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Abstract
Knowledge-based support vector machines (KBSVMs) incorporate advice from
domain experts, which can improve generalization significantly. A major limita-
tion that has not been fully addressed occurs when the expertadvice is imperfect,
which can lead to poorer models. We propose a model that extends KBSVMs
and is able to not only learn from data and advice, but also simultaneously im-
proves the advice. The proposed approach is particularly effective for knowledge
discovery in domains with few labeled examples. The proposed model contains
bilinear constraints, and is solved using two iterative approaches: successive linear
programming and a constrained concave-convex approach. Experimental results
demonstrate that these algorithms yield useful refinementsto expert advice, as
well as improve the performance of the learning algorithm overall.

1 Introduction
We are primarily interested in learning in domains where there is only asmall amount of labeled data
but advice can be provided by a domain expert. The goal is to refine this advice, which is usually
only approximately correct, during learning, in such scenarios, to produce interpretable models that
generalize betterandaid knowledge discovery. For learning in complex environments, a number
of researchers have shown that incorporating prior knowledge from experts can greatly improve the
generalization of the model learned, often with many fewer labeled examples. Such approaches
have been shown in rule-learning methods [16], artificial neural networks (ANNs) [21] and support
vector machines (SVMs) [10, 17]. One limitation of these methods concerns how well they adapt
when the knowledge provided by the expert is inexact or partially correct. Many of the rule-learning
methods focus on rule refinement to learn better rules, whileANNs form the rules as portions of
the network which are refined by backpropagation. Further, ANN methods have been paired with
rule-extraction methods [3, 20] to try to understand the resulting learned network and provide rules
that are easily interpreted by domain experts.

We consider the framework of knowledge-based support vector machines (KBSVMs), in-
troduced by Fung et al. [6]. KBSVMs have been extensively studied, and in addition to linear
classification, they have been extended to incorporate kernels [5], nonlinear advice [14] and for ker-
nel approximation [13]. Recently, Kunapuli et al. derived an online version of KBSVMs [9], while
other approaches such as that of Le et al. [11] modify the hypothesis space rather than the optimiza-
tion problem. Extensive empirical results from this prior work establish that expert advice can be
effective, especially for biomedical applications such asbreast-cancer diagnosis. KBSVMs are an
attractive methodology for knowledge discovery as they canproduce good models that generalize
well with a small amount of labeled data.

Advice tends to be rule-of-thumb and is based on the expert’saccumulated experience in
the domain; it may not always be accurate. Rather than simplyignoring or heavily penalizing in-
accurate rules, the effectiveness of the advice can beimprovedthrough refinement. There are two
main reasons for this: first, refined rules result in the improvement of the overall generalization,
and second, if the refinements to the advice are interpretable by the domain experts, it will help in
the understanding of the phenomena underlying the applications for the experts, and consequently
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Figure 1:(left) Standard SVM, trades off complexity and loss wrt the data; (center) Knowledge-based SVM,
also trades off loss wrt advice. A piece of advice set 1 extends over the margin, and is penalized as the advice
error. No part of advice set 2 touches the margin, i.e., none of the rules in advice set 2 are useful assupport
constraints. (right ) SVM that refines advice in two ways: (1) advice set 1 is refinedso that no part of is on the
wrong side of the optimal hyperplane, minimizing advice error, (2) advice set 2 is expanded until it touches the
optimal margin thus maximizing coverage of input space.

greatly facilitate the knowledge-discovery process. Thisis the motivation behind this work. KB-
SVMs already have several desirable properties that make them an ideal target for refinement. First,
advice is specified as polyhedral regions in input space, whose constraints on the features are easily
interpretable by non-experts. Second, it is well-known that KBSVMs can learn to generalize well
with small data sets [9], and can even learn from advice alone[6]. Finally, owing to the simplicity of
the formulation, advice-refinement terms for the rules can be incorporated directly into the model.

We further motivate advice refinement in KBSVMs with the following example. Figure 1
(left) shows an SVM, which trades off regularization with the data error. Figure 1 (center) illustrates
KBSVMs in their standard form as shown in [6]. As mentioned before, expert rules are specified
in the KBSVM framework as polyhedraladvice regionsin input space. They introduce a bias to
focus the learner on a model that also includes the advice of the form∀x, (x ∈ advice regioni) ⇒
class(x) = 1. Advice regarding the regions for whichclass(x) = −1 can be specified similarly.

In the KBSVM (Figure 1, center), each advice region contributes to the final hypothesis in
a KBSVM via itsadvice vector, u1 andu2 (as introduced in [6]; also see Section 2). The individual
constraints that touch or intersect the margin have non-zero ui

j components. As a piece of advice
region1 extends beyond the margin,u1 6= 0; furthermore, analogous to data error, this overlap is
penalized as theadvice error. As no part of advice set2 touches the margin,u2 = 0 and none of
its rules contribute anything to the final classifier. Again,analogous to support vectors, rules with
non-zeroui

j components are calledsupport constraints[6]. Consequently, in the final classifier the
advice sets are incorporated with advice error (advice set 1) or are completely ignored (advice set
2). Even though the rules are inaccurate, they are able to improve generalization compared to the
SVM. However, simply penalizing advice that introduces errors can make learning difficult as the
user must carefully trade off between optimizing data or advice loss.

Now, consider an SVM that is capable of refining inaccurate advice (Figure 1, right). When
advice is inaccurate and intersects the hyperplane, it is truncated such that it minimizes the advice
error. Advice that was originally ignored is extended to cover as much of the input space as is
feasible. The optimal classifier has now minimized the errorwith respect to the data and the refined
advice and is able to further improve upon the performance ofnot just the SVM but also the KBSVM.
Thus, the goal is to refine potentially inaccurate expert advice during learning so as to learn a model
with the best generalization.

Our approach generalizes the work of Maclin et al. [12], to produce a model that corrects
the polyhedral advice regions of KBSVMs. The resulting mathematical program is no longer a
linear or quadratic program owing tobilinear correction factors in the constraints. We propose
two algorithmic techniques to solve the resulting bilinearprogram, one based on successive linear
programming [12], and the other based on a concave-convex procedure [24]. Before we describe
advice refinement, we briefly introduce our notation and KBSVMs.

We wish to learn a linear classifier (w′x = b) givenℓ labeled data(xj , yj)
ℓ
j=1 with xj ∈ R

n

and labelsyj ∈ {±1}. Data are collected row-wise in the matrixX ∈ R
ℓ×n, while Y = diag(y) is

the diagonal matrix of the labels. We assume thatm advice sets(Di,d
i, zi)

m
i=1 are given in addition

to the data (see Section 2), and if thei-th advice set haski constraints, we haveDi ∈ R
ki×n,

di ∈ R
ki andzi = {±1}. The absolute value of a scalary is denoted|y|, the1-norm of a vectorx
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is denoted‖x‖1 =
∑n

i=1 |xi|, and theentrywise1-norm of am × n matrix A ∈ R
p×q is denoted

‖A‖1 =
∑p

i=1

∑q

i=1 |Aij |. Finally,e is a vector of ones of appropriate dimension.

2 Knowledge-Based Support Vector Machines
In KBSVMs, advice can be specified abouteverypotential data point in the input space that satisfies
certain advice constraints. For example, consider a task oflearning to diagnose diabetes, based on
features such as age, blood pressure, body mass index (bmi), plasma glucose concentration (gluc),
etc. The National Institute for Health (NIH) provides the following guidelines to establish risk for
Type-2 Diabetes1: a person who is obese (bmi ≥ 30) with gluc ≥ 126 is at strong risk for diabetes,
while a person who is at normal weight (bmi ≤ 25) with gluc ≤ 100 is unlikely to have diabetes.
This leads to two advice sets, one for each class:

(bmi ≤ 25) ∧ (gluc ≤ 100) ⇒ ¬diabetes; (bmi ≥ 30) ∧ (gluc ≥ 126) ⇒ diabetes,
(1)

where¬ is the negation operator. In general, rules such as the ones above define a polyhedral region
of the input space and are expressed as the implication

Dix ≤ di ⇒ zi(w
′x − b) ≥ 1, (2)

where theadvice labelzi = +1 indicates that all pointsx that satisfy the constraints for thei-th
advice set,Dix ≤ di belong to class+1, while z = −1 indicates the same for the other class. The
standard linear SVM formulation (without incorporating advice) for binary classification optimizes
model complexity+ λ data loss:

min
ξ≥0,w,b

‖w‖1 + λe′ξ, s.t. Y (Xw − eb) + ξ ≥ e. (3)

The implications (2), for thei = 1, . . . , m, can be incorporated into (3) using the nonhomogeneous
Farkas theorem of the alternative [6] that introduces advice vectorsui. The advice vectors perform
the same role as the dual multipliersα in the classical SVM. Recall that points with non-zeroα’s
are thesupport vectorswhich additively contribute tow. Similarly, the constraints of an advice set
which have non-zerouis are calledsupport constraints. The resulting formulation is the KBSVM,
which optimizesmodel complexity+ λ data loss+ µ advice loss:

min
w,b,(ξ,ui,ηi,ζi)≥0

‖w‖1 + λe′ξ + µ
∑m

i=1 (e′ηi + ζi)

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ D′
iu

i + ziw ≤ ηi,

−di′ui − zib + ζi ≥ 1, i = 1, . . . , m.

(4)

In the case of inaccurate advice, the advice errorsηi andζi soften the advice constraints analogous
to the data errorsξ. Returning to Figure 1, for advice set 1,η1, ζ1 andu1 are non-zero, while for
advice set 2,u2 = 0. The influence of data and advice is determined by the choice of the parameters
λ andµ which reflect the user’s trust in the data and advice respectively.

3 Advice-Refining Knowledge-based Support Vector Machines
Previously, Maclin et al. [12] formulated a model to refine advice in KBSVMs. However, their
model is limited as only the termsdi are refined, which as we discuss below, greatly restricts the
types of refinements that are possible. They only consider refinement termsf i for the right hand
side of thei-th advice set, and attempt to refine each rule such that

Dix ≤ (di − f i) ⇒ zi(w
′x − b) ≥ 1, i = 1, . . . , m. (5)

The resulting formulation adds refinement terms into the KBSVM model (4) in the advice con-
straints, as well as in the objective. The latter allows for the overall extent of the refinement to be
controlled by therefinement parameterν > 0. This formulation was called Refining-Rules Support
Vector Machine (RRSVM):

min
w,b,f i,(ξ,ui,ηi,ζi)≥0

‖w‖1 + λe′ξ + µ
∑m

i=1 (e′ηi + ζi) + ν
∑m

i=1 ‖f i‖1

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ D′
iu

i + ziw ≤ ηi,

−(di − f i)′ui − zib + ζi ≥ 1, i = 1, . . . , m.

(6)

1http://diabetes.niddk.nih.gov/DM/pubs/∼riskfortype2
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This problem is no longer an LP owing to the bilinear termsf i′ui which make the refinement con-
straints non-convex. Maclin et al. solve this problem usingsuccessive linear programming (SLP)
wherein linear programs arising from alternately fixing either the advice termsdi or the refinement
termsf i are solved iteratively.

We consider a full generalization of the RRSVM approach and develop a model where it is
possible to refine the entire advice regionDx ≤ d. This allows for much more flexibility in refining
the advice based on the data, while still retaining interpretability of the resulting refined advice.
In addition to the termsf i, we propose the introduction of additional refinement termsFi into the
model, so that we can refine the rules in as general a manner as possible:

(Di − Fi)x ≤ (di − f i) ⇒ zi(w
′x − b) ≥ 1, i = 1, . . . , m. (7)

Recall that for each advice set we haveDi ∈ R
ki×n anddi ∈ R

ki , i.e., thei-th advice set contains
ki constraints. The corresponding refinement termsFi andf i will have the same dimensions respec-
tively asDi anddi. The formulation (6) now includes the additional refinementtermsFi, and the
formulation optimizes:

min
w,b,Fi,f i,(ξ,ui,ηi,ζi)≥0

‖w‖1 + λe′ξ + µ
∑m

i=1 (e′ηi + ζi) + ν
∑m

i=1

(

‖Fi‖1 + ‖f i‖1

)

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ (Di − Fi)
′ui + ziw ≤ ηi,

−(di − f i)′ui − zib + ζi ≥ 1, i = 1, . . . , m.

(8)

The objective function of (8) trades-off the effect of refinement in each of the advice sets via the
refinement parameterν. This is the Advice-Refining KBSVM (arkSVM); it improves upon the work
of Maclin et al. in two important ways. First, refiningd alone is highly restrictive as it allows only
for the translationof the boundaries of the polyhedral advice; the generalizedrefinement offered
by arkSVMs allows for much more flexibility owing to the fact that the boundaries of the advice
can be translatedand rotated(see Figure 2). Second, the newly added refinement terms,F ′

iu
i, are

bilinear also, and do not make the overall problem more complex; in addition to the successive
linear programming approach of [12], we also propose a concave-convex procedure that leads to an
approach based on successive quadratic programming. We provide details of both approaches next.

3.1 arkSVMs via Successive Linear Programming

One approach to solving bilinear programming problems is tosolve a sequence of linear programs
while alternately fixing the bilinear variables. This approach is called successive linear program-
ming, and has been used to solve various machine learning formulations, for instance [1, 2]. In this
approach, which was also adopted by [12], we solve the LPs arising from alternatingly fixing the
sources of bilinearity:(Fi, f

i)m
i=1 and{ui}m

i=1. Algorithm 1 describes the above approach. At the
t-th iteration, the algorithm alternates between the following steps:

• (Estimation Step) When the refinement terms,(F̂ t
i , f̂ i,t)m

i=1, are fixed the resulting LP
becomes a standard KBSVM which attempts to find a data-estimate of the advice vectors
{ui}m

i=1 using the current refinement of the advice region:(Dj − F̂ t
j )x ≤ (dj − f̂ j,t).

• (Refinement Step) When the advice-estimate terms{ûi,t}m
i=1 are fixed, the resulting LP

solves for(Fi, f
i)m

i=1 and attempts to further refine the advice regions based on estimates
from data computed in the previous step.

Proposition 1 I. For ǫ = 0, the sequence of objective values converges to the value
‖w̄‖1 + λe′ξ̄ + µ

∑m

i=1 (e′η̄i + ζ̄i) + ν
∑m

i=1

(

‖F̄i‖1 + ‖f̄ i‖1

)

, where the data and advice
errors (ξ̄, η̄i, ζ̄i) are computed from any accumulation point(w̄, b̄, ūi, F̄i, f̄

i) of the sequence of
iterates(ŵt, b̂t, ûi,t, F̂ t

i , f̂ i,t)∞t=1 generated by Algorithm 1.

II. Such an accumulation point satisfies the local minimum condition

(w̄, b̄) ∈ min
ui≥0

w,b,(ξ,ηiζi≥0)

‖w‖1 + λe′ξ + µ
∑m

i=1 (e′ηi + ζi)

subject to Y (Xw − be) + ξ ≥ e,

−ηi ≤ (Di − F̄i)
′ui + ziw ≤ ηi,

−(di − f̄ i)′ui − zib + ζi ≥ 1, i = 1, . . . , m.
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Algorithm 1 arkSVM via Successive Linear Programming (arkSVM-sla)

1: initialize: t = 1, F̂ 1
i = 0, f̂ i,1 = 0

2: while feasible do
3: if x not feasible for(Di − F̂ t

i )x ≤ (dj − f̂
i,t) return failure

4: (estimation step) solve for{ûi,t+1}m
i=1

min
w,b,(ξ,ui,ηi,ζi)≥0

‖w‖1 + λe
′ξ + µ

∑m

i=1 (e′ηi + ζi)

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ (Di − F̂ t
i )′ui + ziw ≤ ηi,

−(di − f̂
i,t)′ui − zib + ζi ≥ 1, i = 1, . . . , m.

5: (refinement step) solve for(F̂ t+1
i , f̂

i,t+1)m
i=1

min
w,b,Fi,fi,(ξ,ηi,ζi)≥0

‖w‖1 + λe
′ξ + µ

∑m

i=1 (e′ηi + ζi) + ν
∑m

i=1

(

‖Fi‖1 + ‖f i‖1

)

s.t. Y (Xw − be) + ξ ≥ e,

−ηi ≤ (Di − Fi)
′
û

i,t+1 + ziw ≤ ηi,

−(di − f
i)′ûi,t+1 − zib + ζi ≥ 1, i = 1, . . . , m.

6: (termination test) if
∑

j

(

‖F t
j − F t+1

j ‖ + ‖f t
j − f

t+1
j ‖

)

≤ ǫ then return solution
7: (continue) t = t + 1
8: end while

Algorithm 2 arkSVM via Successive Quadratic Programming (arkSVM-sqp)

1: initialize: t = 1, F̂ 1
i = 0, f̂ i,1 = 0

2: while feasible do
3: if x not feasible for(Di − F̂ t

i )x ≤ (dj − f̂
i,t) return failure

4: solve for{ûi,t+1}m
i=1

min
Fi,fi,(ui≥0)

w,b,(ξ,ηiζi≥0)

‖w‖1 + λe
′ξ + µ

∑m

i=1 (e′ηi + ζi) + ν
∑m

i=1

(

‖Fi‖1 + ‖f i‖1

)

s.t. Y (Xw − be) + ξ ≥ e,

eqns (10–12), i = 1, . . . , m, j = 1, . . . , n

5: (termination test) if
∑

j

(

‖F t
j − F t+1

j ‖ + ‖f t
j − f

t+1
j ‖

)

≤ ǫ then return solution
6: (continue) t = t + 1
7: end while

3.2 arkSVMs via Successive Quadratic Programming

In addition to the above approach, we introduce another algorithm (Algorithm 2) that is based on
successive quadratic programming. In the constraint(Di − Fi)

′ui + ziw − ηi ≤ 0, only the re-
finement termF ′

iu
i is bilinear, while the rest of the constraint is linear. Denote thej-th components

of w andηi to bewj andηi
j respectively. A general bilinear termr′s, which is non-convex, can be

written as the difference of two convex terms:1
4‖r+s‖2− 1

4‖r−s‖2. Thus, we have the equivalent
constraint

D′
iju

i + ziwj − ηi
j +

1

4
‖Fij − ui‖2 ≤

1

4
‖Fij + ui‖2, (9)

and both sides of the constraint above are convex and quadratic. We can linearize the right-hand side
of (9) around some current estimate of the bilinear variables(F̂ t

ij , ûi,t):

D′
iju

i + ziwj − ηi
j + 1

4‖Fij − ui‖2 ≤ 1
4‖F̂

t
ij + ûi,t‖2

+ 1
2 (F̂ t

ij + ûi,t)′
(

(Fij − F̂ t
ij) + (ui − ûi,t)

)

.
(10)

Similarly, the constraint−(Di − Fi)
′ui − ziw − ηi ≤ 0, can be replaced by

−D′
iju

i − ziwj − ηi
j + 1

4‖Fij + ui‖2 ≤ 1
4‖F̂

t
ij − ûi,t‖2

+ 1
2 (F̂ t

ij − ûi,t)′
(

(Fij − F̂ t
ij) − (ui − ûi,t)

)

,
(11)
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Figure 2:Toy data set (Section 4.1) using (left) RRSVM (center) arkSVM-sla (right ) arkSVM-sqp. Orange
and green unhatched regions show the original advice. The dashed lines show the margin,‖w‖∞. For each
method, we show the refined advice: vertically hatched for Class+1, and diagonally hatched for Class−1.

while di′ui + zib + 1 − ζi − f i′ui ≤ 0 is replaced by

di′ui + zib + 1 − ζi + 1
4‖f

i − ui‖2 ≤ 1
4‖f̂

i,t + ûi,t‖2

+ 1
2 (f̂ i,t + ûi,t)′

(

(f i,t − f̂ i,t) + (ui − ûi,t)
)

.
(12)

The right-hand sides in (10–12) are affine and hence, the entire set of constraints are now convex.
Replacing the original bilinear non-convex constraints of(8) with the convexified relaxations results
in a quadratically-constrained linear program (QCLP). These quadratic constraints are more restric-
tive than their non-convex counterparts, which leads the feasible set of this problem to be a subset of
that of the original problem. Now, we can iteratively solve the resulting QCLP. At thet-th iteration,
the restricted problem uses the current estimate to construct a new feasible point and iterating this
procedure produces a sequence of feasible points with decreasing objective values. The approach
described here is essentially the constrained concave-convex procedure (CCCP) that has been dis-
covered and rediscovered several times. Most recently, theapproach was described in the context
of machine learning approaches by Yuille and Rangarajan [24], and Smola and Vishwanathan [19],
who also derived conditions under which the algorithm converges to a local solution. The following
convergence theorem is due to [19].

Proposition 2 For Algorithm 2, the sequence of objective values convergesto the value‖w̄‖1 +
λe′ξ̄ + µ

∑m

i=1 (e′η̄i + ζ̄i) + ν
∑m

i=1

(

‖F̄i‖1 + ‖f̄ i‖1

)

, where(w̄, b̄, ūi, F̄i, f̄
i, ξ̄, η̄i, ζ̄i) is the

local minimum solution of (8) provided that the constraints(10–12) in conjunction with the convex
constraintsY (Xw − eb) + ξ ≥ e, ξ ≥ 0, ui ≥ 0, ζi ≥ 0 satisfy suitable constraint qualifications
at the point of convergence of the algorithm.

Both Algorithms 1 and 2 produce local minima solutions to thearkSVM formulation (8).
For either solution, the following proposition holds, which shows that either algorithm produces
a refinement of the original polyhedral advice regions. The proof is a direct consequence of
[13][Proposition 2.1].

Proposition 3 Let (w̄, b̄, ūi, F̄i, f̄
i, ξ̄, η̄i, ζ̄i) be the local minimum solution produced by Algorithm

1 or Algorithm 2. Then, the following refinement to the advicesets holds:

(Di − F̄i) ≤ (di − f̄ i) ⇒ zi(w̄
′x − b̄) ≥ −η̂i ′x − ζ̄i,

where−η̄i ≤ η̂i ≤ η̄i such thatD′
iū

i + w̄ + η̂i = 0.

4 Experiments

We present the results of several experiments that compare the performance of three algorithms:
RRSVMs (which only refine thed term inDx ≤ d), arkSVM-sla (successive linear programming)
and arkSVM-sqp (successive quadratic programming) with that of standard SVMs and KBSVMs.
The LPs were solved usingQSOPT2, while the QCLPs were solved usingSDPT-3 [22].

4.1 Toy Example

We illustrate the behavior of advice refinement algorithms discussed previously geometrically using
a simple2-dimensional example (Figure 2). This toy data set consistsof 200 points separated by
x1 + x2 = 2. There are two advice sets:{S1 : (x1, x2) ≥ 0 ⇒ z = +1}, {S2 : (x1, x2) ≤ 0 ⇒

2http://www2.isye.gatech.edu/∼wcook/qsopt/

6



0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

Number of Training Examples

T
es

tin
g 

E
rr

or
 (

%
)

 

 

svm
kbsvm
rrsvm
arksvm−sla
arksvm−sqp

Figure 3: Diabetes data set, Section 4.2; (left) Results averaged over10 runs on a hold-out test set of412
points, with parameters selected by five-fold cross validation; (right ) An approximate decision-tree represen-
tation ofDiabetes Rule 6 before and after refinement. The left branch is chosen if the query at a node is
true, and the right branch otherwise. The leaf nodes classify the data point according to?diabetes.

z = −1}. Both arkSVMs are able to refine knowledge sets such that the no part ofS1 lies on the
wrong side of the final hyperplane. In addition, the refinement terms allow for sufficient modification
of the advice setsDx ≤ d so that they fill the input space as much as possible, without violating
the margin. Comparing to RRSVMs, we see that refinement is restrictive because corrections are
applied only to part of the advice sets, rather than fully correcting the advice.

4.2 Case Study 1: PIMA Indians Diabetes Diagnosis

The Pima Indians Diabetes data set [4] has been studied for several decades and is used as a standard
benchmark to test many machine learning algorithms. The goal is to predict the onset of diabetes in
768 Pima Indian womenwithin the next 5 yearsbased on current indicators (eight features): number
of times pregnant, plasma glucose concentration (gluc), diastolic blood pressure, triceps skin fold
test, 2-hour serum insulin, body mass index (bmi), diabetes pedigree function (pedf) and age.
Studies [15] show that diabetes incidence among the Pima Indians is significantly higher among
subjects withbmi ≥ 30. In addition, a person with impaired glucose tolerance is ata significant
risk for, or worse, has undiagnosed diabetes [8]. This leadsto the following expert rules:

(Diabetes Rule 1) (gluc ≤ 126) ⇒¬diabetes,

(Diabetes Rule 2) (gluc ≥ 126) ∧ (gluc ≤ 140) ∧ (bmi ≤ 30) ⇒¬diabetes,

(Diabetes Rule 3) (gluc ≥ 126) ∧ (gluc ≤ 140) ∧ (bmi ≥ 30) ⇒ diabetes,

(Diabetes Rule 4) (gluc ≥ 140) ⇒ diabetes.

The diabetes pedigree function was developed by Smith et al.[18], and uses genetic information
from family relatives to provide a measure of the expected genetic influence (heredity) on the sub-
ject’s diabetes risk. The function also takes into account the age of relatives who do have diabetes;
on average, Pima Indians are only36 years old3 when diagnosed with diabetes. A subject with high
heredity who is at least31 is at a significantly increased risk for diabetes in the next five years:

(Diabetes Rule 5) (pedf ≤ 0.5) ∧ (age ≤ 31) ⇒¬diabetes,

(Diabetes Rule 6) (pedf ≥ 0.5) ∧ (age ≥ 31) ⇒ diabetes.

Figure 3 (left) shows that unrefined advice does help initially, especially with as few as30 data
points. However, as more data points are available, the effect of the advice diminishes. In contrast,
the advice refining methods are able to generalize much better with few data points, and eventually
converge to a better solution. Finally, Figure 3 (right) shows an approximate tree representation of
Diabetes Rule 6 after refinement. This tree was constructed by sampling the space around
refined advice region uniformly, and then training a decision tree that covers as many of the sampled
points as possible. This naive approach torule extraction from refined adviceis shown here only to
illustrate that it is possible to produce very useful domain-expert-interpretable rules from refinement.
More efficient and accurate rule extraction techniques inspired by SVM-based rule extraction (for
example, [7]) are currently under investigation.
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Figure 4:Wargus data set, Section 4.3; (left) An example Wargus scenario; (right ) Results using5-fold cross
validation on a hold out test set of1000 points.

4.3 Case Study 2: Refining GUI-Collected Human Advice in a Wargus Task

Wargus4 is a real-time strategy game in which two or more players gather resources, build bases and
control units in order to conquer opposing players. It has been widely used to study and evaluate
various machine learning and planning algorithms. We evaluate our algorithms on a classification
task in the Wargus domain developed by Walker et al. [23] calledtower-defense (Figure 4,
left). Advice for this task was collected from humans via a graphical, human-computer interface
(HCI) as detailed in [23]. Each scenario (example) intower-defense, consists of a single tower
being attacked by a group of enemy units, and the task is to predict whether the tower will survive
the attack and defeat the attackers given the size and composition of the latter, as well as other
factors such as the environment. The data set consists of80 features including information about
units (eg., archers, ballista, peasants), unit properties(e.g., map location, health), group properties
(e.g.,#archers, #footmen) and environmental factors (e.g.,?hasMoat).

Walker et al. [23] used this domain to study the feasibility of learning from human teachers.
To this end, human players were first trained to identify whether a tower would fall given a particular
scenario. Once the humans learned this task, they were askedto provide advice via a GUI-based
interface based on specific examples. This setting lends itself very well to refinement as the advice
collected from human experts represents the sum of their experiences with the domain, but is by no
means perfect or exact. The following are some rules provided by human “domain experts”:

(Wargus Rule 1) (#footmen ≥ 3) ∧ (?hasMoat = 0) ⇒falls,

(Wargus Rule 2) (#archers ≥ 5) ⇒falls,

(Wargus Rule 3) (#ballistas ≥ 1) ⇒falls,

(Wargus Rule 4) (#ballistas = 0) ∧ (#archers = 0) ∧ (?hasMoat = 1)⇒stands.

Figure 4 (right) shows the performance of the various algorithms on the Wargus data set. As with
the previous case study, the arkSVM methods are able to not only learn very effectively with a small
data set, they are also able to improve significantly on the performances of standard knowledge-
based SVMs (KBSVMs) and rule-refining SVMs (RRSVMs).

5 Conclusions and Future Work

We have presented two novel knowledge-discovery methods: arkSVM-sla and arkSVM-sqp, that
allow SVM methods to not only make use of advice provided by human experts but torefinethat
advice using labeled data to improve the advice. These methods are an advance over previous
knowledge-based SVM methods which either did not refine advice [6] or could only refine simple
aspects of the advice [12]. Experimental results demonstrate that our arkSVM methods can make
use of inaccurate advice to revise them to better fit the data.A significant aspect of these learn-
ing methods is that the system not only produces a classifier but also produces human-inspectable
changes to the user-provided advice, and can do so using small data sets. In terms of future work, we
plan to explore several avenues of research including extending this approach to the nonlinear case
for more complex models, better optimization algorithms for improved efficiency, and interpretation
of refined rules for non-AI experts.

3http://diabetes.niddk.nih.gov/dm/pubs/pima/kiddis/kiddis.htm
4http://wargus.sourceforge.net/index.shtml
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