Supplementary Material

Here we recall how to calculate the moment-generating function A(n) via zeta-function [24] and
periodic orbits [3, 1]. Let A[A] be the maximal eigenvalue of matrix A with non-negative elements
[13]. Since AB and B A have identical eigenvalues, we get A\[A?] = (\[A])%, A[AB] = \[BA] (d is
an integer).

Recall the content of section 4. Eqgs. (15, 3, 4) lead to

A™(n,m) = Zx olr1y . ], (42)
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where we have introduced a notation T, = T'(x) for better readability. We obtain

oix,x" = ¢[x" x|,  ¢[x,x] =[x, (44)

where x’ and x” are arbitrary sequences of symbols x;. One can prove for A™(n,m) [24]:
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where y; = 1, ..., M are the indices referring to realizations of the HMM, and where > k|m MEANS

that the summation goes over all k that divide m, e.g., k = 1,2,4 for m = 4. Here Per(k)
contains sequences I' = (1, ..., yx) selected according to the following rules: i) T turns to itself
after k successive cyclic permutations, but does not turn to itself after any smaller (than k) number
of successive cyclic permutations; ii) if I' is in Per(k), then Per(k) contains none of those k — 1
sequences obtained from I' under £ — 1 successive cyclic permutations. Starting from (45) and

introducing notations p = k, ¢ = 7, we transform £(z,n) as
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where A\o..3 = AT, .. Toyls Aatp = AT, |A[T4,] (all the notations introduced generalize—via

introducing a hat—to functions with trial values of the parameters, e.g., 15). g are obtained from
(45). We write them down assuming that M = 2 (two realizations of the observed process)

p2 = *)\125\?2 + )\1+25\Tf+2, (46)
@3 = Aar21A3io1 — Aaar Ay + Ars12ATy 1p — A2 AT, (47)
Ps = —M222\Ta00 + Mg 120A8 100 + M122AT 1199 — A122AT109

+ Moot ABonn — Apa12AT 0410 + Arga11A T 011 — Arn12AT . (43)

The algorithm for calculating ¢35 is straighforward [1]. Eqgs. (46-48) for ¢4 suffice for approx-
imate calculation of (45), where the infinite sum EZOZQ is approximated by its first few terms.

We now calculate £(z, n) for the specific model considered in Section 5.1. For this model, only the
first row of T consists of non-zero elements, so we have

Axlo = Aytlor  Aylo = Alytlos (49)

where x and o are arbitrary sequences of 1’s and 2’s. The origin of (49) is that the transfer-matrices
T()T(x1)T(x2)...and T(1)T(01)T(02) . .. that correspond to 1y and 1o, respectively, have the
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same structure as 7'(1), where only the first row differs from zero. For ¢y, in (45) the feature (49)
implies
o = NI TALT Y
+ AT TE 2 N TE 2] NP [T A[T2). (50)

To calculate \ [T717%] for an integer p one diagonalizes T5 [13] (the eigenvalues of T5 are generically
not degenerate, hence it is diagonalizable),

L
Ty=3 _ 7alRa){Lal, (51)

where 7, are the eigenvalues of 75, and where |R,,) and |L,,) are, respectively, the right and left
eigenvectors:

T2|Roc> = Ta|Roc>a <La|T2 = Ta<La|7 <L04‘R[3> = 504,3'

Here d,4 is the Kronecker delta. Note that generically (Lo |Lg) # dap and (Ro|Rg) # dap. Here
(L] is the transpose of | L, ), while | R, ) (L] is the outer product.

Now A [T1TY] reads from (22):

L
AMTF =) i, o= (UT1|Ra){Lal1), (52)

where (1] = (1,0,...,0). Combining (52, 50) and (45) we arrive at (23).
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