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Abstract

Rational models of causal induction have been successful in accounting for peo-
ple’s judgments about causal relationships. However, these models have focused
on explaining inferences from discrete data of the kind that can be summarized in
a 2×2 contingency table. This severely limits the scope of these models, since the
world often provides non-binary data. We develop a new rational model of causal
induction using continuous dimensions, which aims to diminish the gap between
empirical and theoretical approaches and real-world causal induction. This model
successfully predicts human judgments from previous studies better than models
of discrete causal inference, and outperforms several other plausible models of
causal induction with continuous causes in accounting for people’s inferences in
a new experiment.

1 Introduction

The problem of causal induction is central to science, and is something at which people are re-
markably skilled, especially given its apparent difficulty. Understanding how people identify causal
relationships has consequently become a challenge taken up by many research programs in cogni-
tive science. One of the most successful of these programs has used rational solutions to the abstract
problem of causal induction (in the spirit of [1, 2]) as a source of explanations for people’s infer-
ences [3, 4, 5, 6]. However nearly all this research has assumed people have access to categorical
information about whether or not a cause or effect is present on a given trial – the sort of information
that appears in a 2× 2 contingency table (see Figure 1(a)). Such an assumption may not be valid for
many of the causal relationships that we see in the world.

For a simple example of a situation in which a continuous cause is relevant, consider the case of
drinking coffee and wakefulness. Clearly, someone who drinks a beverage made by placing a single
drop of coffee in a gallon of water will experience no effects of wakefulness, as an insufficient
amount of the cause was present. Meanwhile, the diligent graduate student who imbibes upwards
of 10 pots of coffee a day will experience a great deal of wakefulness. How much coffee one drinks
is closely linked to whether wakefulness occurs – merely knowing that some amount of coffee was
drunk is insufficient. And this problem is not relegated to those who wish to titrate their caffeination;
many causes exist along continuous dimensions, even if their effects do not (e.g., medicine dosage
and recovery, smoking and related death from cancer).1

The primary strategy that has been explored in previous work on causal induction from continuous
causes is one in which ambiguous examples are immediately categorized as indicating either the
presence or the absence of the cause. This approach, taken by Marsh and Ahn [9], provides a way to

1We will focus on the case of continuous causes with binary outcomes. Learning the mapping between
continuous variables is known as function learning (e.g., [7, 8]).
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Figure 1: Causal induction. (a) A 2× 2 contingency table. C is the cause, E the effect, with c+ and
c− indicating the presence and absence of the cause, similarly for e+ and e−. (b) Graphical models
showing possible causal relationships between cause C, effect E, and background B.

reduce continuous causes to the familiar binary case. In this paper, however, we argue that another
approach can be fruitful – developing models that work directly with continuous values. We extend
the causal support model [4], originally defined for binary causes, to work with continuous-valued
causes. We then re-analyze the results of Marsh and Ahn [9], comparing people’s causal judgments
to predictions made by a number of rational models of causal induction with both discrete and con-
tinuous causes. The predictions made by the continuous models for these experiments perform well,
but are extremely similar, which led us to conduct a new experiment using stimuli that discriminate
among the different models. We show that continuous causal support provides a better account of
these data than the other models we consider.

2 Background

In this section we review previous work on rational models of causal induction, and summarize the
results of Marsh and Ahn [9] that we will use to evaluate different models later in the paper.

2.1 Rational models of causal induction

Rational models of causal induction have focused on the problem of determining the nature of the
relationship between a cause C and an effect E. These models can be divided into two groups.
One group focuses on estimating causal strength, such as ∆P [10], causal power [3] and pCI [11],
which attempt to identify the degree of relationship between two variables. The other group focuses
on causal structure, such as causal support [4], which attempts to identify how certain one can be
that a causal relationship exists at all. The causal support model has proven effective in predicting
human judgments in several studies [4, 5, 6], and we use it as the starting point for our model of
causal induction with continuous causes. The causal support model can be most easily described
in the context of causal graphical models [12] (see Figure 1(b)). In particular, we consider two
graphical models, Graph 0 (G0) and Graph 1 (G1), and we want to determine the log posterior odds
of the models given some data D (i.e. log P (G1|D)

P (G0|D) ). If we assume that both graphs are equally
likely a priori (i.e. P (G0) = P (G1)), then this is equivalent to calculating the log Bayes factor
(log P (D|G1)

P (D|G0)
). In its most general form causal support is this calculation, described less technically

as identifying the evidence that D provides in favor of G1 over G0 [4].

In the particular case of causal inference over binary variables, we have three random variables rep-
resenting the unknown background causes assumed to be always present (B), the possible cause
(C) and the effect (E) in question. In Graph 0 (G0) only B causes E, and how often it does so
is described by the weight parameter, w0. Thus the probability of the event occurring under G0

is P (e+|b+, w0;G0) = w0.2 Graph 1 (G1) allows C to potentially influence the probability of
E. In particular we say C also has an associated weight parameter w1. How we parameterize
the relationship between B, C, and E determines the type of causal relationship we are consid-
ering. In order to capture generative causal relationships we use a noisy-OR parameterization for
P (e|b+, c, w0, w1;G1). That is, under G1 the probability of E occurring (assuming b+) is

P (e+|b+, c, w0, w1;G1) = 1− (1− w0)(1− w1)
c (1)

2Following [4], a superscript + indicates the presence of a variable, and a − indicates its absence. We also
use c+ and c− to indicate that C takes the values 1 and 0 respectively.
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a similar noisy-AND-NOT parameterization can be used for preventive causes [4], but we focus on
generative causes in this paper.

Having defined these graphical models, we can compute the corresponding likelihoods. The
data consists of the values of all n observed occurrences of cause and effects (i.e. D =
{(e1, c1), (e2, c2), . . . , (en, cn)}). Assuming trials are conditionally independent, we have

P (D|Gk) =
n�

i=1

P (ei|ci, b+, w0, w1;Gk) (2)

where the noisy-OR parameterization is used, as in Equation 1. If we were concerned with estimat-
ing causal strength, we could use this likelihood to determine the estimates of w0 and w1 under G1

and G0. However, if we want to compute a measure of causal structure we need to integrate over
all possible values of w0 and w1, assuming prior distributions on w0 and w1. In the original causal
support model [4], a uniform prior was used on w0 and w1 (for a more complex prior, see [6]).

Despite its success in modeling human judgments, this measure of causal support only works in a
limited set of cases – those cases where data can be summarized in a 2×2 contingency table. In order
to address more complicated data sets (e.g. continuous-valued causes), significant modifications are
needed. These modifications can be made to the model or the data. We propose a modification to
the model, while others (e.g., [9]) have attempted to solve this by collapsing continuous data into
binary form. We discuss the consequences of the latter strategy in the next section.

2.2 Previous work on continuous-valued causal induction

Marsh and Ahn [9] note the insufficiencies of current models of causal induction that result from
considering only binary variables. Assuming that the data must be coerced into binary form, they
proposed two potential solutions to this problem, and ruled out one of these options. The first
solution is that people simply ignore ambiguous information, and only deal with instances that can
easily be categorized into “cause” and “not cause”. They reject this solution and instead opt for
the idea that learners “spontaneously categorize ambiguous evidence into one of the four types of
evidence [used in contingency tables].” [9] (p. 4)

To test these claims, Marsh and Ahn conducted a series of experiments in which participants observe
visual stimuli (e.g., Figure 2 (a)) representing a particular value along a continuous dimension paired
with a (binary) event either occurring or not occurring. Participants were asked to use these images
to do two things. First, they were asked to estimate how many examples of each type of data they
had seen. Then, participants were asked “to judge the strength between C and E on a scale from
0 (not a cause) to 100 (strongly causes)”. Marsh and Ahn used this second measure to show that
participants use ambiguous evidence when making causal judgments, refuting the idea that people
ignore the instances which cannot be easily categorized. Furthermore, they discovered that engaging
in causal inference changes participants’ judgments of how many instances of each category they
saw. For example, when the “ambiguous” stimuli were paired with the effect (e.g., condition AE of
Experiment 1, see Table 1), they found that participants claimed to have seen more examples of the
C category. This evidence that people’s frequency ratings were altered based on whether or not the
effect was paired with the ambiguous stimuli was used to dismiss the possibility that participants
were learning a continuous causal relationship.

While Marsh and Ahn demonstrate that causal induction altered how people assigned ambiguous
stimuli to categories, this does not necessarily mean that people were spontaneously categorizing
these stimuli and using that categorization information to make causal judgments. An alternative
account is that the boundary between the categories was ambiguous, and the evidence about the
relationship between cause and effect influenced where people placed this boundary. Previous re-
search suggests that category structures should not always be thought of as fixed [13] and that causal
information can be used when learning category structures and meanings [14]. Our focus here is on
investigating how people might induce causal relationships that involve continuous variables, rather
than understanding their influence on categorization. However, the existence of a plausible alter-
native account of Marsh and Ahn’s results raises the possibility that we can understand their data
without assuming that people spontaneously categorize ambiguous stimuli in order to make causal
judgments. We will explore this possibility after introducing our rational model of causal induction.
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Figure 2: Examples of continuous-valued stimuli. (a) Two sets of stimuli used by Marsh and Ahn
[9]. The extreme stimuli indicated the presence and absence of a cause, while the intermediate
stimulus was deemed “ambiguous”. (b) A stimulus used in our experiments.

3 Defining causal support for continuous causes

Our goal in this section is to extend the rational analysis used to define the causal support model
[4] to causes with continuous values. Following the original model, we take causal support to be
the log likelihood ratio in favor of G1 over G0, and assume that the causes combine in a noisy-OR.
However, rather than assuming that the influence of C is described by a single parameter w1, we
instead define a function(f ) that maps c the value of C ∈ R into [0, 1]. For any such function
fλ(·) : R → [0, 1], with parameters λ, we then have the parameterization

P (e+|b+, c, w0, λ;G1) = 1− (1− w0)(1− fλ(c)) (3)

where c is the (continuous) value of the cause C. The function fλ(·), thus plays a very similar role
to that of the link function in generalized linear models.

We use a specific choice for fλ(·): the probit function (the cumulative distribution function (CDF)
of the standard Normal distribution [15]), denoted Φ(·). The influence of C is encoded in two
parameters, a bias parameter θ and a gain parameter γ. This gives the full parameterization

P (e+|b+, c, w0, θ, γ;G1) = 1− (1− w0)(1− Φ
� c− θ

γ

�
)

where θ indicates the point where the effective strength of C will be 0.5, and γ determines the
sharpness of the transition in strength around this threshold. It is straightforward to show that the
original causal support model corresponds to a special case of this model when C only takes on a
single value when it is present.3 Under the assumption that there is no background rate of occurrence
(i.e., w0 = 0), this model is nearly equivalent to probit regression, which provides an excellent
comparison case for identifying the role that the noisy-OR plays in explaining people’s judgments.

To complete the specification of the model, we need to define prior distributions on the parameters.
For the results we report here w0 ∼ U(0, 1), as in [4], and we use the observed values c(n) to
produce the priors over θ and γ. We take θ ∼ U(cmin, cmax), where cmin is the minimum of
c(n),and cmax is the maximum. This allows the prior on θ to be as uninformative as possible while
only sampling from the range of values over which inference could be reasonably made. The prior
on γ is a mixture distribution, where we draw a variable z from an inverse Wishart distribution with
one degree of freedom and a mean corresponding to the sample variance, and then set γ to either

√
z

or −
√
z with equal probability. Initial investigations suggest the model is relatively robust to prior

choice (e.g. varying the degrees of freedom in the Inverse Wishart does not substantially change
model predictions). Because of the complexity of analytically determining the joint likelihood, we
use Monte Carlo simulation to approximate the integral over these parameters.

3In our continuous model, we assume the cause is always present but with varying strength. If we allow
for the possibility that the cause is absent, and that it has no influence on the effect in such a situation, then we
obtain P (e+|b+, c−, w0, θ, γ;G1) = w0, as required. We then observe that Φ

�
c−θ
γ

�
plays an analogous role

in Equation 3 to w1 in (1). To show equivalence, we need to show that it is possible for this quantity to have
a uniform prior when c = 1. Take γ = 1, and define a Gaussian prior on θ with mean 1 and unit variance.
c−θ
γ then follows a Gaussian distribution with mean 0 and unit variance. Since Φ(·) is the CDF of the standard

Normal, the distribution of Φ
�

c−θ
γ

�
is uniform on [0, 1].
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Table 1: Contingencies and mean causal ratings from Marsh and Ahn [9]
Conditions

Contingencies Ex1:AE Ex1:AĒ Ex2:Zero Ex2:Weak Ex2:Moderate Ex2:Perfect

N(e+, c+) 38 18 10|10|10 33|26|26 36|32|32 40|40|40
N(e−, c−) 18 38 10|10|10 13|13|13 16|16|16 20|20|20
N(e−, c+) 2 2 10|10|10 7 | 7 | 7 4 | 4 | 4 0 | 0 | 0
N(e+, c−) 2 2 10|10|10 7 |14| 7 4 | 8 | 4 0 | 0 | 0

Causal Ratings: 79.2 78.5 28.3 36.2 60.6 81.0
Note: Ex1 and Ex2 refer to Experiments 1 and 2. Vertical bars in Ex2 contingencies separate the

three possible strategies (1|2|3) proposed in [9] for assimilating ambiguous stimuli.

We developed this rational model in order to be able to investigate how people engage in causal
inference in the case of continuous causes. We proceeded with this investigation in two ways. First,
in order to demonstrate the usefulness of considering any model of continuous causal inference,
we reanalyzed the causal ratings provided by participants in Marsh and Ahn’s [9] Experiments 1
and 2. Second, in order to better identify which model best predicts human judgments among the
continuous causal models, we conducted a new experiment designed to distinguish between the
various rational models.

4 Reanalyzing the results of Marsh and Ahn

We applied the continuous causal support model, together with several models of causal induction
from discrete data and alternative statistical models for causal induction from continuous data, to two
data sets from Marsh and Ahn [9]: the two conditions of Experiment 1 that contained ambiguous
stimuli (AE and AĒ), and the four conditions of Experiment 2. Contingencies and mean ratings for
these experiments are shown in Table 1.

4.1 Models

Discrete models. Following [4], we evaluated five models of causal induction from discrete data:
∆P [10], causal power [3], pCI [11], (discrete) causal support [4], and the χ2 statistic. These
models were applied to contingencies derived by discretizing the continuous stimuli in three different
ways, following the strategies suggested by Marsh and Ahn: (1) if people believe in a generative
causal relationship, all ambiguous information should be incorporated into the cause count (i.e.
e+, c+), (2) that people will classify information as being an example of e+, c+ and e+, c− in a
way that is proportional to the relationship they infer from the non-“ambiguous” examples, and (3)
that people increase e+, c+ by the same number of “ambiguous” cases as they would under (2), but
they do not similarly do this for e+, c−. Because there are three potential sets of true event counts
under the assimilation hypothesis for Experiment 2, in order to analyze the assimilation hypothesis
under the best possible case, we will run the discrete models under all three possible methods of
assimilation. These three possible ways of assimilating the ambiguous cases are represented in
Table 1, as contingencies separated by vertical bars (“|”).

Continuous models. We also evaluated several models that consider the causal variable to be con-
tinuously valued. This includes the causal support model described in the previous section, as well
as several traditional models for statistical inference in cases where there is a relationship between
continuous and binary variables. Because they are usually used for hypothesis tests about whether
or not there is a relationship between a continuous and a binary variable, the two tests we use are
probit regression and a two-sample Student t-test. The former tests whether there is a relationship
between a continuous valued variable mapped to a binary variable, while the latter tests whether
there is a relationship between a binary variable mapped to a continuous variable.

Both continuous causal support and the discrete models have the property that with more evidence
there is for a cause the larger the positive score produced by the model. We want a similar property
to hold for the statistics we obtain from the alternative continuous models. If we treat the two-
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Table 2: Correlations of Models Predictions to Human Data and α values

Discrete Model Predictions

Possibility 1 Possibility 2 Possibility 3 Continuous Model Predictions

Model: r α r α r α Model: r α

∆P: -0.250 2×10−4 -0.250 2×10−4 -0.250 2×10−4 C-Support: 0.966 0.475
Power: -0.250 2×10−4 -0.250 2×10−4 -0.250 2×10−4 Probit, |t| : 0.984 2×10−4

pCI: -0.035 1.100 -0.035 1.100 0.239 16.142 Probit, |β| : 0.876 0.320
Support : 0.679 154.950 0.240 2×10−4 0.679 77.350 t-test, |t|: 0.976 1.132
χ2: 0.679 1×10−5 0.679 1×10−5 0.679 1×10−5 t-test, |β| : 0.976 1.132

sample t-test as a case of linear regression (with an indicator variable for whether or not the effect
occurred as the regressor), we obtain β values for both the probit model and the t-test model. We
can treat these β values as estimates of the strength of the relationship between the two variables.
Both methods also produce a t statistic, indicating the evidence that β is different from zero. We
can treat these t values as alternative measures of causal structure. However, the sign of the β and t
statistics is highly dependent on the particular way the data is represented, so we will use |β| and |t|
instead.

In their studies, Marsh and Ahn used four types of continuously varying stimuli that differed slightly
in the parameters used to create them. We have designed our models such that they are invariant
across specification of the dimension, as long as the specification accurately reflects the variance as
observed by participants. The parameters used to generate their stimuli, along with the frequencies
which each of these values occurred and the associated effects, can be directly plugged into the
models to produce predictions. We ran the model over each set of stimulus values, and averaged
these four predictions to obtain the final general predictions the means of which were compared to
the mean human judgments.

4.2 Results

Following [4], model predictions underwent a nonlinear transformation to accommodate nonlinear-
ities in the response scale. This was the transformation y = sign(x) ∗ abs(x)α, where α was chosen
to maximize the correlation (r) between the mean human ratings and mean model predictions across
the conditions. The results are shown in Table 2.

The re-analysis supports the idea that people were using continuous values in their causal judgments.
The best possible correlation achieved by any discrete model was discrete causal support and χ2,
r = .679; this is substantially worse than any of the continuous model correlations. On the other
hand, the models of continuous causal inference successfully captured much of the variation in
responses, with all the continuous models performing well (all r > .85). The Probit |t| model had
the best performance, r = .984, with Continuous causal support and the t-test models not far behind,
with r = .966 and r = .976, respectively.

5 Distinguishing between the continuous models

In the previous section, all of the models for continuous causal induction performed well. However,
the continuous models all made very similar predictions to one another. As a result, it is difficult to
distinguish which model of continuous causal induction people might be using. In order to better
determine which of these models most accurately captures human causal induction over continuous
dimensions, we need to construct data sets that will result in divergent predictions across the various
models.

Because of the noisy-OR parameterization of the generative model, (discrete) causal support predic-
tions are sensitive to the base rate of occurrence while standard statistical tests (e.g., χ2) lack this
sensitivity despite being otherwise good approximations for the rational model [4]. The continuous
causal support model also uses a noisy-OR parameterization, meaning that it will also be sensitive
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Figure 3: Datasets 1 - 9 for the current experiment. The horizontal axis denotes the value of the
cause, while the vertical axis denotes whether or not the event occurred.

to base rates in ways that standard statistical models will not. More generally, the assumption of a
particular form for generative causal relationships means that, for some data sets, flipping the values
of the effect (replacing a 0 with a 1 and vice versa) can result in different continuous causal support
values, though it leaves unchanged the predictions made by the standard methods.

We designed nine data sets to produce such differential predictions. Each data set consisted of a
series of fifty (e, c) pairs, where c ∈ {.02, .04, . . . , 1} and e ∈ 0, 1. The only differences between
the data sets were the functions defining the relationship between c and e. The first four data sets
(Figure 3, 1-4) were designed as follows: (1) for c < .6 then e ∼ Bern(.6) and for c ≥ .6 then
e = 1, (2) flipping the e from (1), (3) for c < .6 then e ∼ Bern(.6) and for c ≥ .6 then e = 0, and
(4) flipping the e from (3). The next five data sets (Figure 3, 5-9) were meant to be analogous to base
rate effects studied in [4]. There was no relationship between the value of c and e, but the rate at
which e = 1 differed between data sets, sampled from Bern(p) with p = .1, .25, .5, .75, .9, for data
sets 5-9, respectively. These datasets were then used as the basis for a new behavioral experiment.

5.1 Method

Participants. A total of 147 participants were recruited through the Amazon Mechanical Turk
web service and were paid $0.25 for their participation. Participants were only asked for one such
judgment, and were randomly sorted into one of the nine data set conditions we described above.
In order to account for any participants who did not read the instructions and consider the data, we
eliminated any participants who took less than sixty seconds to complete the study.4 Because of this
constraint, twelve participants were removed, leaving 135 participants for analysis. After removing
these participants, we were left with fifteen participants in each condition.

Procedure. Participants were told that they would be assisting a scientist in identifying “whether
or not different levels of a chemical cause a type of bacteria to produce a protein”. They were told
that they would see an array of fifty images like the one in Figure 2(b), each of which denoted the
outcome of one batch of bacteria. Each of the images consisted of three elements: (1) a black bar
that denoted both how much of a chemical was in that batch of bacteria by how large it was with
relation to (2) a constant gray line, where a larger bar relative to this indicated that more of the
chemical was present, and (3) either a green checkmark or a red cross which denoted whether or
not the protein was found. Which images were included in the array were determined by the data
condition, and the images were sorted into a random order for each participant before being placed
in the array. Participants were told to take their time in analyzing the data, and then were asked to
rate “whether they think the chemical causes the protein to be produced” on a 0-100 scale, where 0

4Though we eliminated these subjects from the analysis here, not eliminating them does not change any of
the r scores by more than ±.02. In fact, including these participants increases the performance of our model
and decreases the performance of the alternative models.

7



1 2 3 4 5 6 7 8 9
0

20

40

60

80

100
Human Responses with Error Bars

S
ca

le
d

 V
al

u
es

Data Set
1 2 3 4 5 6 7 8 9

0

20

40

60

80

100
Continuous Causal Support

S
ca

le
d

 V
al

u
es

Data Set

1 2 3 4 5 6 7 8 9
0

20

40

60

80

100
Probit Regression: Abs(T)

S
ca

le
d

 V
al

u
es

Data Set
1 2 3 4 5 6 7 8 9

0

20

40

60

80

100
Probit Regression: Abs(Beta)

S
ca

le
d

 V
al

u
es

Data Set
1 2 3 4 5 6 7 8 9

0

20

40

60

80

100
Independent T−test: Abs(Beta)

S
ca

le
d

 V
al

u
es

Data Set
1 2 3 4 5 6 7 8 9

0

20

40

60

80

100
Independent T−test: Abs(T)

S
ca

le
d

 V
al

u
es

Data Set

r = .74

r = .06r = .06 r = .01r = .03

Figure 4: Experimental results, showing human judgments (error bars are one standard error), to-
gether with unscaled model predictions and corresponding correlations.

meant extremely unlikely and 100 meant extremely likely. This scale was designed to obtain scalar
estimates of degrees of belief in causal structure [6].

5.2 Results

As above, we use a power-law transformation to accommodate nonlinearities in response scale. Be-
fore discussing the results, we should note that the Figure 4 does not reflect the maximal correlation
between the transformed values of the probit and t-test models. The optimized correlation between
the mean human responses and mean model predictions for the probit |β| model and the t-test |t|
model were r = .060, (with, respectively, α = 408.6 and α = 164.15 ). The optimized correlation
for the probit |t| model was r = 0.028 with α = 2× 10−4. The optimized correlation for the t-test
|t| was r = 0.012, with α = 12.2. We did not include the optimized graphs because the optimized
mean values for all models save the continuous causal support essentially became binary predic-
tions, and as such they did not convey information about how the probit and t-test model predictions
differed from those made by continuous causal support. The values in Figure 4 reflect the the case
where no scaling occurred (i.e. where α = 1).

The results are striking in that, though all the models performed well at predicting people’s judg-
ments in the Marsh and Ahn studies, all but the continuous causal support model perform poorly
here. Continuous causal support outperforms every other model of continuous causal inference
(r = .744, with α = 0.92). Still, it does seem to underestimate human causal ratings in data sets 8
and 9 (see Figure 4), which suggests further investigation of this phenomenon is needed.

6 Conclusion

We have proposed a new rational model of causal induction using continuous dimensions, contin-
uous causal support, which aims to be a first step towards filling the gap between existing models
of causal induction and real-world cases of causal learning. This model successfully predicts hu-
man judgments found in previous work, and outperforms several other plausible models of causal
induction with continuous causes. Future work will hopefully continue to bring our models of
causal induction ever closer to addressing the problem of real-world causal induction, for example
by looking at how temporal information is used in conjunction with traditional statistical informa-
tion. Consistent with a continuous view of causal induction, we suspect that more work in each of
these directions is likely to produce positive results.

Acknowledgements: This work was supported by a Berkeley Graduate Fellowship given to MP and grants IIS-
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