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Abstract

Many fundamental questions in theoretical neuroscience involve optimal decod-
ing and the computation of Shannon information rates in populations of spiking
neurons. In this paper, we apply methods from the asymptotictheory of statistical
inference to obtain a clearer analytical understanding of these quantities. We find
that for large neural populations carrying a finite total amount of information, the
full spiking population response is asymptotically as informative as a single obser-
vation from a Gaussian process whose mean and covariance canbe characterized
explicitly in terms of network and single neuron properties. The Gaussian form
of this asymptotic sufficient statistic allows us in certaincases to perform optimal
Bayesian decoding by simple linear transformations, and toobtain closed-form
expressions of the Shannon information carried by the network. One technical
advantage of the theory is that it may be applied easily even to non-Poisson point
process network models; for example, we find that under some conditions, neural
populations with strong history-dependent (non-Poisson)effects carry exactly the
same information as do simpler equivalent populations of non-interacting Poisson
neurons with matched firing rates. We argue that our findings help to clarify some
results from the recent literature on neural decoding and neuroprosthetic design.

Introduction

It has long been argued that many key questions in neuroscience can best be posed in information-
theoretic terms; the efficient coding hypothesis discussedin [2, 3, 4, 1], represents perhaps the
best-known example. Answering these questions quantitatively requires us to compute the Shannon
information rate of neural channels, whether numerically using experimental data or analytically
in mathematical models. In many cases it is useful to exploitconnections with “ideal observer”
analysis, in which the performance of an optimal Bayesian decoder places fundamental bounds on
the performance of any biological system given access to thesame neural information. However, the
non-linear, non-Gaussian, and correlated nature of neuralresponses has hampered the development
of this theory, particularly in the case of high-dimensional and/or time-varying stimuli.

The neural decoding literature is far too large to review systematically here; instead, we will focus
our attention on work which has attempted to develop an analytical theory to simplify these complex
decoding and information-rate problems. Two limiting regimes have received significant analytical
attention in the neuroscience literature. In the “high-SNR” regime,n → ∞, wheren is the num-
ber of neurons encoding the signal of interest; if the information rate of each neuron is bounded
away from zero and neurons respond in a conditionally weakly-dependent manner given the stim-
ulus, then the total information provided by the neural population becomes infinite, and the error
rate of any reasonable neural decoder tends to zero. For discrete stimuli, the Shannon information
is effectively determined in this asymptotic limit by a simpler quantity known as the Chernoff infor-
mation [10, 15]; for continuous stimuli, maximum likelihood estimation is asymptotically optimal,
and the asymptotic Shannon information is controlled by theFisher information [9, 8]. On the other
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hand we can consider the “low-SNR” limit, where only a few neurons are observed and each neu-
ron is asymptotically weakly tuned to the stimulus. In this limit, the Shannon information tends to
zero, and under certain conditions the optimal Bayesian estimator (which can be strongly nonlinear
in general) can be approximated by a simpler linear estimator; see [6] and more recently [22] for
details.

In this paper, we study information transmission and optimal decoding in what we would argue
is a more biologically-relevant “intermediate” regime, where n is large but the total amount of
information provided by the population remains finite, and the problem of decoding the stimulus
given the population neural activity remains nontrivial.

Likelihood in the intermediate regime: the inhomogeneous Poisson case

For clarity, we begin by analyzing the information in a simple population of neurons, represented as
inhomogenous Poisson processes that are conditionally independent given the stimulus. We will ex-
tend our analysis to more general neural populations in the next section. In response to the stimulus,
at each time stept neuroni fires with probabilityλi(t)dt, where the rate is given by

λi(t) = f [bi(t) + ǫℓi,t(θ)] , (1)

wheref(.) is a smooth rectifying non-linearity andǫ is a gain factor controlling each neuron’s
sensitivity. The baseline firing rate is determined bybi(t) and is independent of the input signal.
The true stimulus at timet is defined byθt, andθ abbreviates the time varying stimulusθ0:T in the
time interval[0, T dt]. The termℓi,t(θ) summarizes the dependence of the neuron’s firing rate on
θ; depending on the setting, this term may represent e.g. a tuning curve or a spatiotemporal filter
applied to the stimulus (see examples below).

The likelihood includes all the information about the stimulus encoded in the population’s spiking
response. Neuroni’s response at time stept is designated by by the binary variableri(t). The log-
likelihood at the parameter valueϑ (which may be different from the true parameterθ) is given by
the standard point-process formula [28]:

Lϑ(r) := log p(r|ϑ) =

n
∑

i=1

T
∑

t=0

ri(t) log λi(t) − λi(t)dt. (2)

This expression can be expanded aroundǫ = 0:

Lϑ(r) = Lϑ(r)|ǫ=0 + ǫ
∂Lϑ(r)

∂ǫ
|ǫ=0 +

1

2
ǫ2

∂2Lϑ(r)

∂ǫ2
|ǫ=0 + O(nǫ3),

where
∂Lϑ(r)

∂ǫ
|ǫ=0 =

∑

i,t

ℓi,t(ϑ)
{

ri(t)
f ′

f

(

bi(t)
)

− f ′(bi(t))dt
}

∂2Lϑ(r)

∂ǫ2
|ǫ=0 =

∑

i,t

ℓ2
i,t(ϑ)

{

ri(t)
(f ′

f

)′(
bi(t)

)

− f ′′(bi(t))dt
}

.

Let ri denote the vector representation of theith neuron’s spike train and let1

gi(ri) :=
[

ri(1)
f ′

f
(bi(1)) − f ′(bi(1))dt · · · ri(T )

f ′

f
(bi(T )) − f ′(bi(T ))dt

]T

hi(ri) :=
[

ri(1)
(f ′

f

)′
(bi(1)) − f ′′(bi(1))dt · · · ri(T )

(f ′

f

)′
(bi(T )) − f ′′(bi(T ))dt

]T

ℓi(ϑ) :=
[

ℓi,1(ϑ) ℓi,2(ϑ) · · · ℓi,T (ϑ)
]T

;

then

Lϑ(r) = Lϑ(r)|ǫ=0 + ǫ

n
∑

i=1

ℓi(ϑ)T gi(ri) +
1

2
ǫ2

n
∑

i=1

ℓi(ϑ)T diag[hi(ri)]ℓi(ϑ) + O(nǫ3).

1With a slight abuse of notation, we useT for both the total number of time steps and the transpose opera-
tion; the difference is clear from the context.
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This second-order loglikelihood expansion is standard in likelihood theory [31]; as usual, the first
term is constant inϑ and can therefore be ignored, while the third (quadratic) term controls the
curvature of the loglikelihood atǫ = 0, and scales asǫn2. In the high-SNR regime discussed
above, wheren → ∞ andǫ is fixed, the likelihood becomes sharply peaked atθ (and therefore the
Fisher information, which may be understood as the curvature of the log-likelihood atθ, controls the
asymptotics of the estimation error in the case of continuous stimuli), and estimation ofθ becomes
easy; in the low-SNR regime, we fixn and consider theǫ → 0 limit.

Now, finally, we can more precisely define the “intermediate”SNR regime: we will focus on the
case of large populations (n → ∞), but in order to keep the total information in a finite range we
need to scale the sensitivityǫ asǫ ∼ n−1/2. In this setting, the error termO(nǫ3) = O(n− 1

2 ) = o(1)
and can therefore be neglected, and the law of large numbers (LLN) implies that

ǫ2
∂2Lϑ(r)

∂ǫ2
|ǫ=0 = Er|θ

[

1

n

∑

i

ℓi(ϑ)T diag[hi(ri)]ℓi(ϑ)

]

;

consequently, the quadratic termǫ2 ∂2Lϑ(r)
∂ǫ2 |ǫ=0 will be independent of the observed spike train and

therefore void of information aboutθ. So the first derivative term is the only part of the likelihood
that depends both on the neural activity andϑ, and may therefore be considered a sufficient statistic
in this asymptotic regime: all the information about the stimulus is summarized in

ǫ
∂Lϑ(r)

∂ǫ
|ǫ=0 =

1√
n

∑

i

ℓi(ϑ)T gi(ri). (3)

We may further apply the central limit theorem (CLT) to this sum of independent random vectors to
conclude that this term converges to a Gaussian process indexed byϑ (under mild technical condi-
tions that we will ignore here, for clarity). Thus this modelenjoys the local asymptotic normality
property observed in many parametric statistical models [31]: all of the information in the data can
be summarized asymptotically by a sufficient statistic witha sampling distribution that turns out to
be Gaussian.

Example: Linearly filtered stimuli and state-space models

In many cases neurons are modeled in terms of simple rectifiedlinear filters responding to the
stimulus. We can handle this case easily using the language introduced above, if we letKi denote
the matrix implementing the transformation(Kiθ)t = ℓi,t(θ), the projection of the stimulus onto
thei-th neuron’s stimulus filter. Then,

ǫ
∂Lϑ(r)

∂ǫ
|ǫ=0 = ϑT

[

1√
n

n
∑

i=1

KT
i

(

diag

[

f ′
i

fi

]

ri − f ′
idt

)

]

:= ϑT ∆(r),

wherefi stands for the vector version off [bi(t)]. Thus all the information in the population spike
train can be summarized in the random vector∆(r), which is a simple linear function of the observed
spike train data. This vector has an asymptotic Gaussian distribution, with mean and covariance

Er|θ (∆(r)) =
1√
n

n
∑

i=1

KT
i

(

diag

[

f ′
i

fi

](

fidt + f ′
idt

Kiθ√
n

+ O(
1

n
)

)

− f ′
idt

)

=

[

1

n

n
∑

i=1

KT
i diag

[f ′2
i

fi
dt

]

Ki

]

θ + O(
1√
n

)

J := covr|θ (∆(r)) =
1

n

n
∑

i=1

KT
i diag

[

f ′
i

fi

]

covr|θ
[

ri

]

diag

[

f ′
i

fi

]

Ki

=
1

n

n
∑

i=1

KT
i diag

[f ′2
i

fi
dt

]

Ki + O(
1√
n

).

Thus, the neural population’s non-linear and temporally dynamic response to the stimulus is as
informative in this intermediate regime as a single observation from a standard Gaussian experiment,
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in which the parameterθ is filtered linearly byJ and corrupted by Gaussian noise. All of the filtering
properties of the population are summarized by the matrixJ . (Note that if we consider eachKi as a
random sample from some distribution of filters, thenJ will converge by the law of large numbers
to a matrix we can compute explicitly.)

Thus in many cases we can perform optimal Bayesian decoding of θ given the spike trains quite
easily. For example, ifθ has a zero mean Gaussian prior distribution with covarianceCθ, then the
posterior mean and the maximum-a-posteriori (MAP) estimate is well-known and coincides with the
optimal linear estimate (OLE):

θ̂OLE(r) = E(θ|r) = (J + C−1
θ )−1∆(r). (4)

We may compute the Shannon informationI(θ : r) betweenr andθ in a similarly direct fashion.
We know that, asymptotically, the sufficient statistic∆(r) is as informative as the full population
responser

I(θ : r) = I(θ : ∆(r)).

In the case that the prior ofθ is Gaussian, as above, then the information can therefore becomputed
quite explicitly via standard formulas for the linear-Gaussian channel [10]:

I(θ : ∆(r)) =
1

2
log det(I + JCθ). (5)

To summarize, when the encodingsℓi,t(θ) are linear inθ, and we are in the intermediate-SNR
regime, and the parameterθ has a Gaussian prior distribution, then the optimal Bayesian estimate is
obtained by applying a linear transformation to the sufficient statistic∆(r) which itself is linear in
the spike train, and the mutual information between the stimulus and full population response has
a particularly simple form. These results help to extend previous theoretical studies [6, 24, 27, 22]
demonstrating that in some cases linear decoding can be optimal, and also shed some light on recent
experimental studies indicating that optimal linear and nonlinear Bayesian estimators often have
similar performance in practice [19, 18].

To work through a concrete example, consider the case that the temporal sequence of parameter
valuesθt is generated by an autoregressive process:

θt+1 = Aθt + ηt ηt ∼ N (0, R),

for a stable dynamics matrixA and positive-semidefinite covariance matrixR. Further assume that
the observation matricesKi act instantaneously, i.e.,Ki is block-diagonal with blocksKi,t, and
therefore the responses are modeled as

ri(t) ∼ Poiss[f(bi(t) + ǫKi,tθt)dt].

Thusθ and the responsesr together represent a state-space model. This framework hasbeen shown
to lead to state-of-the-art performance in a wide variety ofneural data analysis settings [12, 20, 16].
To understand optimal inference in this class of models in the intermediate SNR regime, we may
follow the recipe outlined above: we see that the asymptoticsufficient statistic in this model can be
represented as

∆t = Jtθt + ǫt ǫt ∼ N (0, Jt),

where the effective filter matrixJ defined above is block-diagonal (due to the block-diagonal struc-
ture of the filter matricesKi), with blocks we have denotedJt. Thus∆t represents observations
from a linear-Gaussian state-space model, i.e., a Kalman filter model [23]. Optimal decoding of
θ given the observation sequence∆1:T can therefore be accomplished via the standard forward-
backward Kalman filter-smoother [11, 26]; see Fig. 1 for an illustration. The information rate
limT→∞ I(θ0:T : r0:T ) = limT→∞ I(θ0:T : ∆(r)0:T ) may be computed via similar recursions
in the stationary case (i.e., whenJt is constant in time). The result may be expressed most explicitly
in terms of a matrix which is the solution of a Riccati equation involving the effective Kalman model
parameters; the details are provided in the appendix.

Nonlinear examples: orientation coding, place fields, and small-time expansions

While the linear setting discussed above can handle many examples of interest, it does not seem
general enough to cover two well-studied decoding problems: inferring the orientation of a visual
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stimulus from a population of cortical neurons [25, 5], or inferring position from a population of
hippocampal or entorhinal neurons [7]. In the former case, the stimulus is a phase variable, and
therefore does not fit gracefully into the linear setting described above; in the latter case, place
fields and grid fields are not well-approximated as linear functions of position. If we apply our
general theory in these settings, the interpretation of theencoding functionℓi(θ) does not change
significantly: ℓi(θ) could represent the tuning curve of neuroni as a function of the orientation of
the visual stimulus, or of the animal’s location in space. However, without further assumptions the
limiting sufficient statistic, which is a weighted sum of these encoding functionsℓi(θ) (recall eq. 3)
may result in an infinite-dimensional Gaussian process, which may be computationally inconvenient.

To simplify matters somewhat, we can introduce a mild assumption on the tuning functionsℓi(θ).
Let’s assume that these functions may be expressed in some low-dimensional basis:ℓi(θ) =
KiΦ(θ), for some vectorsKi, andΦ(θ) is defined to mapθ into anmT -dimensional space which
is usually smaller thandim(θ) = dim(θt)T . This finite-basis assumption is very natural: in the
orientation example, tuning curves are periodic in the angleθt and are therefore typically expressed
as sums of a few Fourier functions; similarly, two-dimensional finite Fourier or Zernike bases are
often used to represent grid or place fields [7]. The key pointhere is that we may now simply follow
the derivation of the last section withΦ(θ) in place ofθ; we find that the sufficient statistic may
be represented asymptotically as anmT -dimensional Gaussian vector with meanJ and covariance
JΦ(θ), with J defined as in the preceding section.

We should note that this nonlinear case does remain slightlymore complicated than the linear case
in one respect: while the likelihood with respect toΦ(θ) reduces to something very simple and
tractable, the prior (which is typically defined as a function ofθ) might be some complicated function
of the remapped variableΦ(θ). So in most interesting nonlinear cases we can no longer compute the
optimal Bayesian decoder or the Shannon information rate analytically. However, our approach does
lead to a major simplification in numerical investigations into theoretical coding issues. For example,
to examine the coding efficiency of a population of neurons encoding an orientation variable in this
intermediate SNR regime we do not need to simulate the responses of the entire population (which
would involve drawingnT random variables, for some large population sizen); instead, we only
need to draw a single equivalentmT -dimensional Gaussian vector∆(r), and quantify the decoding
performance based on the approximate loglikelihood

Lϑ(r) = Lϑ(r)|ǫ=0 + Φ(ϑ)T ∆(r) +
1

2
Φ(ϑ)T JΦ(ϑ) + O(

1√
n

),

which as emphasized above has a simple quadratic form as a function ofΦ(ϑ). Sincem can typically
be chosen to be much smaller thann, this approach can result in significant computational savings.

We now switch gears slightly and examine another related intermediate regime in which nonlinear
encoding plays a key role: instead of letting the sensitivity ǫ of each neuron become small (in order to
keep the total information in the population finite), we could instead keep the sensitivity constant and
let the time period over which we are observing the population scale inversely with the population
sizen. This short-time limit is sensible in some physiological and psychophysical contexts [29] and
was examined analytically in [21] to study the impact of inter-neuron dependencies on information
transmission. Our methods can also be applied to this short-time limit. We begin by writing the
loglikelihood of the observed spike count vectorr in a single time-bin of lengthdt:

Lϑ(r) := log p(r|θ) =
∑

i

ri log f [bi + ℓi(ϑ)] − f [bi + ℓi(ϑ)] dt.

The second term does not depend onr; therefore, all information inr aboutθ resides in the sufficient
statistic

∆ϑ(r) :=
∑

i

ri log f [bi + ℓi(ϑ)] .

Since thei-th neuron fires with probabilityf [bi + ℓi(θ)] dt, the mean of∆ϑ(r) scales withndt, and
it is clear thatdt = 1/n is a natural scaling of the time bin. With this scaling∆ϑ(r) converges to a
Gaussian stochastic process with mean

Er|θ[∆ϑ(r)] =
1

n

∑

i

f [bi + ℓi(θ)] log f [bi + ℓi(ϑ)]
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and covariance

covr|θ[∆ϑ(r), ∆ϑ′ (r)] =
1

n

∑

i

f [bi + ℓi(θ)]
(

log f [bi + ℓi(ϑ)]
)(

log f [bi + ℓi(ϑ
′)]

)

,

where we have used the fact that the variance of a Poisson random variable coincides with its mean.

In general, this limiting Gaussian process will be infinite-dimensional. However, if we choose the ex-
ponential nonlinearity (f(.) = exp(.)) and the encoding functionsℓi(θ) are of the finite-dimensional
form considered above,ℓi(θ) = KT

i Φ(θ), then thelog f [bi + ℓi(ϑ)] term in the definition of∆ϑ(r)
simplifies: in this case, all information aboutθ is captured by the sufficient statistic

∆(r) =
∑

i

riKi.

If we again letdt = 1/n, then we find that∆(r) converges to a finite-dimensional Gaussian random
vector with mean and covariance

Er|θ[∆(r)] =
1

n

∑

i

f
[

bi + KT
i Φ(θ)

]

Ki; covr|θ[∆(r)] =
1

n

∑

i

f
[

bi + KT
i Φ(θ)

]

KiK
T
i ;

again, if the filtersKi are modeled as independent draws from some fixed distribution, then the
above normalized sums converge to their expectations, by the LLN. Thus, as in the intermediate-
SNR regime, we see that inference can be dramatically simplified in this short-time setting.

Likelihood in the intermediate regime: non-Poisson effects

We conclude by discussing the generalization to non-Poisson networks with interneuronal depen-
dencies and nontrivial correlation structure. We generalize the rate equation (1) to

λi(t) = fi

[

bi(t) + ǫℓi,t(θ)
∣

∣Ht

]

,

whereHt stands for the spiking activity of all neurons prior to timet: Ht = {ri(t
′)}t′<t,1≤i≤n.

Note that the influence of spiking history may be different for each neuron: refractory periods,
self-inhibition and coupling between neurons can be formulated by appropriately defining the de-
pendence offi(.) onHt.

We begin, as usual, by expanding the log-likelihood. The basic point-process likelihood (eq. 2)
remains valid. Letgi(r) andhi(r) denote the vector versions of

ri(t)
f ′

f

[

bi(t)
∣

∣Ht

]

− f ′
i

[

bi(t)
∣

∣Ht

]

dt and ri(t)
(f ′

f

)′[
bi(t)

∣

∣Ht

]

− f ′′
i

[

bi(t)
∣

∣Ht

]

dt,

respectively, analogously to the Poisson case. Then, the first and second terms in the expansion of
the loglikelihood may be written as

ǫ
∂Lϑ(r)

∂ǫ
|ǫ=0 = ǫ

∑

i

ℓT
i (ϑ)gi(r) and

1

2
ǫ2

∂2Lϑ(r)

∂ǫ2
|ǫ=0 =

1

2
ǫ2

∑

i

ℓT
i (ϑ)diag[hi(r)]ℓi(ϑ),

as before. For independent neurons, the log-likelihood wascomposed of normalized sums of in-
dependent random variables that converged to a Gaussian process, by the CLT. In the history-
dependent, coupled case,gi(r) andhi(r) depend not only on thei-th neuron’s activityri, but rather
on the whole network history. Nonetheless, under technicalconditions on the network’s dependence
structure (to ensure that the firing rates and correlations in the network remain bounded), we may still
exploit versions of the LLN and CLT. Thus, under conditions ensuring the validity of the LLN we

may conclude that, as before, the second-order termǫ2 ∂2Lϑ(r)
∂ǫ2 |ǫ=0 converges to its expectation under

the intermediateǫ ∼ n− 1

2 scaling, and therefore carries no information aboutθ. When we discard
this second-order term, along with higher-order terms thatare negligible in the intermediate-SNR,
large-n limit, we are left once again with the gradient termǫ∂Lϑ(r)

∂ǫ |ǫ=0 = 1√
n

∑

i ℓi(ϑ)T gi(r),
which under appropriate conditions (ensuring the validityof a CLT) will converge to a Gaussian
process limit whose mean and covariance we can often computeanalytically.
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Let’s turn to a specific example, in order to make these claimssomewhat more concrete. Consider
a network with weak couplings and possibly strong self-inhibition and history dependence; more
precisely, we assume that interneuronal conditional cross-covariances are weak, given the stimulus:

cov[ri(t), rj(t + τ)|θ] = O(n−1) for i 6= j.

See, e.g., [13, 30] for further discussion of this condition, which is satisfied for many spiking net-
works in which the synaptic weights scale uniformly asO(n−1). For simplicity, we will also
restrict our attention to linear encoding functions, though generalizations to the nonlinear case
are straightforward. Thus, as before, letKi denote the matrix implementing the transformation
(Kiθ)t = ℓi,t(θ), the projection of the stimulus onto thei-th neuron’s stimulus filter. Then

ǫ
∂Lϑ(r)

∂ǫ
|ǫ=0 = ϑT

[

1√
n

n
∑

i=1

KT
i

(

diag

[

f ′
i

fi

]

ri − f ′
idt

)

]

,

wherefi stands for the vector version offi

[

bi(t)
∣

∣Ht

]

; in other words, thet-th entry offidt is the

probability of observing a spike in the interval[t, t + dt], given the network spiking historyHt in
the absence of input. Our sufficient statistic is therefore exactly as in the Poisson setting,

∆(r) :=
1√
n

n
∑

i=1

KT
i

(

diag

[

f ′
i

fi

]

ri − f ′
idt

)

, (6)

except for the history-dependence induced through the redefinition of fi.

Computing the necessary means and covariances in this case requires more work than in the Poisson
case; see the appendix for details. It is helpful (though notnecessary) to make the stationarity

assumptionbi(t) ≡ bi, which implies in this setting thatE(
f ′

i

2

fi
) can also be chosen to be time-

invariant; in this case the limiting covariance and mean of the sufficient statistic are given by

J := covr|θ [∆(r)] =
1

n

n
∑

i=1

Kidiag
[

Er|θ=0

(f ′
i
2

fi
dt

)

]

Ki; Er|θ [∆(r)] = Jθ,

where the expectations are over the spontaneous network activity in the absence of any input. In
short, once again, we have∆(r) →D N (Jθ, J). Analytically, the only challenge here is to compute
the expectations in the definition ofJ . In many cases this can be done analytically (e.g., in any pop-
ulation of uncoupled renewal-process neurons), or by usingmean-field theory [30], or numerically
by simply calculating the mean firing rate of the network in the undriven stateθ = 0.

We examine this convergence quantitatively in Fig. 1. In this case the stimulusθt was a sample path
from a one-dimensional autoregressive (AR(1)) process. Spikes were generated according to

λi(t) = λo exp





θt√
n

+

n
∑

j=1

wjiIj(t)



 1τi(t)>τref
,

whereIj(t) is the synaptic input from thej-th cell (generated by convolving the spike trainrj with
an exponential of time constant20 ms),wji is the synaptic weight matrix coupling the output of
neuronj to the input of neuroni, τi(t) is the time since the last spike; therefore,1τi(t)>τref

enforces
the absolute refractory periodτref , which was set to be2 ms here. Since the encoding filtersKi act
instantaneously in this model (Ki can be represented as a delta function, weighted byn−1/2), the
observed spike trains can be considered observations from astate-space model, as described above.
The weightswji were generated randomly from a uniform distribution on the interval−[5/n, 5/n],
with self-weightswii = 0, and

∑

j wji = 0 to enforce detailed balance in the network. Note that,
while the interneuronal coupling is weak in this example, the autocorrelation in these spike trains is
quite strong on short time scales, due to the absolute refractory effect.

We compared two estimators ofθ: the full (nonlinear) MAP estimatêθMAP = arg maxθ p(θ|r),
which we computed using the fast direct optimization methods described in [17, 20], and the limiting
optimal estimator̂θ∆ := (J +C−1

θ )−1∆(r). Note thatJ is diagonal; we computed the expectations
in the definition ofJ using the numerical approach described above in this simulation, though in
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Figure 1: The left panels show the true stimulus (green), MAPestimate (red) and the limiting optimal
estimatorθ̂∆ := (J + C−1

θ )−1∆(r) (blue) for various population sizesn. The middle panels show
the spike trains used to compute these estimates. The right panels show the sufficient statistics∆(r)

used to computêθ∆. Note that the same true stimulus was used in all three simulations. Asn
increases, the linear decoder converges to the MAP estimate, despite the nonlinear and correlated
nature of the network model generating the spike trains (seemain text for details).

other simulations (with uncoupled renewal-model populations) we checked that the fully-analytical
approach gave the correct solution. In addition,C−1

θ is tridiagonal in this state-space setting; thus
the linear matrix equation in eq. (4) can be solved efficiently in O(T ) time using standard tridiagonal
matrix solvers. We find that, as predicted, the full nonlinear Bayesian estimator̂θMAP approaches
the limiting optimal estimator̂θ∆ asn becomes large;n = 20 is basically sufficient in this case,
although of course the convergence will be slower for largervalues of the gain factorǫ (or, equiva-
lently, larger filtersKi or larger values of the variance ofθt).

We conclude with a few comments about these results. First, note that the covariance matrixJ
we have computed here coincides almost exactly with what we computed previously in the Poisson
case. Indeed, we can make this connection much more precise:we can always choose an equivalent
Poisson network with rates defined so that theEr|θ=0[(f

′
i)

2/fi] term in the non-Poisson network
matches the(f ′

i)
2/fi term in the Poisson network. SinceJ determines the information rate com-

pletely, we conclude that for any weakly-coupled network there is an equivalent Poisson network
which conveys exactly the same information in the intermediate regime. However, note that the the
sufficient statistic∆(r) is different in the Poisson and non-Poisson settings, sincethe f ′/f term
linearly reweights the observed spikes, depending on how likely they were given the history; thus
the optimal Bayesian decoder incorporates non-Poisson effects explicitly.

A number of interesting questions remain open. For example,while we expect a LLN and CLT to
continue to hold in many cases of strong, structured interneuronal coupling, computing the asymp-
totic mean and covariance of the sufficient statistic∆(r) may be more challenging in such cases,
and new phenomena may arise. We also hope in the future to examine the effect of latent correlated
variability (as discussed, e.g., in the recent work of [33, 32]) on the results presented here.
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Appendix: Information rates in the Kalman model

For completeness, in this appendix we provide the details ofthe computation of the information rate
in the Kalman model. The information rate is the difference between the prior entropy rate and the
posterior entropy rate of the stimulus. The former can be calculated using the Markov property [10];
namely,

lim
T→∞

1

T
H(θ1:T ) = lim

T→∞

1

T

[

H(θ1) +

T
∑

t=2

H(θt|θt−1)

]

=
1

2
log detR + constant,

whereR is the dynamics noise covariance defined in the state-space section of the main text, and
constant denotes a term that will cancel with the same term in the posterior entropy rate and can
therefore be ignored.

We provide three methods of increasingly explicit form for computing the posterior entropy rate. The
posterior distribution of the stimulus given data is a Gaussian distribution; therefore, the posterior
entropy depends on the determinant of the posterior covariance matrixcov[θ1:T

∣

∣∆1:T ]. This matrix
is of sizeTd × Td, whered = dim(θt). The inverse of this matrix is block-tridiagonal [20], with
blocks of sized×d, and we may therefore compute the determinant of this matrixin O(T ) time using
standard block-tridiagonal determinant recursions. Examining these recursions leads to a Riccati-
like equation that determines the posterior entropy rate,limT→∞(1/T ) logdet cov[θ1:T

∣

∣∆1:T ] +
constant.

Alternatively, we can use a method described in [14], based on the Gaussian integral identity

log p(∆) = log

∫

p(θ, ∆)dθ = log p(θ̂) + log p(∆|θ̂) +
1

2
log det cov(θ|∆) + constant,

whereθ̂ = E(θ1:T |∆1:T ) can be computed via the standard forward-backward Kalman recursions.
Since this formula is valid for any value of∆, e.g.,∆ = 0, we can compute the marginal log-
probability log p(∆) via the standard forward recursion for the Kalman filter, andlog p(θ̂) and
log p(∆|θ̂) by pluggingθ̂ into the log-priorlog p(θ) and the log-likkelihoodlog p(∆|θ), which are
both computable explicitly in this model. This leaves us with the 1

2 log det cov(θ|∆) term; taking
limits of the result divided byT provides the posterior entropy rate.

Finally, a third, explicit method to compute the posterior entropy rate may be derived as follows:

lim
T→∞

1

T
H(θ1:T |∆1:T ) = lim

T→∞

1

T

[

E∆1:T
H(θ1|∆1:T ) +

T
∑

t=2

E∆1:T
H(θt|θt−1, ∆1:T )

]

= lim
T→∞

1

T

T
∑

t=2

1

2
log det cov[θt|θt−1, ∆1:T ].

The covariancecov[θt|θt−1, ∆1:T ] can be expressed in terms of the forward covariance matrixCf
t =

cov[θt|∆1:t] and the backward covariance matrixCs
t = cov[θt|∆1:T ]; the joint covariance ofθt and

θt+1 given the full observation∆ can be expressed as [11, 26]:

(

Cs
t Cs

t+1K
T
t

KtC
s
t+1 Cs

t+1,

)

,

where

cov(θt|∆1:t−1) = ACf
t−1A

T + R

and

Kt = Cf
t JT [cov(θt|∆1:t−1)]

−1.

Using the standard formula for computing the conditional covariance of a Gaussian we have:

cov[θt|θt−1, ∆1:T ] = Cs
t − Kt−1C

s
t KT

t−1.
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Finally, we have:

lim
T→∞

1

T

T
∑

t=2

1

2
log det cov[θt|θt−1, ∆1:T ] =

1

2
log |Cs − KCsKT |

where

Cs = lim
T→∞

Cs
T/2 and K = lim

T→∞
KT/2.

These matrices can be found using the Riccatti equations:

Cf =
[

(ACfAT + R)−1 + J
]−1

and Cs − KCsKT = Cf − Kt(ACfAT + R)KT
t .

Appendix: Mean and Covariance of sufficient statistic with History
Dependence

The expectation and covariance of∆(r) should be calculated over the distribution of network activ-
ity r in response to inputθ. The expectation of

∆(r) =
1√
n

n
∑

i=1

KT
i

(

diag

[

f ′
i

fi

]

ri − f ′
idt

)

depends on the expectation off ′

i

fi
(t)ri(t) − f ′

i(t)dt. Note that by conditioning on the historyHt

Er|θ

{

f ′
i

fi
(t)ri(t) − f ′

i(t)dt

}

= Er|θ

{

Er|θ
[f ′

i

fi
(t)ri(t) − f ′

i(t)dt
∣

∣

∣Ht

]

}

= Er|θ

{

f ′
i

fi
(t)Er|θ

[

ri(t)
∣

∣

∣Ht

]

− f ′
i(t)dt

}

= Er|θ

{

f ′
i

fi
(t)

[

fi(t)dt + f ′
idt

(Kiθ)t√
n

+ O(
1

n
)
]

− f ′
i(t)dt

}

= Er|θ
(f ′

i
2

fi
(t)dt

) (Kiθ)t√
n

+ O(
1

n
) (7)

therefore the expectation of∆(r) is simplified to

Er|θ (∆(r)) =
1√
n

n
∑

i=1

KT
i

{

Er|θ
(

diag

[

f ′
i
2

fi
dt

]

)Kiθ√
n

+ O(
1

n
)

}

=
1

n

n
∑

i=1

KT
i Er|θ

(

diag

[

f ′
i
2

fi
dt

]

)

Kiθ + O(
1√
n

)

=
1

n

n
∑

i=1

KT
i Er|θ=0

(

diag

[

f ′
i
2

fi
dt

]

)

Kiθ + O(
1√
n

)

The covariance can be written as

covr|θ (∆(r)) =
1

n

n
∑

i=1

KT
i covr|θ

[

diag

[

f ′
i

fi

]

ri − f ′
idt

]

Ki (8)

+
1

n

∑

i6=j

KT
i covr|θ

[

diag

[

f ′
i

fi

]

ri − f ′
idt , diag

[

f ′
j

fj

]

rj − f ′
jdt

]

Kj . (9)

First, we calculate the sum in equation (8); second, we show that for weak coupling the sum in
equation (9) isO( 1√

n
). For simplicity of presentation, let us define

Zi,t := ri(t)
f ′

i

fi
(t) − f ′

i(t)dt.
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The terms in the sum of equation (8) are auto-covariances that can be written as (τ ≥ 0)

covr|θ

[

diag

[

f ′
i

fi

]

ri − f ′
idt

]

t,t+τ

= covr|θ [Zi,t, Zi,t+τ ]

= E

[

cov
[

Zi,t, Zi,t+τ

∣

∣

∣Ht+τ

]

]

+ cov

[

E[Zi,t|Ht+τ ], E[Zi,t+τ |Ht+τ ]

]

= δ(τ)varr|θ
[

Zi,t

]

+ covr|θ

[

Zi,t,
f ′

i
2

fi
(t + τ)dt

]

(Kiθ)t+τ√
n

+ O(
1

n
)

= δ(τ)

[

E
[

var(Zi,t|Ht)
]

+ var
[

E(Zi,t|Ht)
]

]

+ O(
1√
n

)

= δ(τ)Er|θ
[f ′

i
2

fi
(t)dt

]

+ O(
1√
n

)

= δ(τ)Er|θ=0

[f ′
i
2

fi
(t)dt

]

+ O(
1√
n

)

Next, we show that if the cross-correlation in the network activity is small

cov[ri(t), rj(t + τ)] ∼ 1

n

then, the sum of cross-covariance terms in equation (9) is negligible because

covr|θ

[

diag

[

f ′
i

fi

]

ri − f ′
idt, diag

[

f ′
j

fj

]

rj − f ′
jdt

]

t,t+τ

= covr|θ [Zi,t, Zj,t+τ ]

= E

[

cov
[

Zi,t, Zj,t+τ

∣

∣

∣Ht+τ

]

]

+ cov

[

E[Zi,t|Ht+τ ], E[Zj,t+τ |Ht+τ ]

]

= cov

[

Zi,t, E[Zj,t+τ |Ht+τ ]

]

= cov

[

ri(t)
f ′

i

fi
(t) − f ′

i(t)dt,
f ′

j
2

fj
(t + τ)

]{

(Kjθ)t+τ√
n

+ O(
1

n
)

}

= O(
1

n3/2
).

Thus,

1

n

∑

i6=j

KT
i covr|θ[ri ·

f ′
i

fi
− f ′

idt, rj ·
f ′

j

fj
− f ′

jdt]Kj = O

(

1√
n

)

.
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