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Abstract

We consider regularized risk minimization in a large dictoy of Reproducing
kernel Hilbert Spaces (RKHSs) over which the target fumctias a sparse repre-
sentation. This setting, commonly referred to as SparseipiKernel Learning
(MKL), may be viewed as the non-parametric extension of greparsity in linear
models. While the two dominant algorithmic strands of spégaening, namely
convex relaxations using norm (e.g., Lasso) and greedy methods (e.g., OMP),
have both been rigorously extended for group sparsity, phese MKL literature
has so far mainly adopted the former with mild empirical ®8sc In this paper, we
close this gap by proposing a Group-OMP based frameworkpianse MKL. Un-
like I;-MKL, our approach decouples the sparsity regularizer guvitrect/, con-
straint) from the smoothness regularizer (via RKHS normvbjch leads to better
empirical performance and a simpler optimization procedhat only requires a
black-box single-kernel solver. The algorithmic devel@mnand empirical stud-
ies are complemented by theoretical analyses in terms ofiRacher generaliza-
tion bounds and sparse recovery conditions analogous $e tleo OMP [27] and
Group-OMP [16].

1 Introduction

Kernel methods are widely used to address a variety of legprioblems including classification, re-

gression, structured prediction, data fusion, clusteaind dimensionality reduction [22, 23]. How-

ever, choosing an appropriate kernel and tuning the casreBpg hyper-parameters can be highly
challenging, especially when little is known about the taskand. In addition, many modern prob-
lems involve multiple heterogeneous data sources (e.ge fygctional classification, prediction of

protein-protein interactions) each necessitating theofisedifferent kernel. This strongly suggests
avoiding the risks and limitations of single kernel selectby considering flexible combinations of
multiple kernels. Furthermore, it is appealing to imposarsity to discard noisy data sources. As
several papers have provided evidence in favor of usingipheikernels (e.g. [19, 14, 7]), the mul-

tiple kernel learning problem (MKL) has generated a largeybaf recent work [13, 5, 24, 33], and

become the focal point of the intersection between nonmanac function estimation and sparse
learning methods traditionally explored in linear setsing

Given a convex loss function, the MKL problem is usually foteted as the minimization of em-
pirical risk together with a mixed norm regularizer, e.pe square of the sum of individual RKHS
norms, or variants thereof, that have a close relationshifpet Group Lasso criterion [30, 2]. Equiv-
alently, this formulation may be viewed as simultaneousnoigation of both the non-negative con-
vex combination of kernels, as well as prediction functiomduced by this combined kernel. In
constraining the combination of kernels, theenalty is of particular interest as it encourages spar-
sity in the supporting kernels, which is highly desirableamtihe number of kernels considered is
large. The MKL literature has rapidly evolved along two difens: one concerns scalability of op-



timization algorithms beyond the early pioneering profmbéased on Semi-definite programming
or Second-order Cone programming [13, 5] to simpler and refireient alternating optimization
schemes [20, 29, 24]; while the other concerns the udg nbrms [10, 29] to construct complex
non-sparse kernel combinations with the goal of outperifiogni-norm MKL which, as reported in
several papers, has demonstrated mild success in praapigitations.

The class of Orthogonal Matching Pursuit techniques hasithcreceived considerable attention, as
a competitive alternative to Lasso. The basic OMP algorithiginates from the signal-processing
community and is similar to forward greedy feature selaettexcept that it performs re-estimation
of the model parameters in each iteration, which has beemrstmcontribute to improved accuracy.
For linear models, some strong theoretical performanceagees and empirical support have been
provided for OMP [31] and its extension for variable groulesgon, Group-OMP [16]. In particular

it was shown in [25, 9] that OMP and Lasso exhibit competith@oretical performance guarantees.
It is therefore desirable to investigate the use of MatclRngsuit techniques in the MKL framework
and whether one may be able to improve upon existing MKL nuxho

Our contributions in this paper are as follows. We proposeraparametric kernel-based extension
to Group-OMP [16]. In terms of the feature space (as opposddriction space) perspective of
kernel methods, this allows Group-OMP to handle groupsdaatpotentially contain infinite fea-
tures. By adding regularization in Group-OMP, we allow ihtmdle settings where the sample size
might be smaller than the number of features in any groughd®ahan imposing a mixed/RKHS-
norm regularizer as in group-Lasso based MKL, a group-OMietapproach allows us to consider
the exact sparse kernel selection problemiyieegularization instead. Note that in contrast to the
group-lasso penalty, tHg penalty by itself has no effect on the smoothness of eachithgil com-
ponent. This allows for a clear decoupling between the rbtb@smoothness regularizer (namely,
an RKHS regularizer) and the sparsity regularizer (viaghgenalty). Our greedy algorithms allow
for simple and flexible optimization schemes that only regjaiblack-box solver for standard learn-
ing algorithms. In this paper, we focus on multiple kernalrieng with Regularized least squares
(RLS). We provide a bound on the Rademacher complexity ohtlpothesis sets considered by
our formulation. We derive conditions analogous to OMP [@d#l Group-OMP [16] to guarantee
the “correctness” of kernel selection. We close this pap#r ampirical studies on simulated and
real-world datasets that confirm the value of our methods.

2 Learning Over an RKHS Dictionary

In this section, we setup some notation and give a brief backgl before introducing our main
objective function and describing our algorithm in the nexttion. LetH; ... Hy be a collection
of Reproducing Kernel Hilbert Spaces with associated Kefungctionsk;, . .. ky defined on the
input spaceY c R?. LetH denote the sum space of functions,

N
H=H1OHs.. . OHN={f: X > R[f(x) =) fi(x),x€X,f; €H;,j=1...N}
j=1

Let us equip this space with the followirlgnorms,

N % N
Il =t [ STIAIE, | 0= fix,xeX fjeHpj=1...N¢y (1)
j=1

Jj=1

It is now natural to consider a regularized risk minimizat@roblem over such a RKHS dictionary,
given a collection of training examplds;, y; }!_,,

o~ =

!

argmin = > V(yi, f(xi)) + M fI7 ) @)
fEH i=1

whereV (-, -) is a convex loss function such as squared loss in the Repethkieast Squares (RLS)

algorithm or the hinge loss in the SVM method. If this problagain has elements of an RKHS

structure, then, via the Representer Theorem, it can agaieduced to a finite dimensional problem

and efficiently solved.



Letg = z%p and let us define the-convex hull of the set of kernel functions to be the follogjin

N N
coglky .. kn) = ky : X X X 5 R hy(x,2) = > 5k(x,2), Y 17 =1,7>0
=1 j=1

j=

wherey € R, Itis easy to see that the non-negative combination of kerhe, is itself a valid
kernel with an associated RKHS;._ . With this definition, [17] show the following,

1y 20 = 0 {11l K € cohr . hin) } ®)

This relationship connects Tikhonov regularization withnorms over# to regularization over

RKHSs parameterized by the kernel functidns This leads to a large family of “multiple kernel
learning” algorithms (whose variants are also sometimésned to ad,-MKL) where the basic

idea is to solve an equivalent problem,

l
1
argmin — Vs, f(x:) + M| f 2 ” @
cemin 73V £0)) + MR,

whereA? = {y € R : ||v||, = 1,V}_,~; > 0}. For a fixed, the optimization ovef € 7, is
recognizable as an RKHS problem for which a standard blaglsbtver may be used. The weights
~ may then optimized in an alternating minimization schentidoagh several other optimization
procedures are also be used (see e.g., [4]). The case wherel is of particular interest in
the setting when the size of the RKHS dictionary is large hatunknown target function can be
approximated in a much smaller number of RKHSs. This leadsléonge family of sparse multiple
kernel learning algorithms that have a strong connectidhdédsroup Lasso [2, 20, 29].

3 Multiple Kernel Learning with Group Orthogonal Matching Purs uit

Let us recall thé, pseudo-norm, which is the cardinality of the sparsest sgmtion off in the
dictionary, || f |1, (%) = min{[J] : f = > .. f;}. We now pose the following exact sparse kernel
selection problem,

l

srgmin 3 Vs, £06)) 4 A1, Sublecto [l < (5)
€ i=1

~| =

It is important to note the following: when using a dictiopaf universal kernels, e.g., Gaussian
kernels with different bandwidths, the presence of the leguation terme||l22 () 1S critical (i.e.,

A > 0) since otherwise the labeled data can be perfectly fit by angteskernel. In other words, the
kernel selection problem is ill-posed. While conceptuailtge, our formulation is quite different
from those proposed earlier since the role of a smoothngstarizer (via thd|f||122(m penalty) is

decoupled from the role of a sparsity regularizer (via thest@int onl| f||;, () < s). Moreover, the
latter is imposed directly as opposed through-a 1 penalty making the spirit of our approach closer
to Group Orthogonal Matching Pursuit (Group-OMP [16]) wdgroups are formed by very high-
dimensional (infinite for Gaussian kernels) feature spasseciated with the kernels. It has been
observed in recent work [10, 29] dan-MKL that sparsity alone does not lead it to improvements in
real-world empirical tasks and hence several methods hese proposed to explotg-norm MKL
with ¢ > 1in Egn. 4, making MKL depart away from sparsity in kernel comaltions. By contrast,
we note that ag — oo, p — 2. Our approach gives a direct kndloth on smoothness (via)
and sparsity (vias) with a solution path along these dimensions that diffeosnfithat offered by
Group-Lasso baseld-MKL as ¢ is varied. By combining, pseudo-norm with RKHS norms, our
method is conceptually reminiscent of the elastic net [3d see [26, 12, 21]). If kernels arise
from different subsets of input variables, our approaclsis eelated to sparse additive models [18].

Our algorithm, MKL-GOMP, is outlined below for regularizéshst squares. Extensions for other
loss functions, e.g., hinge loss for SVMs, can also be sityitierived. In the description of the algo-
rithm, our notation is as follows: For any functigrbelonging to an RKHSF;, with kernel function

k(-,-), we denote the regularized objective functions(f,y) = * S20_ (v — f(x:))2+ Al| f]| =



where|| - || = denotes the RKHS norm. Recall that the minimigér= argmin ;. » Rx(f,y) is
given by solving the linear systeny, = (K + A1)~y whereK is the gram matrix of the ker-
nel on the labeled data, and by settifix) = Zﬁzl a;k(x,x;). Moreover, the objective value
achieved by the minimizer isR,(f*,y) = \y? (K + MI)~'ly. Note that MKL-GOMP should
not be confused with Kernel Matching Pursuit [28] whose geadlifferent: it is designed to spar-
sify a in a single-kernel setting. The MKL-GOMP procedure iterglly expands the hypothesis
space,Hgy € Hge ... € Hgw, by greedily selecting kernels from a given dictionary, vehe
G c {1... N} is asubset of indices arlg = |J,; H,. Note that eachig is an RKHS with
kernel_ ;. k; (see Section 6 in [1]). The selection criteria is the bestrovement,/ (£, ),
given by a new hypothesis spagg in reducing the norm of the current residué) = y — f(i)

wheref®@ = [f0)(x,) ... f@(x,)]7, by finding the best regularized (smooth) approximationteNo
that sincemingey, Ra(g,r) < Ra(0,r) = |r||?, the value of the improvement function,

19, H;) = 63 = min Ra(g,x)
J

is always non-negative. Once a kernel is selected, theiimist re-estimated by learning g .
Note that sinceHg is an RKHS whose kernel function is the sm; k;, we can use a simple
RLS linear system solver for refitting. Unlike group-Lassséd MKL, we do not need an iterative
kernel reweighting step which essentially arises as a nmsimato transform the less convenient
group sparsity norms into reweighted squared RKHS normsLiM#OMP converges when the best
improvement is no better than

» Input Data matrixX = [x; ...x;]7, Label vectory € R/,
Kernel Dictionary{k; (-, )}}_,, Precisiore > 0

» Output Selected Kernel§¥) and a functionf¥ € Hg)

» Initialization: G(©) = ¢, f(©) = 0, set residuat®) =y

» fori=0,1,2,...

1. Kernel SelectionFor allj ¢ G, set:

I(f©O, ;) = |3 — mingey, Ra(g,r™)

=107 (I - NK; + NI)~1) r®

Pick j() = arg max;g¢ g I(f®, ;)
2. Convergence Check (I(f™,#;u) < ¢) break
3. Refitting SetG(+1) = g0 J{jD}. Setf+1)(x) = 3 ajk(x,x;)

1

Wherek = Zng(H’l) kj anda = (ZjEQ(H’l) K] —+ )\lI) Yy

4. Update Residualr(t1) =y — 0D wheref(+Y) = [f(i+D (x;) ... f0+D (x)]T.
end

Remarks: Note that our algorithm can be applied to multivariate peat with group structure
among outputs similar to Multivariate Group-OMP [15]. Inrfieular, in our experiments on mul-
ticlass datasets, we treat all outputs as a single group\aidate each kernel for selection based
on how well the total residual is reduced across all outputsilsaneously. Kernel matrices are nor-
malized to unit trace or to have uniform variance of data fsimtheir associated feature spaces, as
in [10, 33]. In practice, we can also monitor error on a valwaset to decide the optimal degree
of sparsity. For efficiency, we can precompute the matri@es= (I — M(K; + )\lI)*l)% so that

I(f,H;) = ||Q,r|3 can be very quickly evaluated at selection time, and/or cedbe search
space by considering a random subsample of the dictionary.

4 Theoretical Analysis

Our analysis is composed of two parts. In the first part, waldish generalization bounds for
the hypothesis spaces considered by our formulation, bas#uk notion of Rademacher complex-



ity. The second component of our theoretical analysis stssif deriving conditions under which
MKL-GOMP can recover good solutions. While the first part cansleen as characterizing the
“statistical convergence” of our method, the second paatatterizes its “numerical convergence”
as an optimization method, and is required to complementfirtstepart. This is because matching
pursuit methods can be deemed to solve an exact sparsemrapf@oximately, while regularized
methods (e.gl; norm MKL) solve an approximate problem exactly. We therefoeed to show that
MKL-GOMP recovers a solution that is close to an optimum sotuof the exact sparse problem.

4.1 Rademacher Bounds
Theorem 1. Consider the hypothesis space of sufficiently sparse andtsrmmctions,

My = {f eH: fllE 0 <7 1 M@ < 5}

Letd € (0,1) andk = supyer j—1.. n Kj(X,%). Letp be any probability distribution ofix, y) €
X xR sat|sfy|ng|y\ <M almost surely, and |e{xl,yz}l 1 be randomly sampled according to
p. Define,f = argmingcq 7 El Ly — f(x :))? to be the empirical risk minimizer angt =

argmingeq,  R(f) to be the true risk minimizer i, s where R(f) = Ex )~ (v — f(@ )2
denotes the true risk. Then, with probability atleast 6 over random draws of samples of size

§
R(f) < R(f +8L,/ T ar? logé ©6)

where|ly — flloo < L = (M + /skT).

The proof is given in supplementary material, but can alscebsoned as follows. In the standard
single-RKHS case, the Rademacher complexity can be upperded by a quantity that is propor-
tional to the square root of the trace of the Gram matrix, Whiscfurther upper bounded byx.

In our case, any collection afsparse functions from a dictionary &f RKHSs reduces to a single
RKHS whose kernel is the sum ebase kernels, and hence the corresponding trace can bedibund
by v/1sk for all possible subsets of size Once it is established that the empirical Rademacher
complexity of H s is upper bounded by/ =7, the generalization bound follows from well-known
results [6] tailored to regularized least squares regoassith bounded target variable.

For I;-norm MKL, in the context of margin-based loss functionsrt€s et. al., 2010 [8] bound

the Rademacher complexity #M where[-] is the ceiling function that rounds to next

integer, ¢ is the exponential and = % Using VC-based lower-bound arguments, they point

out that the,/log(NN') dependence oV is essentially optimal. By contrast, our greedy approach
with sequential regularized risk minimization imposesdircontrol over degree of sparsity as well
as smoothness, and hence the Rademacher complexity in seiiccandependent av. If s =
O(logN), the bounds are similar. A critical difference betwdemorm MKL and sparse greedy
approximations, however, is that the former is convex amaté¢he empirical risk can be minimized
exactly in the hypothesis space whose complexity is bouhge®ademacher analysis. This is not
true in our case, and therefore, to complement Rademaclatysés) we need conditions under
which good solutions can be recovered.

4.2 Exact Recovery Conditions in Noiseless Settings

We now assume that the regression functfgtw) = [ ydp(yl|z) is sparse, i.e.f, € Hg,,., for
some subsef ,.q Of s “good” kernels and that it is sufficiently smooth in the setiss for some

A > 0, given sufficient samples, the empirical minimizers arg mingeq, ) Ra(f,y) gives near
goo
optimal generalization as per Theorem 1. In this sectiommain concern is to characterize Group-

OMP like conditions under which MKL-GOMP will be able to l@af by recovering the support
Ggood €XACtly.

!Note that Tikhonov regularization using a penalty texfh- ||, and Ivanov Regularization which uses a
ball constraini| - |? < 7 return identical solutions for some one-to-one correspondence &etandr.



Let us denoter®® = f — f() as theresidual functionat stepi of the algorithm. Initially,
r® = f € Hg,,,. Ourargument is inductive: if at any stepr() € Hg ., andwe can
always guarantee thatax;cg,,,, I(f"), ;) > maxjeq,  , I(fV,H;), i.e.,, a good kernel of-
fers better greedy improvement, then it is clear that therargn correctly expands the hypothesis
space and never makes a mistake. Without loss of genetatitys rearrange the dictionary so that
Ggooa = {1...s}. Forany functionf € Hg_,.,, we now wish to derive the following upper bound,

NI(fs Hsvr) - I(fLHN)) ] ,
NG ) I )L, Goed) @)

Clearly, a sufficient condition for exact recoveryLig (Ggooa) < 1.

We need some notation to state our main result.sLet |Gy..q4/, i.€., the number of good kernels.
For any matrixA € R'**!(N=9) 'let ||A[|( ;) denote the matrix norm induced by the following
vector norms: for any vectar = [u; . us] € R define||ul|(2,1) = >_;_; [lus]l2; and similarly,
for any vectorv = [vy ... vy_s] € Rl def|ne||vH(21 = Z?’:}S lvill2. Then,|[All2,1) =
HA”H(2,1)
H’UH(2‘1)

Theorem 2. Given the kernel dictionaryk; (-, -) Y, with associated gram matricg¥; } ¥ ; over
the labeled data, MKL-GOMP correctly recovers the good késni.e. () = = Ggood, If
UH(ggood) = HC)\,H(ggood)H(Z,l) <1

where C, 7/(Ggooa) € R¥*HN=5) is a coherence matrix whose, j)!" block of sizel x I, i €
ggoodaj ¢ ggood, is given by,

SUDP, eRrU(N—5) . We can now state the following:

-1

Crrt(Ggooa)ii = KapoouQi | D QKZ,.,,. Q| QiKg,,.. 8)

k€Gg00d

whereKg,,,, = Y cq,  K;, Q= = AK; +NI)7)2,j=1...N.

The proof is given in supplementary material. This resudirialogous to sparse recovery conditions
for OMP andl; methods and their (linear) group counterparts. In the tessesetting, Tropp [27]
gives an exact recovery condition of the foffX goodeadHl < 1, whereX 04 and Xyqq refer

to the restriction of the data matrix to good and bad featumed || - ||; refers to thel; induced
matrix norm. Intriguingly, the same paper shows that thisdition is also sufficient for the Basis
Pursuit/; minimization problem. For Group-OMP [16], the conditiomgealizes to involve a group
sensitive matrix norm on the same matrix objects. LikewBsgh [2] generalizes the Lasso variable
selection consistency conditions to apply to Group Lassbthen further to non-parametrig-
MKL. The above result is similar in spirit. A stronger suféait condition can be derived by requiring
1Q;Kg,,,.2 to be sufficiently small for alj ¢ Gg,oq. Intuitively, this means that smooth functions
inHg,.,, cannot be well approximated by using smooth functions ieduzy the “bad” kernels, so
that MKL GOMP is never led to making a mistake.

5 Empirical Studies

We report empirical results on a collection of simulatechdats an@ classification problems from
computational cell biology. In all experiments, as in [13],3candidate kernels are normalized
multiplicatively to have uniform variance of data pointdlireir associated feature spaces.

5.1 Adaptability to Data Sparsity - Simulated Setting

We adapt the experimental setting proposed by [10] whersphesity of the target function is ex-
plicitly controlled, and the optimal subset of kernels isi®d from requiring the entire dictionary to
requiring a single kernel. Our goal is to study the solutiathp offered by MKL-GOMP in compar-
ison tol,-norm MKL. For consistency, we use squared loss in all expents. We implemented

2],-MKL with SVM hinge loss behaves similarly.



Figure 1: Simulated Setting: Adaptability to Data Sparsity
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l,-norm MKL for regularized least squares (RLS) using an aliéing minimization scheme adapted
from [17, 29]. Different binary classification datasetgth 50 labeled examples are randomly gen-
erated by sampling the two classes from 50-dimensionabipit Gaussian distributions with equal
covariance matrices (identity) and equal but opposite nsiea = 1.75”%2” andpus = —pp wheref

is a binary vector encoding the true underlying sparsitye fraction of zero components this a
measure for the feature sparsity of the learning problem.eBoh dataset, a linear kernel (normal-
ized as in [10]) is generated from each feature and the negutctionary is input to MKL-GOMP
and/,-norm MKL. For each level of sparsity, a training of size 5@lidation and test sets of size
10000 are generatdd times and average classification errors are reported. ebrrea, the vali-
dation error is monitored as kernel selection progress&fih-GOMP and the number of kernels
with smallest validation error are chosen. The regulanngbarameters for both MKL-GOMP and
I, norm MKL are similarly chosen using the validation set. Fegb.1 shows test error rates as a
function of sparsity of the target function: from non-spafall kernels needed) to extremely sparse
(only 1 kernel needed). We recover the observations alseermafll0]: /;-norm MKL excels in
extremely sparse settings where a single kernel carriestioée discriminative information of the
learning problem. However, in the other scenarios it mgsélsforms worse than the other> 1
variants, despite the fact that the vecforemains sparse in all but the uniform scenario. ¢Ais
increased, the error rate in these settings improves batidedtes in sparse settings. As reported
in [11], the elastic net MKL approach of [26] performs simita /;-MKL in the hinge loss case.
As can be seen in the Figure, the error curve of MKL-GOMP tend® below the lower envelope
of the error rates given by,-MKL solutions. To adapt to the sparsity of the probleinmethods
clearly need to tune requiring several fresh invocations of the approprigi®KL solver. On the
other hand, in MKL-GOMP the hypothesis space grows as fanadf the iteration number and the
solution trajectory naturally expands sequentially in divection of decreasing sparsity. The right
plot in Figure 5.1 shows the number of kernels selected by MGBQ@QMP and the optimal value of
A, suggesting that MKL-GOMP adapts to the sparsity and snrmasthof the learning problem.

5.2 Protein Subcellular Localization

The multiclass generalization B MKL proposed in [33] (MCMKL) is state of the art methodology
in predicting protein subcellular localization, an img@ont cell biology problem that concerns the
estimation of where a protein resides in a cell so that, fange, the identification of drug targets
can be aided. We use three multiclass dataset&iRT, PSORT andPLANT provided by the au-
thors of [33]atht t p: / / www. f i . t uebi ngen. npg. de/ raet sch/ suppl / pr ot subl oc
together with a dictionary af9 kernels derived with biological insigh2 kernels on phylogenetic
trees,3 kernels based on similarity to known proteins (BLAST E-es)) and64 kernels based
on amino-acid sequence patterns. The statistics of the thatasets are as followssoR® has
541 proteins labeled withl location classesSORTF has1444 proteins in5 classes an®@LANT is

3Provided by the authors of [10] at dat a. or g/ r eposi t or y/ dat a/ vi ews| ug/ nkl - t oy/
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Figure 2: Protein Subcellular Localization Results

a 4-class problem with 940 proteins. For each dataset, reatdtsaveraged over 10 splits of the
dataset into training and test sets. We used exactly the eapggimental protocol, data splits and
evaluation methodology as given in [33]: the hyper-paranmsedf MKL-GOMP (sparsity and the
regularization parametew) were tuned based on 3-fold cross-validation; resultB®DR™, PSORF
are F1-scores averaged over the classes while thosenT are Mathew’s correlation coefficieht
Figure 2 compare MKL-GOMP against MCMKL, baselines suchsisgithe sum of all the kernels
and using the best single kernel, and results from otheifigirex systems proposed in the literature.
As can be seen, MKL-GOMP slightly outperforms MCMKL @sOR™ an PSORT datasets and
is slightly worse onPLANT where RLS with the sum of all the kernels also performs verj.we
On the twopsoORTdatasets, [33] report selectig kernels using MCMKL. On the other hand, on
average, MKL-GOMP selecfist kernels orPSORT+, 15 on PSORT and24 kernels orPLANT. Note
that MKL-GOMP is applied in multivariate mode: the kernete aelected based on their utility to
reduce the total residual error across all target classes.

6 Conclusion

By proposing a Group-OMP based framework for sparse malkipinel learning, analyzing theoret-
ically the performance of the resulting methods in relatmthe dominant convex relaxation-based
approach, and demonstrating the value of our frameworlutiirextensive experimental studies,
we believe greedy methods arise as a natural alternativeaébting MKL problems. Relevant
directions for future research include extending our tegcal analysis to the stochastic setting,
investigating complex multivariate structures and gragpiover outputs, e.g., by generalizing the
multivariate version of Group-OMP [15], and extending olgogithm to incorporate interesting
structured kernel dictionaries [3].
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