2 for each
i, j, and for any unitary matrix U such that Uui = uj for some i 3= j, then UC = C.

Some examples of convex sets rotationally invariant through their extreme points include "p-norm
balls for p = 1, 2,∞, though "p-balls for p 3∈ {1, 2,∞} are not. The following theorem gives
a general characterization of the minimax mutual information for rotationally invariant norm balls
with finite numbers of extreme points by providing saddle point distributions P ∗ and Q∗. We provide
the proof of Theorem 3 in Section A.1.

Theorem 3. Let C be a compact, convex, polytope rotationally invariant through its extreme points
{ui}mi=1 and D = (1 + α)C for some α > 0. Let Q∗ be the conditional distribution on Z | X that
maximizes the entropy H(Z | X = x) subject to the constraints that

EQ[Z | X = x] = x

for x ∈ C and that Z is supported on (1 + α)ui for i = 1, . . . ,m. Then Q∗ satisfies Definition 1,
optimal local privacy, and Q∗ is (up to measure zero sets) unique. Moreover, the distribution P ∗

uniform on {ui}mi=1 uniquely attains the saddle point (4).

Remarks: While in the theorem we assume that Q∗(· | X = x) maximizes the entropy for each
x ∈ C, this is not in fact essential. In fact, we may introduce a random variable X ′ between X and
Z: let X ′ be distributed among the extreme points {ui}mi=1 of C in any way such that E[X ′ | X] =
X , then use the maximum entropy distribution Q∗(· | ui) defined in the theorem when X ∈ {ui}mi=1
to sample Z from X ′. The information processing inequality [14, Chapter 5] guarantees the Markov
chain X → X ′ → Z satisfies the minimax bound I(X;Z) ≤ infQ supP I(P,Q).

With Theorem 3 in place, we can explicitly characterize the distributions achieving optimal local
privacy (recall Definition 1) for "1 and "∞ balls. We present the propositions in turn, providing
some discussion here and deferring proofs to Appendices A.2 and A.3.

First, consider the case where X ∈ [−1, 1]d and Z ∈ [−M,M ]d. For notational convenience, we
define the binary entropy h(p) = −p log p− (1− p) log(1− p). We have

Proposition 1. Let X ∈ [−1, 1]d and Z ∈ [−M,M ]d be random variables with M ≥ 1 and
E[Z | X] = X almost surely. Define Q∗ to be the conditional distribution on Z | X such that the
coordinates of Z are independent, have range {−M,M}, and

Q∗(Zi = M | X) =
1

2
+

Xi

2M
and Q∗(Zi = −M | X) =

1

2
−

Xi

2M
.

Then Q∗ satisfies Definition 1, optimal local privacy, and moreover,

sup
P

I(P,Q∗) = d− d · h
(
1

2
+

1

2M

)
.

Before continuing, we give a more intuitive understanding of Proposition 1. Concavity implies that
for a, b > 0, log(a) ≤ log b+ b−1(a− b), or − log(a) ≥ − log(b) + b−1(b− a), so in particular

h

(
1

2
+

1

2M

)
≥ −

(
1

2
+

1

2M

)(
− log 2−

1

M

)
−
(
1

2
−

1

2M

)(
− log 2 +

1

M

)
= log 2−

1

M2
.
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That is, we have for any distribution P on X ∈ [−1, 1]d that (in natural logarithms)

I(P,Q∗) ≤
d

M2
and I(P,Q∗) =

d

M2
+O(M−3).

We now consider the case when X ∈
{
x ∈ Rd | ‖x‖1 ≤ 1

}
and Z ∈

{
z ∈ Rd | ‖z‖1 ≤ M

}
. Here

the arguments are slightly more complicated, as the coordinates of the random variables are no
longer independent, but Theorem 3 still allows us to explicitly characterize the saddle point of the
mutual information.

Proposition 2. Let X ∈ {x ∈ Rd | ‖x‖1 ≤ 1} and Z ∈ {z ∈ Rd | ‖z‖1 ≤ M} be random
variables with M > 1. Define the parameter γ as in Eq. (9), and let Q∗ be the distribution on Z | X
such that Z is supported on {±Mei}di=1, and

Q∗(Z = Mei | X = ei) =
eγ

eγ + e−γ + (2d− 2)
, (10a)

Q∗(Z = −Mei | X = ei) =
e−γ

eγ + e−γ + (2d− 2)
, (10b)

Q∗(Z = ±Mej | X = ei, j 3= i) =
1

eγ + e−γ + (2d− 2)
. (10c)

(For X 3∈ {±ei}, define X ′ to be randomly selected in any way from among {±ei} such that
E[X ′ | X] = X , then sample Z conditioned on X ′ according to (10a)–(10c).) Then Q∗ satisfies
Definition 1, optimal local privacy, and

sup
P

I(P,Q∗) = log(2d)−log
(
eγ + e−γ + 2d− 2

)
+γ

eγ

eγ + e−γ + 2d− 2
−γ

e−γ

eγ + e−γ + 2d− 2
.

We remark that the additional sampling to guarantee that X ′ ∈ {±ei} (where the conditional
distribution Q∗ is defined) can be accomplished simply: define the random variable X ′ so that
X ′ = ei sign(xi) with probability |xi|/ ‖x‖1. Evidently E[X ′ | X] = x, and X → X ′ → Z
for Z distributed according to Q∗ defines a Markov chain as in our remarks following Theorem 3.
Additionally, an asymptotic expansion allows us to gain a somewhat clearer picture of the values of
the mutual information, though we do not derive upper bounds as we did for Proposition 1. We have
the following corollary, proved in Appendix E.1.

Corollary 3. Let Q∗ denote the conditional distribution in Proposition 2. Then

sup
P

I(P,Q∗) =
d

2M2
+Θ

(
min

{
d3

M4
,
log4(d)

d

})
.

5 Discussion and open questions

This study leaves a number open issues and areas for future work. We study procedures that access
each datum only once and through a perturbed view Zi of the subgradient ∂"(Xi, θ), which allows
us to use (essentially) any convex loss. A natural question is whether there are restrictions on the loss
function so that a transformed version (Z1, . . . , Zn) of the data are sufficient for inference. Zhou
et al. [33] study one such procedure, and nonparametric data releases, such as those Hall et al. [15]
study, may also provide insights. Unfortunately, these (and other) current approaches require the
data be aggregated by a trusted curator. Our constraints on the privacy-inducing channel distribution
Q require that its support lie in some compact set. We find this restriction useful, but perhaps it
possible to achieve faster estimation rates under other conditions. A better understanding of general
privacy-preserving channels Q for alternative constraints to those we have proposed is also desirable.

These questions do not appear to have easy answers, especially when we wish to allow each provider
of a single datum to be able to guarantee his or her own privacy. Nevertheless, we hope that our view
of privacy and the techniques we have developed herein prove fruitful, and we hope to investigate
some of the above issues in future work.
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