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Abstract

Principal Components Analysis (PCA) is often used as a feaxitraction proce-
dure. Given a matrix Xc R™*¢, whose rows representdata points with respect
to d features, the tog right singular vectors of X (the so-callesigenfeatures
are arbitrary linear combinations of all available feasur&he eigenfeatures are
very useful in data analysis, including the regularizatbtinear regression. En-
forcing sparsity on the eigenfeatures, i.e., forcing therbd linear combinations
of only asmallnumber of actual features (as opposed to all availabletfescan
promote better generalization error and improve the imetgbility of the eigen-
features. We present deterministic and randomized algosithat construct such
sparse eigenfeatures wheovablyachieving in-sample performance comparable
to regularized linear regression. Our algorithms are ikelt simple and practi-
cally efficient, and we demonstrate their performance oprsgvata sets.

1 Introduction

Least-squares analysis was introduced by Gauss in 1795asmlrite has bloomed into a staple of
the data analyst. Assume the usual setting witaples(x1, 1), . . ., (X, ¥») in R?, wherex; are
points andy; are targets. The vector of regression weightsc R¢ minimizes (over alw € R?)
the RMS in-sample error

n

E(w) = | D _(xi-w —yi)? = | Xw =y

=1

In the above, Xe R™*4 is thedata matrixwhose rows are the vectoss (i.e., Xij = x;[4]); and,
y € R is the target vector (i.ey[i] = v;). We will use the more convenient matrix formulatton
namely given X ang;, we seek a vectow™* that minimizes|Xw — y/||,. The minimal-norm vector
w* can be computed via the Moore-Penrose pseudo-inverse ef*X= X *y. Then, the optimal
in-sample error is equal to:

E(w") = |y — XXy,

For the sake of simplicity, we assurde< n and rankX) = d in our exposition; neither assumption is
necessary.



When the data is noisy and X is ill-conditioned; Yoecomes unstable to small perturbations and
overfitting can become a serious problem. Practitionerswligla such situations by regularizing
the regression. Popular regularization methods includegkample, the Lasso [28], Tikhonov
regularization [17], and top-PCA regression or truncated SVD regularization [21]. Inayah
such methods are encouraging some form of parsimony, theeelicing the number of effective
degrees of freedom available to fit the data. Our focus is prctBCA regression which can be
viewed as regression onto the tégrincipal components, or, equivalently, the tbgigenfeatures
The eigenfeatures are the téprdght singular vectors of X and are arbitrary linear combiores
of all available input features. The question we tackle igtlibr one can efficiently extrasparse
eigenfeature§.e., eigenfeatures that are linear combinations of osiynall number of the available
features) that have nearly the same performance as theeaenfeatures.

Basic notation. A, B,... are matricesa, b, ... are vectorsj, j, ... are integers;,] is then x n
identity matrix;0,,x,, is them x n matrix of zerosg; is the standard basis (whose dimensionality
will be clear from the context). For vectors, we use the Elgzn norm| - ||,; for matrices, the

Frobenius and the spectral norrﬂbﬁ”% =i X7, and [|X||, = o1 (X), i.e., the largest singular
value of X.

Top-k PCA Regression. Let X = UXV' be the singular value decomposition of X, where U
(resp. V) is the matrix of left (resp. right) singular vedaf X with singular values in the diagonal
matrix 3. Fork < d, let Uy, X, and V, contain only the toge singular vectors and associated
singular values. The best ratkreconstruction of X in the Frobenius norm can be obtainenhfro
this truncated singular value decomposition as=X U X, V}.. Thek right singular vectors in ¥/
are called the top-eigenfeaturesThe projections of the data points onto the kogigenfeatures are
obtained by projecting the;’s onto the columns of Yto obtain . = XV, = USV'V, = UX,.
Now, each data point (row) ingFonly hask dimensions. Each column of Feontains a particular
eigenfeature’s value for every data point and is a linearlipnation of the columns of X.

The top4 PCA regression uses; fas the data matrix angas the target vector to produce regression
weightsw; = FZy. The in-sample error of this-dimensional regression is equal to

Iy = Fewill, = ly = FkF{yll, = lly — UeSeS, Uy, = lly — UsULyll,-

The weightsw;, arek-dimensional and cannot be applied to X, but the equivaleigits V, w;
can be applied to X and they have the same in-sample erroreggect to X:

EViwr) = ly = XViwill, = ly = Fewill, = ly — UsUgyll,.

Hence, we will refer to bothw;, and V, w} as the topk PCA regression weights (the dimension will
make it clear which one we are talking about) and, for sinifglisve will overloadw;; to refer to both
these weight vectors (the dimension will make it clear whidh practice % is chosen to measure
the “effective dimension” of the data, and, typically< rank X) = d. One way to choosk is so
that [|[ X — X[/ < or(X) (the “energy” in thek-th principal component is large compared to the
energy in all smaller principal components). We do not artp@eemerits of topk PCA regression;
we just note that toj- PCA regression is a common tool for regularizing regression

Problem Formulation. Given X € R™*4, k (the number of target eigenfeatures for tofRCA
regression), and > k (the sparsity parameter), we seek to extract a set of atkrsysdrse eigenfea-
turesV, which use at most of the actual dimensions. L&, = XV, € R"** denote the matrix
whose columns are theextracted sparse eigenfeatures, which are a linear cotrdoired a set of at
mostr actual features. Our goal is to obtain sparse features fahwhe vector of sparse regression

weightswy, = IEZy results in an in-sample errdly — Ifkley|\2 that is close to the top-PCA
regression errofly — Fy FZsz. Just as with topge PCA regression, we can define the equivalent
d-dimensional Weightgkwk; we will overloadw, to refer to these weights as well.

Finally, we conclude by noting that while our discussionwabbas focused on simple linear regres-
sion, the problem can also be defined for multiple regressibrere the vectoy is replaced by a
matrix Y € R™*“, with w > 1. The weight vectow becomes a weight matrix, W, where each
column of W contains the weights from the regression of theesponding column of Y onto the
features. All our results hold in this general setting ad,veeld we will actually present our main
contributions in the context of multiple regression.



2 Our contributions

Recall from our discussion at the end of the introduction tira will present all our results in the
general setting, where the target vecjois replaced by a matrix Ye R™*“. Our first theorem
argues that there exists a polynomial-time determinidgorithm that constructs a feature matrix
F. € R"*k¥ such that each feature (column Bf) is a linear combination o&t mostr actual
features (columns) from X and results in small in-samplererrAgain, this should be contrasted
with top-k PCA regression, which constructs a feature matgixdeich that each feature (column of
Fx) is a linear combination adll features (columns) in X. Our theorems argue that the in-&amp
error of our features is almost as good as the in-sample efitop-£ PCA regression, which uses
dense features.

Theorem 1 (Deterministic Feature Extraction)etX € R™*?andY € R™*“ be the input matrices
in a multiple regression problem. Lét> 0 be a target rank for toge PCA regressmn oX andY.
For anyr > k, there exists an algorithm that constructs a feature mafjix= XV, € R"** such
that every column of, is a linear combination of (the same) at mestolumns ofX, and

. LAt [IX — X
Y — XW H =Y - F.F.Y < |IY = XW3 = 2RE )y
H . I KFe Yl < | k|F+< +/ r) o (X) 1Y [l-

(o1 (X) is the k-th singular value ofX.) The running time of the proposed algorithmifigV,,) +
O (ndk + nrk?), whereT (V;) is the time required to compute the matkix, the top# right sin-
gular vectors ofX .

Theorem 1 says that one can constiutgatures with sparsit¢) (k) and obtain a comparble regres-
sion error to that attained by the dense fopCA features, up to additive term that is proportional
to A = [|X = Xgl[p/ow(X).

To construct the features satisfying the guarantees ofhlbgeatheorem, we first employ the Al-
gorithm DSF-Select (see Table 1 and Section 4.3) to seleaolumns of X and form the matrix
C € R™*". Now, letTIc ;, (YY) denote the best rank-approximation (with respect to the Frobenius
norm) to Y in the column-span of C. In other wordsg 5 (Y) is a rankk matrix that minimizes
|IY —TIIcx (Y) || - over all rankk matrices in the column-span of C. Efficient algorithms arevin
for computingllc ,(X) and have been described in [2]. GivEg ,(Y), the sparse eigenfeatures

can be computed efficiently as follows: first, det= C*Hcyk(Y). Observe that

CVU = CC'c x(Y) = Hc x(Y).
The last equality follows because C@rojects onto the column span of C afid 1 (Y) is already
in the column span of C.¥ has rank at most becausdlIc ;(Y) has rank at most. Let the
SVD of ¥ be ¥ = U,%,V,, and setF, = CU,Y%, € R™*. Clearly, each column of; is a
linear combination of (the same) at mestolumns of X (the columns in C). The sparse features
themselves can also be obtained becduse XV, soV = X TFy.

To prove thaf;, are a good set of sparse features, we first relate the regmnesssor from using-,
to how wellTI¢c (Y) approximates Y.

Aot
1Y =Tk (Y)llp = Y = C¥llp = Y = CUySy Vil = Y = FeVillp > 1Y = FuFy Y e

The last inequality follows becauEg Y are the optimal regression weights for the featutgsThe
reverse inequality also holds becalkgy (Y) is the best rank approximation to Y in the column
span of C. Thus,

1Y = BB Y e = (Y =T ()]
The upshot of the above discussion is that if we can find a m@&tgonsisting of columns of X for
which ||Y —TIIc x(Y)]| » is small, then we immediately have good sparse eigenfesatlmeeed, all
that remains to complete the proof of Theorem 1 is to boljMd— Ilc »(Y)|| . for the columns C
returned by the AlgorithnDSF-Select.

Our second result employs the AlgorithREF-Select (see Table 2 and Section 4.4) to select
columns of X and again form the matrix € R”*". One then proceeds to constriitt (Y ) and

F, as described above. The advantage of this approach is sitpietter efficiency and a slightly
better error bound, at the expense of logarithmically wepssity.



Theorem 2 (Randomized Feature Extractior)etX € R"*¢ andY € R"*“ be the input matrices
in a multiple regression problem. Lét> 0 be a target rank for tops PCA regression oiX and
Y. For anyr > 144k 1n(20k), there exists a randomized algorithm that constructs aufieatatrix

Fr = XV, € R*** such that every column &%, is a linear combination of at mostcolumns
of X, and, with probability at least .7 (over random choices maudiae algorithm),

36k In(20k) | X — Xi||
o1 (X)

~ A AJ’, %
Y =W = 1Y = R YL < Y = XWi + 1Yl

The running time of the proposed algorithnifi¢V ) + O(dk + rlog 7).

3 Connectionswith prior work

A variant of our problem is the identification of a matrix C ststing of a small number (say)
columns of X such that the regression of Y onto C (as opposédeatures from C) gives small in-
sample error. Thisis the sparse approximation problemgeuine number of non-zero weights in the
regression vector is restricteditoThis problem is known to be NP-hard [25]. Sparse approxonat
has important applications and many approximation algorit have been presented [29, 9, 30];
proposed algorithms are typically either greedy or are dhaseconvex optimization relaxations of
the objective. An important difference between sparse@ppration and sparse PCA regression is
that our goal is not to minimize the error under a sparsityst@mnt, but to match the top-PCA
regularized regression under a sparsity constraint. Weeditat it is possible to achieve a provably
accurate sparse PCA-regression, i.e., use sparse fegsbessd of dense ones.

If X =Y (approximating X using the columns of X), then this is théucon-based matrix recon-
struction problem, which has received much attention istig literature [16, 18, 14, 26, 5, 12, 20].
In this paper, we study the more general problem wheté X, which turns out to be considerably
more difficult.

Input sparseness is closely related to feature selectidraatomatic relevance determination. Re-
search in this area is vast, and we refer the reader to [19] fogh-level view of the field. Again,
the goal in this area is different than ours, namely they seek&duce dimensionality and improve
out-of-sample error. Our goal is to provide sparse PCA featthat are almost as good as the ex-
act principal components. While it is definitely the cased thany methods outperform topPCA
regression, especially far>> n, this discussion is orthogonal to our work.

The closest result to ours in prior literature is the soethank-revealing QR (RRQR) factoriza-
tion [8]. The authors use a QR-like decomposition to selgacty k& columns of X and compare
their sparse solution vecter;, with the topx PCA regularized solutiom;;. They show that

R X - Xk”g
Wi —w < 4/ _ 20 e
H k kHQ — k(n k)+1 O'k(x) A7

whereA = 2 ||y |, + [ly — Xwi||, /o (X). This bound is similar to our bound in Theorem 1,
but only applies to- = k and is considerably weaker. For examplék(n — k) + 1 || X — X ||, >

VE|X — Xi| »; note also that the dependence of the above bounidep(X) is generally worse
than ours.

The importance of the right singular vectors in matrix restouction problems (including PCA)
has been heavily studied in prior literature, going back ¢okwby Jolliffe in 1972 [22]. The idea of
sampling columns from a matrix X with probabilities that dezived from \, (as we do in Theorem
2) was introduced in [15] in order to construresetsor regression problems by sampling data
points (rows of the matrix X) as opposed to features (coluofrie matrix X). Other prior work
including [15, 13, 27, 6, 4] has employed variants of this gimy scheme; indeed, we borrow
proof techniques from the above papers in our work. Finaleynote that our deterministic feature
selection algorithm (Theorem 1) uses a sparsification tee¢kbped in [2] for column based matrix
reconstruction. This tool is a generalization of algorighaniginally introduced in [1].



4 Our algorithms

Our algorithms emerge from the constructive proofs of Thew 1 and 2. Both algorithms necessi-
tate access to the right singular vectors of X, namely their¥i, € R4<*. In our experiments, we
used PROPACK [23] in order to compute, teratively; PROPACK is a fast alternative to the exact
SVD. Ouir first algorithm DSF-Select) is deterministic, while the second algorithREF-Select)

is randomized, requiring logarithmically more columns t@apntee the theoretical bounds. Prior
to describing our algorithms in detail, we will introducesfid notation on sampling and rescaling
matrices as well as a matrix factorization lemma (Lemma &) whill be critical in our proofs.

4.1 Sampling and rescaling matrices

Let C € R™*" containr columns of Xe R™*¢, We can express the matrix C as=CX{2, where
thesamplingmatrix Q2 € R4*" is equal tdfe;, , . . . , e;,] ande; are standard basis vectorsid. In
our proofs, we will make use of 8 R"*", a diagonatescalingmatrix with positive entries on the
diagonal. Our column selection algorithms return a sangpdind a rescaling matrix, so that?s
contains a subset of rescaled columns from X. The rescaibgmign since it does not affect the
span of the columns of €& X2 and thus the quantity of interest, namé&ly . (Y).

4.2 A structural result using matrix factorizations

We now present a matrix reconstruction lemma that will bedtiagting point for our algorithms.
Let Y € R"*“ be a target matrix and let X R"*¢ be the basis matrix that we will use in order
to reconstruct Y. More specifically, we seeksparse reconstructioonf Y from X, or, in other
words, we would like to choose <« d columns from X and form a matrix & R™*" such that
Y — ¢ x(Y)] - is small. Let Ze R?** be an orthogonal matrix (i.e.,’Z = 1), and express the
matrix X as follows:

X = HZ" +E,

where H is some matrix iiR"** and Ec R"*? is the residual error of the factorization. It is easy
to prove that the Frobenius or spectral norm of E is minimizeén H= XZ. Let Q € R**" and

S € R"*" be a sampling and a rescaling matrix respectively as defm#weeiprevious section, and
let C= XQ € R"*". Then, the following lemma holds (see [3] for a detailed ffyoo

Lemma 3 (Generalized Column Reconstructiot)sing the above notation, if the rank of the matrix
Z'QSis equal tok, then

IY ~Tex(¥)llp < Y — HHYY |, + [EQSZTQS) T HEY | 1. 1)

We now parse the above lemma carefully in order to understanmiplications in our setting. For
our goals, the matrix C essentially contains a subsefeftures from the data matrix X. Recall that
IIc x(Y) is the best rank- approximation to Y within the column space of C; and, theatéhce
Y — Ilc (Y ) measures the error from performing regression using sgageafeatures that are
constructed as linear combinations of the columns of C. Kgto the right-hand side of eqn. (1),
the two terms reflect a tradeoff between the accuracy of tbenstruction of Y using H and the
error E in approximating X by the product HZldeally, we would like to choose H so that Y can
be accurately approximated and, at the same time, the méisiapproximated by the product HZ
with small residual error E. In general, these two goals miighcompeting and a balance must be
struck. Here, we focus on one extreme of this trade off, nariebosing Z so that the (Frobenius)
norm of the matrix E is minimized. More specifically, since @trankk, the best choice for HZin
order to minimize||E|| . is Xy; then, E= X — X,,. Using the SVD of %, namely X, = U,X; V],
we apply Lemma 3 setting B U X, and Z= V. The following corollary is immediate.

Lemma 4 (Generalization of Lemma 7 in [2])Using the above notation, if the rank of the matrix
V. QSis equal tok, then

1Y =T (Y)lp < 1Y = URULY [ p + (X = Xp)QS(VEQS) TS TULY ||

Our main results will follow by carefully choosirfg and S in order to control the right-hand side of
the above inequality.



Algorithm: DSF-Select Algorithm: DetSampling
Input: VT = [v1,...,va], A =[a1,...,aq4], 7.
Output: Sampling and rescaling matricgs, S|.
Initialize By = O xx, 2 = 0gxr, and S= 0,.x.
forr=1tor —1do

SetL, =7 — Vrk.

Pick indexi € {1,2,...,n} andt such that

> Input: X, &, .
: Output: r columns of X in C.
: Compute . and

E=X—Xi=X—XVV}.

WN R

4: Run DetSampling to construct sam-
pling and rescaling matricé3 and S:

[Q, S] = DetSampling(V}, E, 7).
5: Return C = X(.

Ula) < 7 < L(vi, By 1,L).

7. Update B = B,_1 + tv;v,.
8: SetQ,, =1land S, =1/Vt
9: end for

10: ReturnQ and S.

Table 1: DSF-Select: Deterministic Sparse Feature Setecti

4.3 DSF-Select: Deterministic Spar se Feature Selection

DSF-Select deterministically selects columns of the matrix X to form the matrix C (see Table 1
and note that the matrix & X might contain duplicate columns which can be removed withou
any loss in accuracy). The heart DSF-Select is the subroutindetSampling, a near-greedy
algorithm which selects columns of \tteratively to satisfy two criteria: the selected columhssid
form an approximately orthogonal basis for the columns pfsd that(V;QS)* is well-behaved;
and ES should also be well-behaved. These two properties wilalls to prove our results via
Lemma 4. The implementation of the proposed algorithm isegsimple since it relies only on
standard linear algebraic operations.

DetSampling takes as input two matrices: & R**4 (satisfying V'V = I) and A € R"*<, In
order to describe the algorithm, it is convenient to viewsthewvo matrices as two sets of column
vectors, V = [vy,..., V] (satisfyinngl:1 v;vi = Iy)and A= [a;,...,a4]. In DSF-Select
we set V =V, and A= E = X — Xj. Givenk andr, the algorithm iterates from = 0 up to

7 = r— 1 and its main operation is to compute the functigfis, B) andL(v, B, L) that are defined
as follows:

1 VvI(B—(L+1)l) v . 1
gb(L,B):;)\i_L, L(v,B,L) = ¢((L+1ELB)—)¢]EI)_,B) v (B—(L+1)lg) .

In the above, B= RF** is a symmetric matrix with eigenvalugs, . .. , A\ andL € R is a parameter.
We also define the functioli(a) for a vectora € R™ as follows:

k T
Ula) = (1 ) \ﬁ> ala
T ) AlE
At every stepr, the algorithm selects a column such thatU(a;) < L(v;,B,_1,L,); note that

B._1is ak x k matrix which is also updated at every step of the algorithee (§able 1). The
existence of such a column is guaranteed by results in [1, 2].

It is worth noting that in practical implementations of theoposed algorithm, there might exist
multiple columns which satisfy the above requirement. Inimplementation we chose to break
such ties arbitrarily. However, more careful and informedices, such as breaking the ties in a way
that makes maximum progress towards our objective, mighiitrén considerable savings. This is
indeed an interesting open problem.

The running time of our algorithm is dominated by the seamehd column which satisfies
U(a;) < L(v;,B;_1,L;). Tocompute the functioh, we first need to comput&L -, B._1) (which
necessitates the eigenvalues ¢f B) and then we need to compute the inverse of B— (L + 1) I .
These computations neéd{k*) time per iteration, for a total ab(rk?) time over allr iterations.
Now, in order to compute the functidnfor each vectox; foralli = 1, ..., d, we need an additional



Algorithm: RSF-Select Algorithm: RandSampling

1: Input: V' = [vq,..., vg4] andr.

2: Output: Sampling and rescaling matricgs, S|.
3: Fori = 1,..., d compute probabilities

1: Input: X, &, .
2: Output: r columns of X in C. 1 )
3: Compute V.. bi = EHVin-
4: RunRandSampling to construct sam-
pling and rescaling matrice® and S: 4: Initialize 2 = 04x, and S= 0,.x.
5: for r =1tordo
[2, S| = RandSampling(V, 7). 6: Select an index, € {1,2,...,d} where the
. probability of selecting indexis equal top;.
o Return C = X£2. 7 SetQ, .=1land S, =1/,/Tpi,.
8: end for
9: Return Q and S.

Table 2:RSF-Select: Randomized Sparse Feature Selection

O(dk?) time per iteration; the total time for alliterations isO(drk?). Next, in order to compute
the functionUU, we need to compute a; (foralli = 1,. .., d) which necessitate@(nnz(A)) time,
wherennz(A) is the number of non-zero elements of A. In our setting=AE € R"*9, so the
overall running time i$)(drk? + nd). In order to get the final running time we also need to account
for the computation of ¥ and E.

The theoretical properties @fetSampling were analyzed in detail in [2], building on the original
analysis of [1]. The following lemma from [2] summarizes ianfant properties of?.

Lemma 5 ([2]). DetSampling with inputsV™ andA returns a sampling matrif € R4<" and a
rescaling matrixS € R"*" satisfying

k
jvasy, <15 jaasi, < Al

We apply Lemma 5 with V= V! and A = E and we combine it with Lemma 4 to conclude the
proof of Theorem 1; see [3] for details.

4.4 RSF-Select: Randomized Spar se Feature Selection

RSF-Select is a randomized algorithm that selectsolumns of the matrix X in order to form the
matrix C (see Table 2). The main differences betwe&f-Select andDSF-Select are two: first,
RSF-Select only needs access to)\and, secondRSF-Select uses a simple sampling procedure in
order to select the columns of X to include in C. This samppinacedure is described in algorithm
RandSampling and essentially selects columns of X with probabilities ttepend on the norms of
the columns of \]. Thus,RandSampling first computes a set of probabilities that are proportional
to the norms of the columns ofMand then samplescolumns of X inr independent identical trials
with replacement, where in each trial a column is sampledralicg to the computed probabilities.
Note that a column could be selected multiple times. In tesfrrsinning time, and assuming that
the matrix V; that contains the tog right singular vectors of X has already been computed, the
proposed algorithm needX dk) time to compute the sampling probabilities and an additiord+
rlogr) time to sample: columns from X. Similar to Lemma 5, we can prove analogougeries

for the matrices) and S that are returned by algoritfRandSampling. Again, combining with
Lemma 4 we can prove Theorem 2; see [3] for details.

5 Experiments

The goal of our experiments is titustrate that our algorithms produce sparse features which per-
form as well in-sample as the tdpPCA regression. It turns out that the out-of-sample peréorce
is comparable (if not better in many cases, perhaps due tephesity) to topk PCA-regression.



Data (n;d) k=5,r=k+1 k=51r=2k

Wlt WIE)SF WESF vAV;cnd Wlt W}I?SF WESF vAV;cnd
Arcene  (100:10.000)| yoo  oa oos 10 | 1o _oor oo 1g
sphere  (35L:34) | 035 o530t osr | oss  osa 055 s
LibrasMov  45:90) | g5 5§ 57 37 | s as 3o s
Madelon  (2.000:500) | g5  oos oos 10 | 0os oo 098 o
Hillval (606:100) | 0o o7  o6s  oes | oos  oer  oer  oen
Spambase  (460157) | o930 o030  os0 o8 | 03 o8  os  0s

Table 3: Comparison dDSF-select andRSF-select with top-& PCA. The top entry in each cell
is the in-sample error, and the bottom entry is the out-samapbr. In bold is the method achieving
the best out-sample error.

Compared to topge PCA, our algorithms are efficient and work well in practicese better than the
theoretical bounds suggest.

We present our findings in Table 3 using data sets from the U&lhime learning repository. We
used a five-fold cross validation design with 1,000 randolitsspve computed regression weights
using80% of the data and estimated out-sample error in the remaitifigof the data. We sét = 5

in the experiments (no attempt was made to optinkizefable 3 shows the in- and out-sample error
for four methods: top: PCA regressionw;; r-sparse features regression usd@f-select, wPsF;

r-sparse features regression usR@F-select, wi>F; r-sparse features regression usingindom
columnswi.

6 Discussion

The top4 PCA regression constructs “features” without looking a&ttdrgets — it is target-agnostic.
So are all the algorithms we discussed here, as our goal veasipare with tops PCA. However,
there is unexplored potential in Lemma 3. We only exploregl@xtreme choice for the factorization,
namely the minimization of some norm of the matrix E. Otheoichs, in particular non-target-
agnostic choices, could prove considerably better. Suastigations are left for future work.

As mentioned when we discussed our deterministic algorithwill often be the case that in some
steps of the greedy selection process, multiple columnklaiisfy the criterion for selection. In
such a situation, we are free to choose any one; we brokeriésaaily in our implementation,
and even as is, the algorithm performed as well or better tibygsd PCA. However, we expect that
breaking the ties so as to optimize the ultimate objectivaldigield considerable additional benefit;
this would also be non-target-agnostic.

Acknowledgments

This work has been supported by two NSF CCF and DMS grants ttm$*Brineas and Malik
Magdon-Ismail.

References

[1] J. Batson, D. Spielman, and N. Srivastava. Twice-rarjangparsifiers. IfProceedings of ACM STQC
pages 255-262, 2009.

[2] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Neatiopl column based matrix reconstruction. In
Proceedings of IEEE FOCR011.

[3] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Sparsatdres for PCA-like linear regression.
manuscript 2011.

[4] C. Boutsidis and M. Magdon-Ismail. Deterministic feaguselection for k-means clustering.
arXiv:1109.5664v12011.



(5]
(6]

C. Boutsidis, M. W. Mahoney, and P. Drineas. An improvegbrximation algorithm for the column
subset selection problem. Rroceedings of ACM -SIAM SODpages 968—-977, 2009.

C. Boutsidis, M. W. Mahoney, and P. Drineas. Unsupe/igature selection for the-means clustering
problem. InProceedings of NIP.009.

[7] J.Cadima and I. Jolliffe. Loadings and correlationghia interpretation of principal componenspplied

Statistics 22:203-214, 1995.

[8] T. Chan and P. Hansen. Some applications of the rank liege@R factorization. SIAM Journal on

Scientific and Statistical Computin§3:727—-741, 1992.

[9] A. Das and D. Kempe. Algorithms for subset selection ireér regression. IRroceedings of ACM

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]

(23]

[24]
[25]
[26]
[27]
(28]
[29]

[30]

STOC 2008.

A. Dasgupta, P. Drineas, B. Harb, R. Kumar, and M. W. Maho Sampling algorithms and coresets for
L, regression. IiProceedings of ACM-SIAM SOD2008.

A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Gnicariet. A direct formulation for sparse PCA
using semidefinite programming. Rroceedings of NIPS004.

A. Deshpande and L. Rademacher. Efficient volume sarggbr row/column subset selection. Rro-
ceedings of ACM STQQ010.

P. Drineas, R. Kannan, and M. Mahoney. Fast Monte Cddordhms for matrices |: Approximating
matrix multiplication. SIAM Journal of Computing36(1):132—-157, 2006.

P. Drineas, M. Mahoney, and S. Muthukrishnan. Polyradntime algorithm for column-row based
relative-error low-rank matrix approximation. Techni&gport 2006-04, DIMACS, March 2006.

P. Drineas, M. Mahoney, and S. Muthukrishnan. Sampdilggrithms for/, regression and applications.
In Proceedings of ACM-SIAM SODpages 1127-1136, 2006.

G. Golub. Numerical methods for solving linear leasiags problemaNumerische Mathematilt:206—
216, 1965.

G. Golub, P. Hansen, and D. O’Leary. Tikhonov regulatian and total least squareSIAM Journal on
Matrix Analysis and Application®1(1):185-194, 2000.

M. Gu and S. Eisenstat. Efficient algorithms for compgta strong rank-revealing QR factorization.
SIAM Journal on Scientific Computing7:848-869, 1996.

I. Guyon and A. Elisseeff. Special issue on variable sadure selectionJournal of Machine Learning
Research3, 2003.

N. Halko, P. Martinsson, and J. Tropp. Finding struetwith randomness: probabilistic algorithms for
constructing approximate matrix decompositioB$AM Review2011.

P. Hansen. The truncated SVD as a method for regulé@izaBIT Numerical Mathemati¢c7(4):534—
553, 1987.

1. Jolliffe. Discarding variables in Principal Compamt Analysis: asrtificial dataApplied Statistics
21(2):160-173, 1972.

R. Larsen. PROPACK: A software package for the symroetrigenvalue problem and sin-
gular value problems on Lanczos and Lanczos bidiagonaizatith partial reorthogonalization.
http://soi.stanford.eds/rmunki~PROPACK/.

B. Moghaddam, Y. Weiss, and S. Avidan. Spectral boundsparse PCA: exact and greedy algorithms.
In Proceedings of NIPR005.

B. Natarajan. Sparse approximate solutions to lingaresns.SIAM Journal on Computind24(2):227—
234, 1995.

M. Rudelson and R. Vershynin. Sampling from large neaisi An approach through geometric functional
analysis.Journal of the ACM54, 2007.

N. Srivastava and D. Spielman. Graph sparsificationsffsctive resistances. IRroceedings of ACM
STOC pages 563-568, 2008.

R. Tibshirani. Regression shrinkage and selectiortheédasso.Journal of the Royal Statistical Society
pages 267-288, 1996.

J. Tropp. Greed is good: Algorithmic results for spaapproximation|EEE Transactions on Information
Theory 50(10):2231-2242, 2004.

T. Zhang. Generating &dimensional linear subspace efficiently. Adaptive forward-backward greedy
algorithm for sparse learning with linear modeR008.



