On the accuracy of ℓ_1 -filtering of signals with block-sparse structure

A. Juditsky¹, F. Kilinc Karzan², A. Nemirovski³ and Boris Polyak⁴

¹Université J. Fourier de Grenoble
²Carnegie Mellon University
³Georgia Institute of Technology
⁴Institute of Control Sciences

ション ふゆ く 山 マ チャット しょうくしゃ

Block-sparse recovery problem

Given $y = Ax + u + \xi$, $y \in \mathbf{R}^m$ recover $w = Bx \in \mathbf{R}^N$, where

- $A \in \mathbf{R}^{m \times n}$ is the sensing matrix;
- $\xi \in \mathbf{R}^m$ is the observation noise, $\xi \sim \mathcal{N}(0, D)$, $D \succeq 0$ is known;
- $u \in \mathcal{U}$ is an unknown *nuisance signal*, though \mathcal{U} is a known set
- $B \in \mathbf{R}^{n \times N}$

A priori information available:

we assume that w is a block-vector: w = [w[1]; ...; w[K]] with blocks $w[k] \in \mathbb{R}^{n_k}$ and that w is almost block-sparse: it is "well approximated" most with a block-vector w^s such that only a given number s < K of blocks $w[k], 1 \le k \le K$, does not vanish.

$\mathsf{Block}\text{-}\ell_1 \text{ recovery}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Given an $\epsilon > 0$ and an $m \times N$ contrast matrix $H = [h^1, ..., h^N]$, we introduce two recovery routines:

• regular L₁ recovery (cf. (block-) Dantzig selector)

$$\widehat{x}_{\mathrm{reg}}(y) \in \operatorname*{Argmin}_{z \in \mathbb{R}^n} \left\{ L_1(Bz) : \|H^T(y - Az)\|_{\infty} \leq \nu(H) \right\},$$

and

• penalized L₁ recovery (cf. (block-) Lasso)

$$\widehat{\chi}_{\mathrm{pen}}(y) \in \operatorname*{Argmin}_{z \in \mathbb{R}^n} \left[L_1(Bz) + \kappa \| H^{\mathsf{T}}(y - Az) \|_{\infty} \right].$$

Questions:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- given a sensing matrix A, how can one verify that block- ℓ_1 recovery "makes sense", e.g., reproduces block-sparse signals w with a "small" error?
- can one provide confidence sets for these recoveries, i.e. compute certifiable accuracy bounds for the proposed procedures?
- is it possible to choose the contrast matrix *H* to attain the best possible accuracy bounds?
- what can be said about the optimality of the proposed procedures?
- what is the "numerical performance" of these algorithms?