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1 Modeling approach

1.1 Learning algorithms

Independent component analysis (ICA) The ICA algorithm has been applied successfully to
modeling V1 simple cell receptive fields [1, 2]. It is closely related to sparse coding methods, and
can be cast in terms of a simple generative model [3]: We suppose that our data x ∈ Rn is an
unknown linear mixture of independent, non-Gaussian sources, i.e. x = As where A ∈ Rn×n is
unknown. During learning, ICA adapts the weights to unmix these sources. At the end of learning
the recovered weights are the pseudoinverse of the mixing matrix A, and the model neuron activities
are the values of the independent sources s. We use the standard “FastICA” Matlab implementation
[4] which we modified to run on GPU hardware, and we use the log-cosh nonlinearity. The basic
ICA method itself has no parameters, and the only parameter we consider here is the number of
principal components of the data kept before running the algorithm.

Sparse autoencoder (SAE) The sparse autoencoder is an artificial neural network with a single
hidden layer trained to reproduce its input at its output, as described in [5]. We constrain the hidden
unit activations to be sparse. The autoencoder must therefore compress the structure present in
the input data into this sparse representation. In our implementation we use hyberbolic tangent
activation functions and adapt the weights using backpropagation to minimize the sum-squared error
between input examples and reconstructions. To impose sparsity, we use the method of [6] and
constrain the expected activation of the hidden units to be sparse. Our implementation has five
parameters: the number of hidden units; the sparsity level or target mean activation of the hidden
units; the strength of weight decay; the learning rate used in stochastic gradient descent; and the
number of principal components retained.

Restricted Boltzmann machine (RBM) The RBM is an undirected graphical model that learns
a generative model of the input data [7]. During learning, the weights are adjusted to approximately
maximize the log-likelihood of the data. Our implementation makes use of the standard contrastive
divergence algorithm, and we again constrain the hidden units to be sparse. We use Gaussian vis-
ible units, and Bernoulli hidden units. has six parameters: the number of hidden units; the target
mean activation; the strength of weight decay; the learning rate used in contrastive divergence up-
dates; a scale factor controlling the variance in visible unit activations; and the number of principal
components retained.

K-means The K-means algorithm is a method for clustering data that iteratively updates a number of
cluster centroids by averaging the data points nearest to each centroid. We consider two parameters:
the number of cluster centroids (comparable to the number of hidden units in the other algorithms),
and the number of principal components retained.
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Sparse Coding The sparse coding algorithm has been applied successfully to modeling V1 simple
cells [8]. It alternates between solving two minimization problems, first to obtain a set of sparse
neuron activities that represent the input, and second to improve the dictionary of receptive fields.
Although the encoding process is nonlinear, here we only analyze the linear component of the re-
sponse, which was shown by [8] to be very close to the learned dictionary weights. Our implementa-
tion has two parameters: the number of hidden units, and a weight controlling the tradeoff between
sparsity and reconstruction error in the optimization objective.

1.2 Audio data processing details

We transform the raw sound waveform into a representation of its frequency content over time meant
to approximate the response of the cochlea [9]. In particular, we pass the input sound signal to an
equivalent rectangular bandwidth (ERB) gammatone filterbank with log-spaced center frequencies,
which approximates auditory nerve fiber responses [9, 10]. Our filterbank consists of 64 center
frequencies ERB-spaced from 300–8000 Hz. The energy of the filter responses is then summed
within fixed time-bins at regular intervals, yielding a representation akin to a spectrogram. For
each frequency the energy of the filtered signal is then integrated within fixed time-bins of 25ms,
at intervals of 10ms. Tests with linearly spaced center frequencies yielded similar results. After
rescaling the datasets to have the same mean amplitude, we randomly extract 250 ms segments from
the gammatonegrams of the sounds. Our auditory training data comprises 50,000 samples from each
dataset. We used the Gammatonegram toolbox [11].

To eliminate the possibility that our results are an artifact of the adaptive stimulus procedure em-
ployed in O’Connor et al., we replicated their procedure and used it to recover the preferred am-
plitude spectra from our model neurons. Because the results were similar, and the optimization is
computationally expensive, we used a simple average over time to estimate the prefered amplitude
spectrum for our analyses.

1.3 Touch dataset acquisition and processing details

To extract the contact point information, the blue glove was first extracted from the green background
using a simple RGB filter. Grasps were made with both right and left hands, with left-hand pictures
being mirrored later in software. The images were then cropped to the hand and aligned to one
another. Next we built a mask to separate image pixels on the glove from those in the background.
To generate the mask, we found the mean of all aligned images and used an RGB threshold to
identify all background pixels. Next a neutral image was used to capture the true color of the blue
glove without any powder on it. This image is then used as a reference to detect the white powder
on the gloves. The mask is then applied to each contact point image and this forms the raw data for
our learning algorithms. t test of this prediction.

We exactly replicated the smoothing and thresholding of the receptive fields used in [12], and re-
stricted our analysis to the fingertip areas of our bases, although we did not restrict the analysis to
digit 2 alone due to the limited number of bases learned by our algorithms.

1.4 Parameter fitting

The metric used to determine the best-fitting vision and somatosensory parameters was the mean of
the L1 distances between the data histograms and the model histograms, each normalized to sum to
one. For the receptive field shape data in V1, since the data lie roughly on a one dimensional line,
we projected the values onto the best fit line for the experimental data and computed a histogram of
the resulting one dimensional positions.

Because the audio fits were not similar histograms, and instead varied widely in scale, we determined
the best fit by scaling each error metric by its standard deviation over the set of models we trained.
We selected the parameters that minimized the sum of these normalized scores. This procedure was
meant to approximately put equal weight on each comparison.

The figures below show our quantitative fit metric as a function of hyperparameters
for two example algorithms. The complete results of our gridsearches are available at
http://www.stanford.edu/˜asaxe/rf_plasticity.html.
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Figure 1: Z-scores v/s number of bases and prinicipal components used in training K-means experi-
ments on our audio dataset
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Figure 2: L1 scores (squared sum of L1 distance to DiCarlo’s histograms [12]) v/s number of bases
and prinicipal components used in training Sparse-coding experiments on our touch dataset

1.4.1 Cross-validation experiment

To check the degree to which our parameter fitting methodology is overfitting to the data, we found
the parameters that achieved the best fit for one modality and applied it to another. Below are
three example plots from the results. Overall, the qualtitative pattern of results remains largely
unchanged, and algorithms with fewer parameters (ICA, K-means, and sparse coding) tended to
fare better.
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Figure 3: Fit to data in visual cortex using the best somatosenosry parameters, here for the K-means
algorithm.
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Figure 4: Fit to data in auditory cortex using the best vision parameters, here for the sparse rbm
algorithm.
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Figure 5: Fit to data in somatosensory cortex using the best vision parameters, here for the sparse
autoencoder algorithm. Left: Ratio of excitatory to inhibitory receptive field area. Right: Ratio of
excitatory to inhibitory receptive field mass. Black, model distribution. Gray, experimental data
from [12].
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2 Naturalistic experience and normal receptive field properties

2.1 Primary visual cortex

The figures below display the example bases learned by algorithms other than K-means on our
natural image dataset.

Figure 6: Top left: Sparse auto-encoder bases learned from natural images. Histograms: Black lines
show population statistics for bases, gray bars show V1 simple cell data from Macaque. Far right:
Distribution of receptive field shapes; Red triangles are V1 simple cells from [13], blue circles are
bases.

Figure 7: Top left: Sparse-RBM bases learned from natural images. Histograms: Black lines show
population statistics for bases, gray bars show V1 simple cell data from Macaque. Far right: Dis-
tribution of receptive field shapes; Red triangles are V1 simple cells from [13], blue circles are
bases.
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Figure 8: Top left: ICA bases learned from natural images. Histograms: Black lines show population
statistics for bases, gray bars show V1 simple cell data from Macaque. Far right: Distribution of
receptive field shapes; Red triangles are V1 simple cells from [13], blue circles are bases.

Figure 9: Top left: Sparse-coding bases learned from natural images. Histograms: Black lines
show population statistics for bases, gray bars show V1 simple cell data from Macaque. Far right:
Distribution of receptive field shapes; Red triangles are V1 simple cells from [13], blue circles are
bases.

2.2 Primary auditory cortex

The figures below display the example bases learned by algorithms other than Sparse-RBM on our
natural sound dataset.
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Figure 10: Clockwise from top left: Sparse autoencoder bases; Composite MTF in cat A1, re-
produced from [14]; Composite MTF for sparse autoencoder; temporal MTF in A1 (dashed gray)
and for our model (black); spectral MTF; frequency sweep preference; Spectrum width vs center
frequency for A1 neurons (red triangles) and model neurons (blue circles).

Figure 11: Comparison to A1. Clockwise from top left: ICA bases; Composite MTF in cat A1,
reproduced from [14]; Composite MTF for algorithm; temporal MTF in A1 (dashed gray) and for
our model (black); spectral MTF; frequency sweep preference; Spectrum width vs center frequency
for A1 neurons (red triangles) and model neurons (blue circles).
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Figure 12: Comparison to A1. Clockwise from top left: K-means bases; Composite MTF in cat A1,
reproduced from [14]; Composite MTF for algorithm; temporal MTF in A1 (dashed gray) and for
our model (black); spectral MTF; frequency sweep preference; Spectrum width vs center frequency
for A1 neurons (red triangles) and model neurons (blue circles).

Figure 13: Comparison to A1. Clockwise from top left: Sparse-coding bases; Composite MTF in
cat A1, reproduced from [14]; Composite MTF for algorithm; temporal MTF in A1 (dashed gray)
and for our model (black); spectral MTF; frequency sweep preference; Spectrum width vs center
frequency for A1 neurons (red triangles) and model neurons (blue circles).

2.3 Primary somatosensory cortex

The figures below display the example bases learned by algorithms other than Sparse-autoencoders
on our natural touch dataset.
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Figure 14: Left: Sparse-RBM bases. Middle and Right: Histograms of receptive field structure for
the algorithm. Black, model distribution. Gray, experimental data from [12].

Figure 15: Left: ICA bases. Middle and Right: Histograms of receptive field structure for the
algorithm. Black, model distribution. Gray, experimental data from [12].

Figure 16: Left: K-means bases. Middle and Right: Histograms of receptive field structure for the
algorithm. Black, model distribution. Gray, experimental data from [12].

Figure 17: Left: Sparse coding bases. Middle and Right: Histograms of receptive field structure for
the algorithm. Black, model distribution. Gray, experimental data from [12].

3 Adaptation to altered environmental statistics

3.1 Goggle-rearing alters V1 orientation tuning

The figures below display the orientation histograms for all the other learning algorithms.
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Figure 18: Orientation histogram for sparse-autoencoder (biased towards goggle orientation) (90◦).
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Figure 19: Orientation histogram for sparse-rbm (biased towards goggle orientation) (90◦).
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Figure 20: Orientation histogram for ICA (biased towards goggle orientation) (90◦).
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Figure 21: Orientation histogram for K-means (biased towards goggle orientation) (90◦).

3.2 Pulsed-tone rearing alters A1 frequency tuning

The figures below display the population histograms for all the other learning algorithms.
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Figure 22: Sparse-autoencoder bases: Population histograms of preferred frequency (reveals a
strong preference for the pulsed-tone frequency of 4kHz).
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Figure 23: Sparse-RBM bases: Population histograms of preferred frequency (reveals a strong pref-
erence for the pulsed-tone frequency of 4kHz).
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Figure 24: K-means bases: Population histograms of preferred frequency (reveals a strong prefer-
ence for the pulsed-tone frequency of 4kHz).
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Figure 25: Sparse-coding bases: Population histograms of preferred frequency (reveals a strong
preference for the pulsed-tone frequency of 4kHz).

3.3 Artificial digital syndactyly

The figure below displays sample syndactyly bases for all other learning algorithms (plus PCA).

Figure 26: Bases trained on artificial syndactyly data learn double digit receptive fields. Top to
bottom:row: Sparse-RBM, ICA, Sparse-coding and PCA (first 4 components)
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