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Abstract

Divergence estimators based on direct approximation of density-ratios without go-
ing through separate approximation of numerator and denominator densities have
been successfully applied to machine learning tasks that involve distribution com-
parison such as outlier detection, transfer learning, and two-sample homogeneity
test. However, since density-ratio functions often possess high fluctuation, diver-
gence estimation is still a challenging task in practice. In this paper, we propose to
use relative divergences for distribution comparison, which involves approxima-
tion of relative density-ratios. Since relative density-ratios are always smoother
than corresponding ordinary density-ratios, our proposed method is favorable in
terms of the non-parametric convergence speed. Furthermore, we show that the
proposed divergence estimator has asymptotic variance independent of the model
complexity under a parametric setup, implying that the proposed estimator hardly
overfits even with complex models. Through experiments, we demonstrate the
usefulness of the proposed approach.

1 Introduction

Comparing probability distributions is a fundamental task in statistical data processing. It can be
used for, e.g., outlier detection [1, 2], two-sample homogeneity test [3, 4], and transfer learning
[5, 6].

A standard approach to comparing probability densities p(x) and p′(x) would be to estimate a
divergence from p(x) to p′(x), such as the Kullback-Leibler (KL) divergence [7]:

KL[p(x), p′(x)] := Ep(x) [log r(x)] , r(x) := p(x)/p′(x),
where Ep(x) denotes the expectation over p(x). A naive way to estimate the KL divergence is to
separately approximate the densities p(x) and p′(x) from data and plug the estimated densities in
the above definition. However, since density estimation is known to be a hard task [8], this approach
does not work well unless a good parametric model is available. Recently, a divergence estimation
approach which directly approximates the density-ratio r(x) without going through separate approx-
imation of densities p(x) and p′(x) has been proposed [9, 10]. Such density-ratio approximation
methods were proved to achieve the optimal non-parametric convergence rate in the mini-max sense.

However, the KL divergence estimation via density-ratio approximation is computationally rather
expensive due to the non-linearity introduced by the ‘log’ term. To cope with this problem, another
divergence called the Pearson (PE) divergence [11] is useful. The PE divergence is defined as

PE[p(x), p′(x)] := 1
2Ep′(x)

[
(r(x)− 1)2

]
.
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The PE divergence is a squared-loss variant of the KL divergence, and they both belong to the class
of the Ali-Silvey-Csiszár divergences (which is also known as the f -divergences, see [12, 13]). Thus,
the PE and KL divergences share similar properties, e.g., they are non-negative and vanish if and
only if p(x) = p′(x).

Similarly to the KL divergence estimation, the PE divergence can also be accurately estimated based
on density-ratio approximation [14]: the density-ratio approximator called unconstrained least-
squares importance fitting (uLSIF) gives the PE divergence estimator analytically, which can be
computed just by solving a system of linear equations. The practical usefulness of the uLSIF-based
PE divergence estimator was demonstrated in various applications such as outlier detection [2], two-
sample homogeneity test [4], and dimensionality reduction [15].

In this paper, we first establish the non-parametric convergence rate of the uLSIF-based PE di-
vergence estimator, which elucidates its superior theoretical properties. However, it also reveals
that its convergence rate is actually governed by the ‘sup’-norm of the true density-ratio function:
maxx r(x). This implies that, in the region where the denominator density p′(x) takes small values,
the density-ratio r(x) = p(x)/p′(x) tends to take large values and therefore the overall convergence
speed becomes slow. More critically, density-ratios can even diverge to infinity under a rather simple
setting, e.g., when the ratio of two Gaussian functions is considered [16]. This makes the paradigm
of divergence estimation based on density-ratio approximation unreliable.

In order to overcome this fundamental problem, we propose an alternative approach to distribution
comparison called α-relative divergence estimation. In the proposed approach, we estimate the
α-relative divergence, which is the divergence from p(x) to the α-mixture density:

qα(x) = αp(x) + (1− α)p′(x) for 0 ≤ α < 1.

For example, the α-relative PE divergence is given by

PEα[p(x), p′(x)] := PE[p(x), qα(x)] = 1
2Eqα(x)

[
(rα(x)− 1)2

]
, (1)

where rα(x) is the α-relative density-ratio of p(x) and p′(x):

rα(x) := p(x)/qα(x) = p(x)/
(
αp(x) + (1− α)p′(x)

)
. (2)

We propose to estimate the α-relative divergence by direct approximation of the α-relative density-
ratio.

A notable advantage of this approach is that the α-relative density-ratio is always bounded above by
1/α when α > 0, even when the ordinary density-ratio is unbounded. Based on this feature, we the-
oretically show that the α-relative PE divergence estimator based on α-relative density-ratio approx-
imation is more favorable than the ordinary density-ratio approach in terms of the non-parametric
convergence speed.

We further prove that, under a correctly-specified parametric setup, the asymptotic variance of our
α-relative PE divergence estimator does not depend on the model complexity. This means that the
proposed α-relative PE divergence estimator hardly overfits even with complex models.

Through experiments on outlier detection, two-sample homogeneity test, and transfer learning, we
demonstrate that our proposed α-relative PE divergence estimator compares favorably with alterna-
tive approaches.

2 Estimation of Relative Pearson Divergence via Least-Squares Relative
Density-Ratio Approximation

Suppose we are given independent and identically distributed (i.i.d.) samples {xi}n
i=1 from

a d-dimensional distribution P with density p(x) and i.i.d. samples {x′j}n′
j=1 from another d-

dimensional distribution P ′ with density p′(x). Our goal is to compare the two underlying dis-
tributions P and P ′ only using the two sets of samples {xi}n

i=1 and {x′j}n′
j=1.

In this section, we give a method for estimating the α-relative PE divergence based on direct ap-
proximation of the α-relative density-ratio.
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Direct Approximation of α-Relative Density-Ratios: Let us model the α-relative density-ratio
rα(x) (2) by the following kernel model g(x;θ) :=

∑n
`=1 θ`K(x,x`), where θ := (θ1, . . . , θn)>

are parameters to be learned from data samples, > denotes the transpose of a matrix or a vector, and
K(x, x′) is a kernel basis function. In the experiments, we use the Gaussian kernel.

The parameters θ in the model g(x;θ) are determined so that the following expected squared-error
J is minimized:

J(θ) := 1
2Eqα(x)

[
(g(x; θ)− rα(x))2

]

= α
2Ep(x)

[
g(x; θ)2

]
+ (1−α)

2 Ep′(x)

[
g(x; θ)2

]− Ep(x) [g(x;θ)] + Const.,

where we used rα(x)qα(x) = p(x) in the third term. Approximating the expectations by empirical
averages, we obtain the following optimization problem:

θ̂ := argmin θ∈Rn

[
1
2θ>Ĥθ − ĥ

>
θ + λ

2 θ>θ
]
, (3)

where a penalty term λθ>θ/2 is included for regularization purposes, and λ (≥ 0) denotes the
regularization parameter. Ĥ and ĥ are defined as

Ĥ`,`′ := α
n

∑n
i=1K(xi,x`)K(xi,x`′)+

(1−α)
n′

∑n′

j=1K(x′j ,x`)K(x′j ,x`′), ĥ` := 1
n

∑n
i=1K(xi, x`).

It is easy to confirm that the solution of Eq.(3) can be analytically obtained as θ̂ = (Ĥ + λIn)−1ĥ,
where In denotes the n-dimensional identity matrix. Finally, a density-ratio estimator is given as

r̂α(x) := g(x; θ̂) =
∑n

`=1 θ̂`K(x, x`).

When α = 0, the above method is reduced to a direct density-ratio estimator called unconstrained
least-squares importance fitting (uLSIF) [14]. Thus, the above method can be regarded as an ex-
tension of uLSIF to the α-relative density-ratio. For this reason, we refer to our method as relative
uLSIF (RuLSIF).

The performance of RuLSIF depends on the choice of the kernel function (the kernel width in the
case of the Gaussian kernel) and the regularization parameter λ. Model selection of RuLSIF is
possible based on cross-validation (CV) with respect to the squared-error criterion J .

Using an estimator of the α-relative density-ratio rα(x), we can construct estimators of the α-
relative PE divergence (1). After a few lines of calculation, we can show that the α-relative PE
divergence (1) is equivalently expressed as

PEα = −α
2Ep(x)

[
rα(x)2

]− (1−α)
2 Ep′(x)

[
rα(x)2

]
+ Ep(x) [rα(x)]− 1

2 = 1
2Ep(x) [rα(x)]− 1

2 .

Note that the middle expression can also be obtained via Legendre-Fenchel convex duality of the
divergence functional [17].

Based on these expressions, we consider the following two estimators:

P̂Eα := − α
2n

∑n
i=1 r̂α(xi)2 − (1−α)

2n′
∑n′

j=1 r̂α(x′j)
2 + 1

n

∑n
i=1 r̂α(xi)− 1

2 , (4)

P̃Eα := 1
2n

∑n
i=1 r̂α(xi)− 1

2 . (5)

We note that the α-relative PE divergence (1) can have further different expressions than the above
ones, and corresponding estimators can also be constructed similarly. However, the above two
expressions will be particularly useful: the first estimator P̂Eα has superior theoretical properties
(see Section 3) and the second one P̃Eα is simple to compute.

3 Theoretical Analysis

In this section, we analyze theoretical properties of the proposed PE divergence estimators. Since
our theoretical analysis is highly technical, we focus on explaining practical insights we can gain
from the theoretical results here; we describe all the mathematical details in the supplementary
material.
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For theoretical analysis, let us consider a rather abstract form of our relative density-ratio estimator
described as

argming∈G
[

α
2n

∑n
i=1 g(xi)2 + (1−α)

2n′
∑n′

j=1 g(x′j)
2 − 1

n

∑n
i=1 g(xi) + λ

2 R(g)2
]
, (6)

where G is some function space (i.e., a statistical model) and R(·) is some regularization functional.

Non-Parametric Convergence Analysis: First, we elucidate the non-parametric convergence rate
of the proposed PE estimators. Here, we practically regard the function space G as an infinite-
dimensional reproducing kernel Hilbert space (RKHS) [18] such as the Gaussian kernel space, and
R(·) as the associated RKHS norm.

Let us represent the complexity of the function space G by γ (0 < γ < 2); the larger γ is, the
more complex the function class G is (see the supplementary material for its precise definition). We
analyze the convergence rate of our PE divergence estimators as n̄ := min(n, n′) tends to infinity
for λ = λn̄ under

λn̄ → o(1) and λ−1
n̄ = o(n̄2/(2+γ)).

The first condition means that λn̄ tends to zero, but the second condition means that its shrinking
speed should not be too fast.

Under several technical assumptions detailed in the supplementary material, we have the following
asymptotic convergence results for the two PE divergence estimators P̂Eα (4) and P̃Eα (5):

P̂Eα − PEα = Op(n̄−1/2c‖rα‖∞ + λn̄ max(1, R(rα)2)), (7)

P̃Eα − PEα = Op

(
λ

1/2
n̄ ‖rα‖1/2

∞ max{1, R(rα)}

+ λn̄ max{1, ‖rα‖(1−γ/2)/2
∞ , R(rα)‖rα‖(1−γ/2)/2

∞ , R(rα)}
)
, (8)

where Op denotes the asymptotic order in probability,

c := (1 + α)
√
Vp(x)[rα(x)] + (1− α)

√
Vp′(x)[rα(x)],

and Vp(x) denotes the variance over p(x):

Vp(x)[f(x)] =
∫ (

f(x)− ∫
f(x)p(x)dx

)2
p(x)dx.

In both Eq.(7) and Eq.(8), the coefficients of the leading terms (i.e., the first terms) of the asymptotic
convergence rates become smaller as ‖rα‖∞ gets smaller. Since

‖rα‖∞ =
∥∥∥
(
α + (1− α)/r(x)

)−1
∥∥∥
∞

< 1
α for α > 0,

larger α would be more preferable in terms of the asymptotic approximation error. Note that when
α = 0, ‖rα‖∞ can tend to infinity even under a simple setting that the ratio of two Gaussian func-
tions is considered [16]. Thus, our proposed approach of estimating the α-relative PE divergence
(with α > 0) would be more advantageous than the naive approach of estimating the plain PE
divergence (which corresponds to α = 0) in terms of the non-parametric convergence rate.

The above results also show that P̂Eα and P̃Eα have different asymptotic convergence rates. The
leading term in Eq.(7) is of order n̄−1/2, while the leading term in Eq.(8) is of order λ

1/2
n̄ , which is

slightly slower (depending on the complexity γ) than n̄−1/2. Thus, P̂Eα would be more accurate
than P̃Eα in large sample cases. Furthermore, when p(x) = p′(x), Vp(x)[rα(x)] = 0 holds and
thus c = 0 holds. Then the leading term in Eq.(7) vanishes and therefore P̂Eα has the even faster
convergence rate of order λn̄, which is slightly slower (depending on the complexity γ) than n̄−1.
Similarly, if α is close to 1, rα(x) ≈ 1 and thus c ≈ 0 holds.

When n̄ is not large enough to be able to neglect the terms of o(n̄−1/2), the terms of O(λn̄) matter.
If ‖rα‖∞ and R(rα) are large (this can happen, e.g., when α is close to 0), the coefficient of the
O(λn̄)-term in Eq.(7) can be larger than that in Eq.(8). Then P̃Eα would be more favorable than
P̂Eα in terms of the approximation accuracy.

See the supplementary material for numerical examples illustrating the above theoretical results.
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Parametric Variance Analysis: Next, we analyze the asymptotic variance of the PE divergence
estimator P̂Eα (4) under a parametric setup.

As the function space G in Eq.(6), we consider the following parametric model: G = {g(x; θ) | θ ∈
Θ ⊂ Rb} for a finite b. Here we assume that this parametric model is correctly specified, i.e., it
includes the true relative density-ratio function rα(x): there exists θ∗ such that g(x;θ∗) = rα(x).
Here, we use RuLSIF without regularization, i.e., λ = 0 in Eq.(6).

Let us denote the variance of P̂Eα (4) by V[P̂Eα], where randomness comes from the draw of
samples {xi}n

i=1 and {x′j}n′
j=1. Then, under a standard regularity condition for the asymptotic

normality [19], V[P̂Eα] can be expressed and upper-bounded as

V[P̂Eα] = Vp(x)

[
rα − αrα(x)2/2

]
/n + Vp′(x)

[
(1− α)rα(x)2/2

]
/n′ + o(n−1, n′−1) (9)

≤ ‖rα‖2∞/n + α2‖rα‖4∞/(4n) + (1− α)2‖rα‖4∞/(4n′) + o(n−1, n′−1). (10)

Let us denote the variance of P̃Eα by V[P̃Eα]. Then, under a standard regularity condition for the
asymptotic normality [19], the variance of P̃Eα is asymptotically expressed as

V[P̃Eα] = Vp(x)

[(
rα + (1− αrα)Ep(x)[∇g]>H−1

α ∇g
)
/2

]
/n

+ Vp′(x)

[(
(1− α)rαEp(x)[∇g]>H−1

α ∇g
)
/2

]
/n′ + o(n−1, n′−1), (11)

where ∇g is the gradient vector of g with respect to θ at θ = θ∗ and

Hα = αEp(x)[∇g∇g>] + (1− α)Ep′(x)[∇g∇g>].

Eq.(9) shows that, up to O(n−1, n′−1), the variance of P̂Eα depends only on the true relative
density-ratio rα(x), not on the estimator of rα(x). This means that the model complexity does not
affect the asymptotic variance. Therefore, overfitting would hardly occur in the estimation of the
relative PE divergence even when complex models are used. We note that the above superior prop-
erty is applicable only to relative PE divergence estimation, not to relative density-ratio estimation.
This implies that overfitting occurs in relative density-ratio estimation, but the approximation error
cancels out in relative PE divergence estimation.

On the other hand, Eq.(11) shows that the variance of P̃Eα is affected by the model G,
since the factor Ep(x)[∇g]>H−1

α ∇g depends on the model in general. When the equality
Ep(x)[∇g]>H−1

α ∇g(x; θ∗) = rα(x) holds, the variances of P̃Eα and P̂Eα are asymptotically
the same. However, in general, the use of P̂Eα would be more recommended.

Eq.(10) shows that the varianceV[P̂Eα] can be upper-bounded by the quantity depending on ‖rα‖∞,
which is monotonically lowered if ‖rα‖∞ is reduced. Since ‖rα‖∞ monotonically decreases as α
increases, our proposed approach of estimating the α-relative PE divergence (with α > 0) would
be more advantageous than the naive approach of estimating the plain PE divergence (which corre-
sponds to α = 0) in terms of the parametric asymptotic variance.

See the supplementary material for numerical examples illustrating the above theoretical results.

4 Experiments

In this section, we experimentally evaluate the performance of the proposed method in two-sample
homogeneity test, outlier detection, and transfer learning tasks.

Two-Sample Homogeneity Test: First, we apply the proposed divergence estimator to two-
sample homogeneity test.

Given two sets of samples X = {xi}n
i=1

i.i.d.∼ P and X ′ = {x′j}n′
j=1

i.i.d.∼ P ′, the goal of the two-
sample homogeneity test is to test the null hypothesis that the probability distributions P and P ′
are the same against its complementary alternative (i.e., the distributions are different). By using
an estimator D̂iv of some divergence between the two distributions P and P ′, homogeneity of two
distributions can be tested based on the permutation test procedure [20].
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Table 1: Experimental results of two-sample test. The mean (and standard deviation in the bracket)
rate of accepting the null hypothesis (i.e., P = P ′) for IDA benchmark repository under the sig-
nificance level 5% is reported. Left: when the two sets of samples are both taken from the positive
training set (i.e., the null hypothesis is correct). Methods having the mean acceptance rate 0.95 ac-
cording to the one-sample t-test at the significance level 5% are specified by bold face. Right: when
the set of samples corresponding to the numerator of the density-ratio are taken from the positive
training set and the set of samples corresponding to the denominator of the density-ratio are taken
from the positive training set and the negative training set (i.e., the null hypothesis is not correct).
The best method having the lowest mean accepting rate and comparable methods according to the
two-sample t-test at the significance level 5% are specified by bold face.

P = P ′ P 6= P ′

Datasets d n = n′ MMD LSTT LSTT LSTT MMD LSTT LSTT LSTT
(α = 0.0) (α = 0.5) (α = 0.95) (α = 0.0) (α = 0.5) (α = 0.95)

banana 2 100 .96 (.20) .93 (.26) .92 (.27) .92 (.27) .52 (.50) .10 (.30) .02 (.14) .17 (.38)
thyroid 5 19 .96 (.20) .95 (.22) .95 (.22) .88 (.33) .52 (.50) .81 (.39) .65 (.48) .80 (.40)
titanic 5 21 .94 (.24) .86 (.35) .92 (.27) .89 (.31) .87 (.34) .86 (.35) .87 (.34) .88 (.33)
diabetes 8 85 .96 (.20) .87 (.34) .91 (.29) .82 (.39) .31 (.46) .42 (.50) .47 (.50) .57 (.50)
b-cancer 9 29 .98 (.14) .91 (.29) .94 (.24) .92 (.27) .87 (.34) .75 (.44) .80 (.40) .79 (.41)
f-solar 9 100 .93 (.26) .91 (.29) .95 (.22) .93 (.26) .51 (.50) .81 (.39) .55 (.50) .66 (.48)
heart 13 38 1.00 (.00) .85 (.36) .91 (.29) .93 (.26) .53 (.50) .28 (.45) .40 (.49) .62 (.49)
german 20 100 .99 (.10) .91 (.29) .92 (.27) .89 (.31) .56 (.50) .55 (.50) .44 (.50) .68 (.47)
ringnorm 20 100 .97 (.17) .93 (.26) .91 (.29) .85 (.36) .00 (.00) .00 (.00) .00 (.00) .02 (.14)
waveform 21 66 .98 (.14) .92 (.27) .93 (.26) .88 (.33) .00 (.00) .00 (.00) .02 (.14) .00 (.00)

When an asymmetric divergence such as the KL divergence [7] or the PE divergence [11] is adopted
for two-sample test, the test results depend on the choice of directions: a divergence from P to
P ′ or from P ′ to P . [4] proposed to choose the direction that gives a smaller p-value—it was
experimentally shown that, when the uLSIF-based PE divergence estimator is used for the two-
sample test (which is called the least-squares two-sample test; LSTT), the heuristic of choosing the
direction with a smaller p-value contributes to reducing the type-II error (the probability of accepting
incorrect null-hypotheses, i.e., two distributions are judged to be the same when they are actually
different), while the increase of the type-I error (the probability of rejecting correct null-hypotheses,
i.e., two distributions are judged to be different when they are actually the same) is kept moderate.

We apply the proposed method to the binary classification datasets taken from the IDA benchmark
repository [21]. We test LSTT with the RuLSIF-based PE divergence estimator for α = 0, 0.5, and
0.95; we also test the maximum mean discrepancy (MMD) [22], which is a kernel-based two-sample
test method. The performance of MMD depends on the choice of the Gaussian kernel width. Here,
we adopt a version proposed by [23], which automatically optimizes the Gaussian kernel width. The
p-values of MMD are computed in the same way as LSTT based on the permutation test procedure.

First, we investigate the rate of accepting the null hypothesis when the null hypothesis is correct
(i.e., the two distributions are the same). We split all the positive training samples into two sets and
perform two-sample test for the two sets of samples. The experimental results are summarized in
the left half of Table 1, showing that LSTT with α = 0.5 compares favorably with those with α = 0
and 0.95 and MMD in terms of the type-I error.

Next, we consider the situation where the null hypothesis is not correct (i.e., the two distributions
are different). The numerator samples are generated in the same way as above, but a half of denom-
inator samples are replaced with negative training samples. Thus, while the numerator sample set
contains only positive training samples, the denominator sample set includes both positive and nega-
tive training samples. The experimental results are summarized in the right half of Table 1, showing
that LSTT with α = 0.5 again compares favorably with those with α = 0 and 0.95. Furthermore,
LSTT with α = 0.5 tends to outperform MMD in terms of the type-II error.

Overall, LSTT with α = 0.5 is shown to be a useful method for two-sample homogeneity test. See
the supplementary material for more experimental evaluation.

Inlier-Based Outlier Detection: Next, we apply the proposed method to outlier detection.

Let us consider an outlier detection problem of finding irregular samples in a dataset (called an
“evaluation dataset”) based on another dataset (called a “model dataset”) that only contains regular
samples. Defining the density-ratio over the two sets of samples, we can see that the density-ratio

6



Table 2: Experimental
results of outlier detec-
tion. Mean AUC score
(and standard devi-
ation in the bracket)
over 100 trials is
reported. The best
method having the
highest mean AUC
score and comparable
methods according to
the two-sample t-test
at the significance
level 5% are specified
by bold face. The
datasets are sorted
in the ascending
order of the input
dimensionality d.

Datasets d
OSVM

(ν = 0.05)
OSVM

(ν = 0.1)
RuLSIF
(α = 0)

RuLSIF
(α = 0.5)

RuLSIF
(α = 0.95)

IDA:banana 2 .668 (.105) .676 (.120) .597 (.097) .619 (.101) .623 (.115)
IDA:thyroid 5 .760 (.148) .782 (.165) .804 (.148) .796 (.178) .722 (.153)
IDA:titanic 5 .757 (.205) .752 (.191) .750 (.182) .701 (.184) .712 (.185)
IDA:diabetes 8 .636 (.099) .610 (.090) .594 (.105) .575 (.105) .663 (.112)
IDA:breast-cancer 9 .741 (.160) .691 (.147) .707 (.148) .737 (.159) .733 (.160)
IDA:flare-solar 9 .594 (.087) .590 (.083) .626 (.102) .612 (.100) .584 (.114)
IDA:heart 13 .714 (.140) .694 (.148) .748 (.149) .769 (.134) .726 (.127)
IDA:german 20 .612 (.069) .604 (.084) .605 (.092) .597 (.101) .605 (.095)
IDA:ringnorm 20 .991 (.012) .993 (.007) .944 (.091) .971 (.062) .992 (.010)
IDA:waveform 21 .812 (.107) .843 (.123) .879 (.122) .875 (.117) .885 (.102)
Speech 50 .788 (.068) .830 (.060) .804 (.101) .821 (.076) .836 (.083)
20News (‘rec’) 100 .598 (.063) .593 (.061) .628 (.105) .614 (.093) .767 (.100)
20News (‘sci’) 100 .592 (.069) .589 (.071) .620 (.094) .609 (.087) .704 (.093)
20News (‘talk’) 100 .661 (.084) .658 (.084) .672 (.117) .670 (.102) .823 (.078)
USPS (1 vs. 2) 256 .889 (.052) .926 (.037) .848 (.081) .878 (.088) .898 (.051)
USPS (2 vs. 3) 256 .823 (.053) .835 (.050) .803 (.093) .818 (.085) .879 (.074)
USPS (3 vs. 4) 256 .901 (.044) .939 (.031) .950 (.056) .961 (.041) .984 (.016)
USPS (4 vs. 5) 256 .871 (.041) .890 (.036) .857 (.099) .874 (.082) .941 (.031)
USPS (5 vs. 6) 256 .825 (.058) .859 (.052) .863 (.078) .867 (.068) .901 (.049)
USPS (6 vs. 7) 256 .910 (.034) .950 (.025) .972 (.038) .984 (.018) .994 (.010)
USPS (7 vs. 8) 256 .938 (.030) .967 (.021) .941 (.053) .951 (.039) .980 (.015)
USPS (8 vs. 9) 256 .721 (.072) .728 (.073) .721 (.084) .728 (.083) .761 (.096)
USPS (9 vs. 0) 256 .920 (.037) .966 (.023) .982 (.048) .989 (.022) .994 (.011)

values for regular samples are close to one, while those for outliers tend to be significantly deviated
from one. Thus, density-ratio values could be used as an index of the degree of outlyingness [1, 2].

Since the evaluation dataset usually has a wider support than the model dataset, we regard the eval-
uation dataset as samples corresponding to the denominator density p′(x), and the model dataset as
samples corresponding to the numerator density p(x). Then, outliers tend to have smaller density-
ratio values (i.e., close to zero). Thus, density-ratio approximators can be used for outlier detection.

We evaluate the proposed method using various datasets: IDA benchmark repository [21], an in-
house French speech dataset, the 20 Newsgroup dataset, and the USPS hand-written digit dataset
(the detailed specification of the datasets is explained in the supplementary material).

We compare the area under the ROC curve (AUC) [24] of RuLSIF with α = 0, 0.5, and 0.95, and
one-class support vector machine (OSVM) with the Gaussian kernel [25]. We used the LIBSVM
implementation of OSVM [26]. The Gaussian width is set to the median distance between samples,
which has been shown to be a useful heuristic [25]. Since there is no systematic method to determine
the tuning parameter ν in OSVM, we report the results for ν = 0.05 and 0.1.

The mean and standard deviation of the AUC scores over 100 runs with random sample choice are
summarized in Table 2, showing that RuLSIF overall compares favorably with OSVM. Among the
RuLSIF methods, small α tends to perform well for low-dimensional datasets, and large α tends to
work well for high-dimensional datasets.

Transfer Learning: Finally, we apply the proposed method to transfer learning.

Let us consider a transductive transfer learning setup where labeled training samples {(xtr
j , ytr

j )}ntr
j=1

drawn i.i.d. from p(y|x)ptr(x) and unlabeled test samples {xte
i }nte

i=1 drawn i.i.d. from pte(x) (which
is generally different from ptr(x)) are available. The use of exponentially-weighted importance
weighting was shown to be useful for adaptation from ptr(x) to pte(x) [5]:

minf∈F

[
1

ntr

∑ntr
j=1

(
pte(x

tr
j )

ptr(xtr
j )

)τ

loss(ytr
j , f(xtr

j ))
]

,

where f(x) is a learned function and 0 ≤ τ ≤ 1 is the exponential flattening parameter. τ = 0 corre-
sponds to plain empirical-error minimization which is statistically efficient, while τ = 1 corresponds
to importance-weighted empirical-error minimization which is statistically consistent; 0 < τ < 1
will give an intermediate estimator that balances the trade-off between statistical efficiency and con-
sistency. τ can be determined by importance-weighted cross-validation [6] in a data dependent
fashion.
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Table 3: Experimental results of transfer learning in human activity recognition. Mean classification
accuracy (and the standard deviation in the bracket) over 100 runs for human activity recognition of
a new user is reported. We compare the plain kernel logistic regression (KLR) without importance
weights, KLR with relative importance weights (RIW-KLR), KLR with exponentially-weighted im-
portance weights (EIW-KLR), and KLR with plain importance weights (IW-KLR). The method hav-
ing the highest mean classification accuracy and comparable methods according to the two-sample
t-test at the significance level 5% are specified by bold face.

Task KLR RIW-KLR EIW-KLR IW-KLR
(α = 0, τ = 0) (α = 0.5) (τ = 0.5) (α = 1, τ = 1)

Walks vs. run 0.803 (0.082) 0.889 (0.035) 0.882 (0.039) 0.882 (0.035)
Walks vs. bicycle 0.880 (0.025) 0.892 (0.035) 0.867 (0.054) 0.854 (0.070)
Walks vs. train 0.985 (0.017) 0.992 (0.008) 0.989 (0.011) 0.983 (0.021)

However, a potential drawback is that estimation of r(x) (i.e., τ = 1) is rather hard, as shown in this
paper. Here we propose to use relative importance weights instead:

minf∈F
[

1
ntr

∑ntr
j=1

pte(x
tr
j )

(1−α)pte(xtr
j )+αptr(xtr

j )
loss(ytr

j , f(xtr
j ))

]
.

We apply the above transfer learning technique to human activity recognition using accelerometer
data. Subjects were asked to perform a specific task such as walking, running, and bicycle riding,
which was collected by iPodTouch. The duration of each task was arbitrary and the sampling rate
was 20Hz with small variations (the detailed experimental setup is explained in the supplementary
material). Let us consider a situation where a new user wants to use the activity recognition system.
However, since the new user is not willing to label his/her accelerometer data due to troublesome-
ness, no labeled sample is available for the new user. On the other hand, unlabeled samples for
the new user and labeled data obtained from existing users are available. Let labeled training data
{(xtr

j , ytr
j )}ntr

j=1 be the set of labeled accelerometer data for 20 existing users. Each user has at most
100 labeled samples for each action. Let unlabeled test data {xte

i }nte
i=1 be unlabeled accelerometer

data obtained from the new user.

The experiments are repeated 100 times with different sample choice for ntr = 500 and nte = 200.
The classification accuracy for 800 test samples from the new user (which are different from the
200 unlabeled samples) are summarized in Table 3, showing that the proposed method using relative
importance weights for α = 0.5 works better than other methods.

5 Conclusion

In this paper, we proposed to use a relative divergence for robust distribution comparison. We gave
a computationally efficient method for estimating the relative Pearson divergence based on direct
relative density-ratio approximation. We theoretically elucidated the convergence rate of the pro-
posed divergence estimator under non-parametric setup, which showed that the proposed approach
of estimating the relative Pearson divergence is more preferable than the existing approach of esti-
mating the plain Pearson divergence. Furthermore, we proved that the asymptotic variance of the
proposed divergence estimator is independent of the model complexity under a correctly-specified
parametric setup. Thus, the proposed divergence estimator hardly overfits even with complex mod-
els. Experimentally, we demonstrated the practical usefulness of the proposed divergence estimator
in two-sample homogeneity test, inlier-based outlier detection, and transfer learning tasks.

In addition to two-sample homogeneity test, inlier-based outlier detection, and transfer learning,
density-ratios can be useful for tackling various machine learning problems, for example, multi-task
learning, independence test, feature selection, causal inference, independent component analysis,
dimensionality reduction, unpaired data matching, clustering, conditional density estimation, and
probabilistic classification. Thus, it would be promising to explore more applications of the pro-
posed relative density-ratio approximator beyond two-sample homogeneity test, inlier-based outlier
detection, and transfer learning.

Acknowledgments
MY was supported by the JST PRESTO program, TS was partially supported by MEXT KAKENHI
22700289 and Aihara Project, the FIRST program from JSPS, initiated by CSTP, TK was partially
supported by Grant-in-Aid for Young Scientists (20700251), HH was supported by the FIRST pro-
gram, and MS was partially supported by SCAT, AOARD, and the FIRST program.

8



References
[1] A. J. Smola, L. Song, and C. H. Teo. Relative novelty detection. In Proceedings of the Twelfth Interna-

tional Conference on Artificial Intelligence and Statistics (AISTATS2009), pages 536–543, 2009.
[2] S. Hido, Y. Tsuboi, H. Kashima, M. Sugiyama, and T. Kanamori. Statistical outlier detection using direct

density ratio estimation. Knowledge and Information Systems, 26(2):309–336, 2011.
[3] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf, and A. J. Smola. A kernel method for the two-

sample-problem. In B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 513–520. MIT Press, Cambridge, MA, 2007.

[4] M. Sugiyama, T. Suzuki, Y. Itoh, T. Kanamori, and M. Kimura. Least-squares two-sample test. Neural
Networks, 24(7):735–751, 2011.

[5] H. Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood
function. Journal of Statistical Planning and Inference, 90(2):227–244, 2000.

[6] M. Sugiyama, M. Krauledat, and K.-R. Müller. Covariate shift adaptation by importance weighted cross
validation. Journal of Machine Learning Research, 8:985–1005, May 2007.

[7] S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical Statistics, 22:79–
86, 1951.

[8] V. N. Vapnik. Statistical Learning Theory. Wiley, New York, NY, 1998.
[9] M. Sugiyama, T. Suzuki, S. Nakajima, H. Kashima, P. von Bünau, and M. Kawanabe. Direct importance

estimation for covariate shift adaptation. Annals of the Institute of Statistical Mathematics, 60:699–746,
2008.

[10] X. Nguyen, M. J. Wainwright, and M. I. Jordan. Estimating divergence functionals and the likelihood
ratio by convex risk minimization. IEEE Transactions on Information Theory, 56(11):5847–5861, 2010.

[11] K. Pearson. On the criterion that a given system of deviations from the probable in the case of a correlated
system of variables is such that it can be reasonably supposed to have arisen from random sampling.
Philosophical Magazine, 50:157–175, 1900.

[12] S. M. Ali and S. D. Silvey. A general class of coefficients of divergence of one distribution from another.
Journal of the Royal Statistical Society, Series B, 28:131–142, 1966.

[13] I. Csiszár. Information-type measures of difference of probability distributions and indirect observation.
Studia Scientiarum Mathematicarum Hungarica, 2:229–318, 1967.

[14] T. Kanamori, S. Hido, and M. Sugiyama. A least-squares approach to direct importance estimation.
Journal of Machine Learning Research, 10:1391–1445, 2009.

[15] T. Suzuki and M. Sugiyama. Sufficient dimension reduction via squared-loss mutual information estima-
tion. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(AISTATS2010), pages 804–811, 2010.

[16] C. Cortes, Y. Mansour, and M. Mohri. Learning bounds for importance weighting. In J. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information Pro-
cessing Systems 23, pages 442–450. 2010.

[17] R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, USA, 1970.
[18] N. Aronszajn. Theory of reproducing kernels. Transactions of the American Mathematical Society,

68:337–404, 1950.
[19] A. W. van der Vaart. Asymptotic Statistics. Cambridge University Press, 2000.
[20] B. Efron and R. J. Tibshirani. An Introduction to the Bootstrap. Chapman & Hall, New York, NY, 1993.
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