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Abstract

We study the problem of reconstructing an unknown matrix M of rank r and di-
mension d using O(rdpoly log d) Pauli measurements. This has applications in
quantum state tomography, and is a non-commutative analogue of a well-known
problem in compressed sensing: recovering a sparse vector from a few of its
Fourier coefficients.

We show that almost all sets of O(rd log6 d) Pauli measurements satisfy the rank-
r restricted isometry property (RIP). This implies that M can be recovered from
a fixed (“universal”) set of Pauli measurements, using nuclear-norm minimization
(e.g., the matrix Lasso), with nearly-optimal bounds on the error. A similar result
holds for any class of measurements that use an orthonormal operator basis whose
elements have small operator norm. Our proof uses Dudley’s inequality for Gaus-
sian processes, together with bounds on covering numbers obtained via entropy
duality.

1 Introduction

Low-rank matrix recovery is the following problem: let M be some unknown matrix of dimension
d and rank r � d, and let A1, A2, . . . , Am be a set of measurement matrices; then can one recon-
struct M from its inner products tr(M∗A1), tr(M∗A2), . . . , tr(M∗Am)? This problem has many
applications in machine learning [1, 2], e.g., collaborative filtering (the Netflix problem). Remark-
ably, it turns out that for many useful choices of measurement matrices, low-rank matrix recovery
is possible, and can even be done efficiently. For example, when the Ai are Gaussian random ma-
trices, then it is known that m = O(rd) measurements are sufficient to uniquely determine M , and
furthermore, M can be reconstructed by solving a convex program (minimizing the nuclear norm)
[3, 4, 5]. Another example is the “matrix completion” problem, where the measurements return a
random subset of matrix elements of M ; in this case, m = O(rdpoly log d) measurements suffice,
provided that M satisfies some “incoherence” conditions [6, 7, 8, 9, 10].

The focus of this paper is on a different class of measurements, known as Pauli measurements. Here,
theAi are randomly chosen elements of the Pauli basis, a particular orthonormal basis of Cd×d. The
Pauli basis is a non-commutative analogue of the Fourier basis in Cd; thus, low-rank matrix recovery
using Pauli measurements can be viewed as a generalization of the idea of compressed sensing of
sparse vectors using their Fourier coefficients [11, 12]. In addition, this problem has applications
in quantum state tomography, the task of learning an unknown quantum state by performing mea-
surements [13]. This is because most quantum states of physical interest are accurately described by
density matrices that have low rank; and Pauli measurements are especially easy to carry out in an
experiment (due to the tensor product structure of the Pauli basis).

1



In this paper we show stronger results on low-rank matrix recovery from Pauli measurements. Pre-
viously [13, 8], it was known that, for every rank-r matrix M ∈ Cd×d, almost all choices of
m = O(rdpoly log d) random Pauli measurements will lead to successful recovery of M . Here
we show a stronger statement: there is a fixed (“universal”) set of m = O(rdpoly log d) Pauli mea-
surements, such that for all rank-r matrices M ∈ Cd×d, we have successful recovery.1 We do this
by showing that the random Pauli sampling operator obeys the “restricted isometry property” (RIP).
Intuitively, RIP says that the sampling operator is an approximate isometry, acting on the set of all
low-rank matrices. In geometric terms, it says that the sampling operator embeds the manifold of
low-rank matrices into O(rdpoly log d) dimensions, with low distortion in the 2-norm.

RIP for low-rank matrices is a very strong property, and prior to this work, it was only known to hold
for very unstructured types of random measurements, such as Gaussian measurements [3], which
are unsuitable for most applications. RIP was known to fail in the matrix completion case, and
whether it held for Pauli measurements was an open question. Once we have established RIP for
Pauli measurements, we can use known results [3, 4, 5] to show low-rank matrix recovery from a
universal set of Pauli measurements. In particular, using [5], we can get nearly-optimal universal
bounds on the error of the reconstructed density matrix, when the data are noisy; and we can even get
bounds on the recovery of arbitrary (not necessarily low-rank) matrices. These RIP-based bounds are
qualitatively stronger than those obtained using “dual certificates” [14] (though the latter technique
is applicable in some situations where RIP fails).

In the context of quantum state tomography, this implies that, given a quantum state that consists
of a low-rank component Mr plus a residual full-rank component Mc, we can reconstruct Mr up
to an error that is not much larger than Mc. In particular, let ‖·‖∗ denote the nuclear norm, and let
‖·‖F denote the Frobenius norm. Then the error can be bounded in the nuclear norm by O(‖Mc‖∗)
(assuming noiseless data), and it can be bounded in the Frobenius norm by O(‖Mc‖F poly log d)
(which holds even with noisy data2). This shows that our reconstruction is nearly as good as the
best rank-r approximation to M (which is given by the truncated SVD). In addition, a completely
arbitrary quantum state can be reconstructed up to an error of O(1/

√
r) in Frobenius norm. Lastly,

the RIP gives some insight into the optimal design of tomography experiments, in particular, the
tradeoff between the number of measurement settings (which is essentially m), and the number of
repetitions of the experiment at each setting (which determines the statistical noise that enters the
data) [15].

These results can be generalized beyond the class of Pauli measurements. Essentially, one can
replace the Pauli basis with any orthonormal basis of Cd×d that is incoherent, i.e., whose elements
have small operator norm (of order O(1/

√
d), say); a similar generalization was noted in the earlier

results of [8]. Also, our proof shows that the RIP actually holds in a slightly stronger sense: it holds
not just for all rank-r matrices, but for all matrices X that satisfy ‖X‖∗ ≤

√
r‖X‖F .

To prove this result, we combine a number of techniques that have appeared elsewhere. RIP results
were previously known for Gaussian measurements and some of their close relatives [3]. Also,
restricted strong convexity (RSC), a similar but somewhat weaker property, was recently shown
in the context of the matrix completion problem (with additional “non-spikiness” conditions) [10].
These results follow from covering arguments (i.e., using a concentration inequality to upper-bound
the failure probability on each individual low-rank matrix X , and then taking the union bound over
all such X). Showing RIP for Pauli measurements seems to be more delicate, however. Pauli
measurements have more structure and less randomness, so the concentration of measure phenomena
are weaker, and the union bound no longer gives the desired result.

Instead, one must take into account the favorable correlations between the behavior of the sampling
operator on different matrices — intuitively, if two low-rank matrices M and M ′ have overlapping
supports, then good behavior on M is positively correlated with good behavior on M ′. This can be
done by transforming the problem into a Gaussian process, and using Dudley’s entropy bound. This
is the same approach used in classical compressed sensing, to show RIP for Fourier measurements
[12, 11]. The key difference is that in our case, the Gaussian process is indexed by low-rank matrices,
rather than sparse vectors. To bound the correlations in this process, one then needs to bound the
covering numbers of the nuclear norm ball (of matrices), rather than the `1 ball (of vectors). This

1Note that in the universal result, m is slightly larger, by a factor of poly log d.
2However, this bound is not universal.
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requires a different technique, using entropy duality, which is due to Guédon et al [16]. (See also
the related work in [17].)

As a side note, we remark that matrix recovery can sometimes fail because there exist large sets of
up to d Pauli matrices that all commute, i.e., they have a simultaneous eigenbasis φ1, . . . , φd. (These
φi are of interest in quantum information — they are called stabilizer states [18].) If one were to
measure such a set of Pauli’s, one would gain complete knowledge about the diagonal elements of
the unknown matrixM in the φi basis, but one would learn nothing about the off-diagonal elements.
This is reminiscent of the difficulties that arise in matrix completion. However, in our case, these
pathological cases turn out to be rare, since it is unlikely that a random subset of Pauli matrices will
all commute.

Finally, we note that there is a large body of related work on estimating a low-rank matrix by solving
a regularized convex program; see, e.g., [19, 20].

This paper is organized as follows. In section 2, we state our results precisely, and discuss some
specific applications to quantum state tomography. In section 3 we prove the RIP for Pauli matrices,
and in section 4 we discuss some directions for future work. Some technical details appear in
sections A and B in the supplementary material [21].

Notation: For vectors, ‖·‖2 denotes the `2 norm. For matrices, ‖·‖p denotes the Schatten p-norm,
‖X‖p = (

∑
i σi(X)p)1/p, where σi(X) are the singular values of X . In particular, ‖·‖∗ = ‖·‖1

is the trace or nuclear norm, ‖·‖F = ‖·‖2 is the Frobenius norm, and ‖·‖ = ‖·‖∞ is the operator
norm. Finally, for matrices, A∗ is the adjoint of A, and (·, ·) is the Hilbert-Schmidt inner product,
(A,B) = tr(A∗B). Calligraphic letters denote superoperators acting on matrices. Also,

∣∣A)(A∣∣ is
the superoperator that maps every matrix X ∈ Cd×d to the matrix A tr(A∗X).

2 Our Results

We will consider the following approach to low-rank matrix recovery. Let M ∈ Cd×d be an un-
known matrix of rank at most r. Let W1, . . . ,Wd2 be an orthonormal basis for Cd×d, with respect
to the inner product (A,B) = tr(A∗B). We choose m basis elements, S1, . . . , Sm, iid uniformly
at random from {W1, . . . ,Wd2} (“sampling with replacement”). We then observe the coefficients
(Si,M). From this data, we want to reconstruct M .

For this to be possible, the measurement matrices Wi must be “incoherent” with respect to M .
Roughly speaking, this means that the inner products (Wi,M) must be small. Formally, we say that
the basis W1, . . . ,Wd2 is incoherent if the Wi all have small operator norm,

‖Wi‖ ≤ K/
√
d, (1)

where K is a constant.3 (This assumption was also used in [8].)

Before proceeding further, let us sketch the connection between this problem and quantum state
tomography. Consider a system of n qubits, with Hilbert space dimension d = 2n. We want to learn
the state of the system, which is described by a density matrix ρ ∈ Cd×d; ρ is positive semidefinite,
has trace 1, and has rank r � d when the state is nearly pure. There is a class of convenient (and
experimentally feasible) measurements, which are described by Pauli matrices (also called Pauli
observables). These are matrices of the form P1 ⊗ · · · ⊗ Pn, where ⊗ denotes the tensor product
(Kronecker product), and each Pi is a 2× 2 matrix chosen from the following four possibilities:

I =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2)

One can estimate expectation values of Pauli observables, which are given by (ρ, (P1 ⊗ · · · ⊗ Pn)).
This is a special case of the above measurement model, where the measurement matrices Wi are
the (scaled) Pauli observables (P1 ⊗ · · · ⊗ Pn)/

√
d, and they are incoherent with ‖Wi‖ ≤ K/

√
d,

K = 1.

3Note that ‖Wi‖ is the maximum inner product between Wi and any rank-1 matrix M (normalized so that
‖M‖F = 1).
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Now we return to our discussion of the general problem. We choose S1, . . . , Sm iid uniformly at
random from {W1, . . . ,Wd2}, and we define the sampling operator A : Cd×d → Cm as

(A(X))i = d√
m

tr(S∗iX), i = 1, . . . ,m. (3)

The normalization is chosen so that EA∗A = I. (Note that A∗A =
∑m
j=1

∣∣Sj)(Sj∣∣ · d2m .)

We assume we are given the data y = A(M)+z, where z ∈ Cm is some (unknown) noise contribu-
tion. We will construct an estimator M̂ by minimizing the nuclear norm, subject to the constraints
specified by y. (Note that one can view the nuclear norm as a convex relaxation of the rank function
— thus these estimators can be computed efficiently.) One approach is the matrix Dantzig selector:

M̂ = arg min
X
‖X‖∗ such that ‖A∗(y −A(X))‖ ≤ λ. (4)

Alternatively, one can solve a regularized least-squares problem, also called the matrix Lasso:

M̂ = arg min
X

1
2‖A(X)− y‖22 + µ‖X‖∗. (5)

Here, the parameters λ and µ are set according to the strength of the noise component z (we will
discuss this later). We will be interested in bounding the error of these estimators. To do this, we
will show that the sampling operator A satisfies the restricted isometry property (RIP).

2.1 RIP for Pauli Measurements

Fix some constant 0 ≤ δ < 1. Fix d, and some set U ⊂ Cd×d. We say that A satisfies the restricted
isometry property (RIP) over U if, for all X ∈ U , we have

(1− δ)‖X‖F ≤ ‖A(X)‖2 ≤ (1 + δ)‖X‖F . (6)

(Here, ‖A(X)‖2 denotes the `2 norm of a vector, while ‖X‖F denotes the Frobenius norm of a
matrix.) When U is the set of all X ∈ Cd×d with rank r, this is precisely the notion of RIP studied
in [3, 5]. We will show that Pauli measurements satisfy the RIP over a slightly larger set (the set of
all X ∈ Cd×d such that ‖X‖∗ ≤

√
r‖X‖F ), provided the number of measurements m is at least

Ω(rdpoly log d). This result generalizes to measurements in any basis with small operator norm.

Theorem 2.1 Fix some constant 0 ≤ δ < 1. Let {W1, . . . ,Wd2} be an orthonormal basis for Cd×d
that is incoherent in the sense of (1). Let m = CK2 · rd log6 d, for some constant C that depends
only on δ, C = O(1/δ2). Let A be defined as in (3). Then, with high probability (over the choice
of S1, . . . , Sm), A satisfies the RIP over the set of all X ∈ Cd×d such that ‖X‖∗ ≤

√
r‖X‖F .

Furthermore, the failure probability is exponentially small in δ2C.

We will prove this theorem in section 3. In the remainder of this section, we discuss its applications
to low-rank matrix recovery, and quantum state tomography in particular.

2.2 Applications

By combining Theorem 2.1 with previous results [3, 4, 5], we immediately obtain bounds on the
accuracy of the matrix Dantzig selector (4) and the matrix Lasso (5). In particular, for the first time
we can show universal recovery of low-rank matrices via Pauli measurements, and near-optimal
bounds on the accuracy of the reconstruction when the data is noisy [5]. (Similar results hold for
measurements in any incoherent operator basis.) These RIP-based results improve on the earlier
results based on dual certificates [13, 8, 14]. See [3, 4, 5] for details.

Here, we will sketch a couple of these results that are of particular interest for quantum state to-
mography. Here, M is the density matrix describing the state of a quantum mechanical object, and
A(M) is a vector of Pauli expectation values for the state M . (M has some additional properties:
it is positive semidefinite, and has trace 1; thus A(M) is a real vector.) There are two main issues
that arise. First, M is not precisely low-rank. In many situations, the ideal state has low rank (for
instance, a pure state has rank 1); however, for the actual state observed in an experiment, the den-
sity matrix M is full-rank with decaying eigenvalues. Typically, we will be interested in obtaining a
good low-rank approximation to M , ignoring the tail of the spectrum.
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Secondly, the measurements of A(M) are inherently noisy. We do not observe A(M) directly;
rather, we estimate each entry (A(M))i by preparing many copies of the state M , measuring the
Pauli observable Si on each copy, and averaging the results. Thus, we observe yi = (A(M))i + zi,
where zi is binomially distributed. When the number of experiments being averaged is large, zi can
be approximated by Gaussian noise. We will be interested in getting an estimate of M that is stable
with respect to this noise. (We remark that one can also reduce the statistical noise by performing
more repetitions of each experiment. This suggests the possibility of a tradeoff between the accuracy
of estimating each parameter, and the number of parameters one chooses to measure overall. This
will be discussed elsewhere [15].)

We would like to reconstruct M up to a small error in the nuclear or Frobenius norm. Let M̂ be
our estimate. Bounding the error in nuclear norm implies that, for any measurement allowed by
quantum mechanics, the probability of distinguishing the state M̂ from M is small. Bounding the
error in Frobenius norm implies that the difference M̂ −M is highly “mixed” (and thus does not
contribute to the coherent or “quantum” behavior of the system).

We now sketch a few results from [4, 5] that apply to this situation. Write M = Mr + Mc, where
Mr is a rank-r approximation to M , corresponding to the r largest singular values of M , and Mc

is the residual part of M (the “tail” of M ). Ideally, our goal is to estimate M up to an error that is
not much larger than Mc. First, we can bound the error in nuclear norm (assuming the data has no
noise):

Proposition 2.2 (Theorem 5 from [4]) LetA : Cd×d → Cm be the random Pauli sampling operator,
with m = Crd log6 d, for some absolute constant C. Then, with high probability over the choice of
A, the following holds:

Let M be any matrix in Cd×d, and write M = Mr + Mc, as described above. Say we observe
y = A(M), with no noise. Let M̂ be the Dantzig selector (4) with λ = 0. Then

‖M̂ −M‖∗ ≤ C ′0‖Mc‖∗, (7)

where C ′0 is an absolute constant.

We can also bound the error in Frobenius norm, allowing for noisy data:

Proposition 2.3 (Lemma 3.2 from [5]) Assume the same set-up as above, but say we observe y =

A(M) + z, where z ∼ N(0, σ2I). Let M̂ be the Dantzig selector (4) with λ = 8
√
dσ, or the Lasso

(5) with µ = 16
√
dσ. Then, with high probability over the noise z,

‖M̂ −M‖F ≤ C0

√
rdσ + C1‖Mc‖∗/

√
r, (8)

where C0 and C1 are absolute constants.

This bounds the error of M̂ in terms of the noise strength σ and the size of the tailMc. It is universal:
one sampling operator A works for all matrices M . While this bound may seem unnatural because
it mixes different norms, it can be quite useful. When M actually is low-rank (with rank r), then
Mc = 0, and the bound (8) becomes particularly simple. The dependence on the noise strength σ
is known to be nearly minimax-optimal [5]. Furthermore, when some of the singular values of M
fall below the “noise level”

√
dσ, one can show a tighter bound, with a nearly-optimal bias-variance

tradeoff; see Theorem 2.7 in [5] for details.

On the other hand, when M is full-rank, then the error of M̂ depends on the behavior of the tail Mc.
We will consider a couple of cases. First, suppose we do not assume anything about M , besides the
fact that it is a density matrix for a quantum state. Then ‖M‖∗ = 1, hence ‖Mc‖∗ ≤ 1− r

d , and we
can use (8) to get ‖M̂−M‖F ≤ C0

√
rdσ+ C1√

r
. Thus, even for arbitrary (not necessarily low-rank)

quantum states, the estimator M̂ gives nontrivial results. The O(1/
√
r) term can be interpreted as

the penalty for only measuring an incomplete subset of the Pauli observables.

Finally, consider the case where M is full-rank, but we do know that the tail Mc is small. If we
know that Mc is small in nuclear norm, then we can use equation (8). However, if we know that Mc

is small in Frobenius norm, one can give a different bound, using ideas from [5], as follows.

5



Proposition 2.4 Let M be any matrix in Cd×d, with singular values σ1(M) ≥ · · · ≥ σd(M).

Choose a random Pauli sampling operator A : Cd×d → Cm, with m = Crd log6 d, for some
absolute constant C. Say we observe y = A(M) + z, where z ∼ N(0, σ2I). Let M̂ be the Dantzig
selector (4) with λ = 16

√
dσ, or the Lasso (5) with µ = 32

√
dσ. Then, with high probability over

the choice of A and the noise z,

‖M̂ −M‖2F ≤ C0

r∑
i=1

min(σ2
i (M), dσ2) + C2(log6 d)

d∑
i=r+1

σ2
i (M), (9)

where C0 and C2 are absolute constants.

This bound can be interpreted as follows. The first term expresses the bias-variance tradeoff for esti-
matingMr, while the second term depends on the Frobenius norm ofMc. (Note that the log6 d factor
may not be tight.) In particular, this implies: ‖M̂ −M‖F ≤

√
C0

√
rdσ +

√
C2(log3 d)‖Mc‖F .

This can be compared with equation (8) (involving ‖Mc‖∗). This bound will be better when
‖Mc‖F � ‖Mc‖∗, i.e., when the tail Mc has slowly-decaying eigenvalues (in physical terms, it
is highly mixed).

Proposition 2.4 is an adaptation of Theorem 2.8 in [5]. We sketch the proof in section B in [21]. Note
that this bound is not universal: it shows that for all matrices M , a random choice of the sampling
operator A is likely to work.

3 Proof of the RIP for Pauli Measurements

We now prove Theorem 2.1. The general approach involving Dudley’s entropy bound is similar to
[12], while the technical part of the proof (bounding certain covering numbers) uses ideas from [16].
We summarize the argument here; the details are given in section A in [21].

3.1 Overview

Let U2 = {X ∈ Cd×d | ‖X‖F ≤ 1, ‖X‖∗ ≤
√
r‖X‖F }. Let B be the set of all self-adjoint linear

operators from Cd×d to Cd×d, and define the following norm on B:
‖M‖(r) = sup

X∈U2

|(X,MX)|. (10)

(Suppose r ≥ 2, which is sufficient for our purposes. It is straightforward to show that ‖·‖(r) is a
norm, and that B is a Banach space with respect to this norm.) Then let us define

εr(A) = ‖A∗A− I‖(r). (11)

By an elementary argument, in order to prove RIP, it suffices to show that εr(A) < 2δ − δ2. We
will proceed as follows: we will first bound Eεr(A), then show that εr(A) is concentrated around
its mean.

Using a standard symmetrization argument, we have that Eεr(A) ≤ 2E
∥∥∥∑m

j=1 εj
∣∣Sj)(Sj∣∣d2m ∥∥∥

(r)
,

where the εj are Rademacher (iid ±1) random variables. Here the round ket notation
∣∣Sj) means

we view the matrix Sj as an element of the vector space Cd2 with Hilbert-Schmidt inner product;
the round bra

(
Sj
∣∣ denotes the adjoint element in the (dual) vector space.

Now we use the following lemma, which we will prove later. This bounds the expected magnitude
in (r)-norm of a Rademacher sum of a fixed collection of operators V1, . . . , Vm that have small
operator norm.

Lemma 3.1 Let m ≤ d2. Fix some V1, . . . , Vm ∈ Cd×d that have uniformly bounded operator
norm, ‖Vi‖ ≤ K (for all i). Let ε1, . . . , εm be iid uniform ±1 random variables. Then

Eε
∥∥∥ m∑
i=1

εi
∣∣Vi)(Vi∣∣∥∥∥

(r)
≤ C5 ·

∥∥∥ m∑
i=1

∣∣Vi)(Vi∣∣∥∥∥1/2
(r)
, (12)

where C5 =
√
r · C4K log5/2 d log1/2m and C4 is some universal constant.
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After some algebra, one gets that Eεr(A) ≤ 2(Eεr(A) + 1)1/2 · C5 ·
√

d
m , where C5 =

√
r ·

C4K log3 d. By finding the roots of this quadratic equation, we get the following bound on Eεr(A).
Let λ ≥ 1. Assume that m ≥ λd(2C5)2 = λ · 4C2

4 · dr ·K2 log6 d. Then we have the desired result:
Eεr(A) ≤ 1

λ + 1√
λ
. (13)

It remains to show that εr(A) is concentrated around its expectation. For this we use a concentration
inequality from [22] for sums of independent symmetric random variables that take values in some
Banach space. See section A in [21] for details.

3.2 Proof of Lemma 3.1 (bounding a Rademacher sum in (r)-norm)

Let L0 = Eε‖
∑m
i=1 εi

∣∣Vi)(Vi∣∣‖(r); this is the quantity we want to bound. Using a standard com-
parison principle, we can replace the ±1 random variables εi with iid N(0, 1) Gaussian random
variables gi; then we get

L0 ≤ Eg sup
X∈U2

√
π
2 |G(X)|, G(X) =

m∑
i=1

gi|(Vi, X)|2. (14)

The random variables G(X) (indexed by X ∈ U2) form a Gaussian process, and L0 is upper-
bounded by the expected supremum of this process. Using the fact that G(0) = 0 and G(·) is
symmetric, and Dudley’s inequality (Theorem 11.17 in [22]), we have

L0 ≤
√

2πEg sup
X∈U2

G(X) ≤ 24
√

2π

∫ ∞
0

log1/2N(U2, dG, ε)dε, (15)

where N(U2, dG, ε) is a covering number (the number of balls in Cd×d of radius ε in the metric dG
that are needed to cover the set U2), and the metric dG is given by

dG(X,Y ) =
(
E[(G(X)−G(Y ))2]

)1/2
. (16)

Define a new norm (actually a semi-norm) ‖·‖X on Cd×d, as follows:
‖M‖X = max

i=1,...,m
|(Vi,M)|. (17)

We use this to upper-bound the metric dG. An elementary calculation shows that dG(X,Y ) ≤
2R‖X − Y ‖X , where R = ‖

∑m
i=1

∣∣Vi)(Vi∣∣‖1/2(r) . This lets us upper-bound the covering numbers in
dG with covering numbers in ‖·‖X :

N(U2, dG, ε) ≤ N(U2, ‖·‖X , ε
2R ) = N( 1√

r
U2, ‖·‖X , ε

2R
√
r
). (18)

We will now bound these covering numbers. First, we introduce some notation: let ‖·‖p denote the
Schatten p-norm on Cd×d, and let Bp be the unit ball in this norm. Also, let BX be the unit ball in
the ‖·‖X norm.

Observe that 1√
r
U2 ⊆ B1 ⊆ K · BX . (The second inclusion follows because ‖M‖X ≤

maxi=1,...,m‖Vi‖‖M‖∗ ≤ K‖M‖∗.) This gives a simple bound on the covering numbers:
N( 1√

r
U2, ‖·‖X , ε) ≤ N(B1, ‖·‖X , ε) ≤ N(K ·BX , ‖·‖X , ε). (19)

This is 1 when ε ≥ K. So, in Dudley’s inequality, we can restrict the integral to the interval [0,K].

When ε is small, we will use the following simple bound (equation (5.7) in [23]):

N(K ·BX , ‖·‖X , ε) ≤ (1 + 2K
ε )2d

2

. (20)
When ε is large, we will use a more sophisticated bound based on Maurey’s empirical method and
entropy duality, which is due to [16] (see also [17]):

N(B1, ‖·‖X , ε) ≤ exp(
C2

1K
2

ε2 log3 d logm), for some constant C1. (21)
We defer the proof of (21) to the next section.

Using (20) and (21), we can bound the integral in Dudley’s inequality. We get

L0 ≤ C4R
√
rK log5/2 d log1/2m, (22)

where C4 is some universal constant. This proves the lemma.
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3.3 Proof of Equation (21) (covering numbers of the nuclear-norm ball)

Our result will follow easily from a bound on covering numbers introduced in [16] (where it appears
as Lemma 1):

Lemma 3.2 Let E be a Banach space, having modulus of convexity of power type 2 with constant
λ(E). Let E∗ be the dual space, and let T2(E∗) denote its type 2 constant. Let BE denote the unit
ball in E.

Let V1, . . . , Vm ∈ E∗, such that ‖Vj‖E∗ ≤ K (for all j). Define the norm on E,

‖M‖X = max
j=1,...,m

|(Vj ,M)|. (23)

Then, for any ε > 0,

ε log1/2N(BE , ‖·‖X , ε) ≤ C2λ(E)2T2(E∗)K log1/2m, (24)

where C2 is some universal constant.

The proof uses entropy duality to reduce the problem to bounding the “dual” covering number. The
basic idea is as follows. Let `mp denote the complex vector space Cm with the `p norm. Consider
the map S : `m1 → E∗ that takes the j’th coordinate vector to Vj . Let N(S) denote the number of
balls in E∗ needed to cover the image (under the map S) of the unit ball in `m1 . We can bound N(S)
using Maurey’s empirical method. Also define the dual map S∗ : E → `m∞, and the associated dual
covering number N(S∗). Then N(BE , ‖·‖X , ε) is related to N(S∗). Finally, N(S) and N(S∗) are
related via entropy duality inequalities. See [16] for details.

We will apply this lemma as follows, using the same approach as [17]. Let Sp denote the Banach
space consisting of all matrices in Cd×d with the Schatten p-norm. Intuitively, we want to set
E = S1 and E∗ = S∞, but this won’t work because λ(S1) is infinite. Instead, we let E = Sp,
p = (log d)/(log d− 1), and E∗ = Sq , q = log d. Note that ‖M‖p ≤ ‖M‖∗, hence B1 ⊆ Bp and

ε log1/2N(B1, ‖·‖X , ε) ≤ ε log1/2N(Bp, ‖·‖X , ε). (25)

Also, we have λ(E) ≤ 1/
√
p− 1 =

√
log d− 1 and T2(E∗) ≤ λ(E) ≤

√
log d− 1 (see the

Appendix in [17]). Note that ‖M‖q ≤ e‖M‖, thus we have ‖Vj‖q ≤ eK (for all j). Then, using
the lemma, we have

ε log1/2N(Bp, ‖·‖X , ε) ≤ C2 log3/2 d (eK) log1/2m, (26)

which proves the claim.

4 Outlook

We have showed that random Pauli measurements obey the restricted isometry property (RIP), which
implies strong error bounds for low-rank matrix recovery. The key technical tool was a bound on
covering numbers of the nuclear norm ball, due to Guédon et al [16].

An interesting question is whether this method can be applied to other problems, such as matrix com-
pletion, or constructing embeddings of low-dimensional manifolds into linear spaces with slightly
higher dimension. For matrix completion, one can compare with the work of Negahban and Wain-
wright [10], where the sampling operator satisfies restricted strong convexity (RSC) over a certain set
of “non-spiky” low-rank matrices. For manifold embeddings, one could try to generalize the results
of [24], which use the sparse-vector RIP to construct Johnson-Lindenstrauss metric embeddings.

There are also many questions pertaining to low-rank quantum state tomography. For example,
how does the matrix Lasso compare to the traditional approach using maximum likelihood estima-
tion? Also, there are several variations on the basic tomography problem, and alternative notions of
sparsity (e.g., elementwise sparsity in a known basis) [25], which have not been fully explored.
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