Appendices
Inferring Interaction Networks using the IBP applied
to microRNA Target Prediction

A Related work

Zhou et al. [3| 4] present a dependent hierarchical beta process using covariate-dependent features
to impose that objects with similar covariates are likely to be clustered. The relationship between
objects are summarized by a matrix A using a kernel IC. One way to apply this prior to our biolog-
ical application would require converting the prior likelihood C matrix to the summary matrix, by
defining a kernel over covariates. In contrast, our model avoids this requirement since all samples
are drawn from a single process that encapsulates the dependencies.

B Taking the infinite limit

Lemma B.1. For any real numbers ay(k > 1), which are constants with respect ton and 1 < T <
00,
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Proof. The limit is in the indeterminate form 1°°, we apply a transformation and L’Hopital’s rule:
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We consider each term separately.
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By the same argument as shown in [2],
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Using Lemma|[B.1] we get:
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Combining (B.13) and (B.18), we arrive at (B.7).

C The generative process

In Section [2.1.3] we described the generative process using a culinary metaphor. The customers
select dishes one after the other as follows. The first customer tries Poisson(«W;) dishes. The
remaining customers enter one after the others. Customer ¢ selects dishes with a probability that
partially depends on the selection of the previous customers. For each dish, the probability that
it would be selected is specified by: Zh:hi:sz,h(i):l ®n/ > =z, Pn- He then samples a
Poisson(a¥;) number of new dishes. This process repeats until all customers have made their
selections.

We show here that this process simplifies to the Indian Buffet Process when ®; = 1 for all h.

Lemma C.1. If &, =1 forall h,

1
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Therefore, each customer selects Poisson(% ) new dishes as in the IBP.



Proof.
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Lemma C.2. I[f®; =1 forall h,
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Therefore, each customer selects an old dish with probability *** as in the IBP.

Proof.
= (N—mh)!(mh—l)!
> t= ) NI
h:hi=z<,h(i)=1 hiz<ik,h(i)=1
= <N - z) (N —t —my — DIt + my)!
— t N!
- v
(mk + 1)(m:+1)
_— (N —mp)l(mp — 1)!
> =) i
h:hi:Z<ik h:Z<ik
_Ni“ (N—i—i—l) (N = — my) !t + my — 1)!
pord t N!
_Ni“ (N—z’+1) (N =t = mp)!(t + my — 1)!
t=0 t N
B 1
= i—1
mk(mk)
Together,
= i—1
Zh:hi:z<ik,h(i)f1 (I)h _ Mg (mk) .
Z}L:h,v,:z@k (I)h (mk + 1) (m:+1)

M

7

(C.2)

(C.3)

(C4)

(C.5)

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)

(C.11)

(C.12)

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)



Furthermore, an equivalence class [Z] can be represented by a frequency vector K =
(Ky,...,Kon_1). We can define a distribution on K by assuming that each K, is generated inde-
pendently by a Poisson distribution with parameters a®;,. The probability is given by:
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This could be easily seen to be the same as Equation (8).

D GO results for clusters in Figure 4

Table [D.TD.2] and [D.3] show the GO enrichment results for cluster (b), (¢) and (f) in Figure @] by
GOstat[1]. We only show terms with corrected P-value less than 0.01. Cluster (a), (d) and (f) have
no significant terms.

Term ID Description P value

GO0:22402  cell cycle process 7.32E-05
GO:7049  cell cycle 1.77E-04
GO0:22403  cell cycle phase 3.17E-04
GO:278 mitotic cell cycle 2.94E-03
GO:279 M phase 2.94E-03

Table D.1: GO enrichment analysis of cluster (b) in Figure 4]

Term ID Description P value

GO:724 double-strand break repair via homologous recombination 3.29E-03
GO:725 recombinational repair 3.29E-03
GO0:6281 DNA repair 3.29E-03
GO:6974  response to DNA damage stimulus 3.93E-03
GO:6310  DNA recombination 3.93E-03
GO:9314  response to radiation 3.93E-03
GO:9719  response to endogenous stimulus 3.93E-03
GO:51053 negative regulation of DNA metabolic process 3.93E-03
GO:8630  DNA damage response, signal transduction resulting in induction of 4.13E-03

apoptosis

GO:6302  double-strand break repair 4.78E-03
GO:51052 regulation of DNA metabolic process 4.78E-03
GO:10212  response to ionizing radiation 4.78E-03
GO:9411  response to UV 6.28E-03
GO:7568 aging 7.34E-03
GO:8629  induction of apoptosis by intracellular signals 7.87E-03
GO0O:6996  organelle organization 9.95E-03
GO0O:9628  response to abiotic stimulus 9.95E-03
GO:42770 DNA damage response, signal transduction 9.95E-03

Table D.2: GO enrichment analysis of cluster (c) in Figure

Term ID Description P value

GO0:45859 regulation of protein kinase activity 8.83E-03
GO:51338 regulation of transferase activity 8.83E-03
GO:165 MAPKKK cascade 8.83E-03

Table D.3: GO enrichment analysis of cluster (f) in Figure



E GenMiR++

Figure [ET] shows the network inferred by GenMiR++ with threshold of 0.9. We did not find any
significant enrichment with corrected P-value less than 0.01.
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Figure E.1: GenMiR++ with threshold = 0.9

F Comparison with K-means

We ran K-means on the same set of mRNAs in Figure fjusing & = 6 as inferred by GroupMiR. We
did not find any significant enrichment indicating that only by integrating sets of miRNAs with the
mRNAs for this data we can find functional biological groupings.

G Comparison to IBP

We also tested with the original IBP (W = 0). Not surprisingly, the results for both the synthetic
and real data were weak (the IBP is of course not intended for our data since it cannot use the prior
interaction information). Specifically, for the synthetic data the average F1 when using a noise level
of 0.4 (a high but reasonable level) is 0.8418 for our method and only 0.5163 for the original IBP.
For the real data, the IBP failed to recover any significant groupings. Without the priors the ability
to identify significant interactions is greatly weakened.



H Networks at 60% posterior probability.
We also report networks constructed with 60% posterior probability by GroupMiR in Figure
and 0.6 threshold by GenMiR++ in Figure [H.2]
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Figure H.1: Network inferred by GroupMiR with 60% posterior probability



Figure H.2: Network inferred by GenMiR++ with threshold of 0.6
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