A Review of t-exponential family

The t-exponential family has been regarded as a useful generalization of the exponential family. To
introduce the ¢-exponential family, one need to first define the ¢-exponential function and ¢-logarithm
function,

exp(z) ift=1
expy(x) = . , (49)
14 (1 —t)z],~" otherwise.
log(z) ift=1
1 =
08:(7) {(xlt —1) /(1 —t) otherwise. (50)
where [z] be x if the z > 0 and 0 otherwise. Figure 4 depicts the exp, function, which shows a

slower decay than the exp function for ¢ > 1.

expy

Figure 4: Left: exp, Function. Right: Zoom of exp, function in domain of [-5,0].

The t-exponential family is then defined as
p(a;0) := exp, ((2(x),0) = 9:(0)) - (51
Although g;(6) cannot usually be analytically obtained, it still preserves convexity. In addition, it is
very close to being a moment generating function,
Vogi(0) = Eq [®(2)] . (52)
where g(z) is called the escort distribution of p(x), which is defined as:
q(x;0) = p(x;0)"/Z(0) (53)

Here Z(#) = [p'(x;0)dx is the normalizing constant which ensures that the escort distribution
integrates to 1. A general version of this result appears as Lemma 3.8 in Sears [12] and a version
specialized to the generalized ¢-exponential families appears as Proposition 5.2 in [17].

A prominent member of the t-exponential family is the Student’s ¢-distribution [13] as shown in the
following example.

Example 5 (Student’s ¢-distribution) A k-dimensional Student’s t-distribution p(x) =
St(x; p, X, v) with v > 2 degrees of freedom has the following probability density function:

(v+k)/2) (
() D (v/2)| = [1/2

Let —(v+k)/2=1/(1—1t)and

\11:< L (v +k)/2) )2“”“‘”
()" T(w/2)[ S 112

—(v+k)/2

St(x; p, X, v) =

+(x—p) (vE)(x —p)) (54)
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then (54) becomes

St(x; 1, 2, 0) = (14 (1 — ) (®(x),0) — 9:(0)) ™" = exp, ((9(x),0) — 6:(6)).
where

K=@wX)!, &kx)=[xxx"],0=1[01,0]
0,=-2VKp/(1-1t),00=9K/(1-1t)

\\ 1
0)=—| — TK 1)+ —
9+(0) <1_t>(u pE1)+1—
The escort of Student’s t-distribution is,

1
a(x;6) =  St(x; 1, 3, 0)! = St(x; 1,05 /(v +2), 0 +2)

Interestingly, the mean of the Student’s t-pdf is p, and its variance is v3 /(v — 2) while the mean
and variance of the escort are p and X respectively.

B Proof of Theorem 2

Theorem For any p, define 6(p) (if exists) to be the parameter of the t-exponential family s.t.

=Byt [0(0)] = [ S(a)a(ai6() do 53)
o [ H(p(; 0) i 0() exists
Then g7 () = {Jroo otherwise . (56)
where g; (1) denotes the Fenchel dual of ¢;(6). By duality it also follows that
9:(0) = sup {{u, 0) — g ()} - (57)
“w

Proof In view of (3) and (9),
H= ]Eq(w;B(u)) [@(x)] = Voge(0).

We only need to consider the case when 6(1u) exists since otherwise g; () is trivially defined as
+00. When 6(p) exists, clearly 6(u) € (Vg;)~1(u). Therefore, we have,

Slalp {<:u7 9> — gt (9)} = Sl;p {<Eq(x;9(/t)) [(I)(IC)] ) 0> — Gt (9)}

= (Bg(o(u) [2(2)],0(1)) — 9:(0(1)) (58)
= [ alei000) (@(0),000)) ~ 3:(6(0))) da
— [ s 600 g plas ) (59)

= — Ht(p(SC; 0(”)))

Equation (58) follows because of the duality between 6(u) and p, while (59) is because
log, p(a; () = ((2(),0(1)) — 9:(0(1)))- u

C Proof of Theorem 4

Theorem The relative t-entropy is the Bregman divergence defined on the negative t-entropy
—Hy(p).
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Proof First, we know the concavity of H; from Theorem 2 which leads to the convexity of —H;. In
addition, since p(x) and g(x) are one-to-one mapped, H;(p) can also work with g(x) equivalently.
Let us take the functional derivative of H;(p) with respect to the g(x),

dHy(p(x)) __ d([4(z)log, p(2)dz)
dg(z) dg(z)
~togp(a) — [ a0 oL
—log, p(z) — / ;f(f; 328 dz (60)
= —log, p(z) — e 1 i dp((;;dz 61)
— log, p(x) (62)

where, (60) comes from d log, () /dxz = 1/z* by definition of log, function; (61) is because q(z) =
2)t/ [ p(2)'dz; and (62) is because [ p(z)dz = 1.

Then the Bregman divergence between two distributions p(z) and p(z) is defined based on their
escort, using the fact that — Hy(p) is a convex function:

dH,(p(x))
dq(x)

- / a(w) 0, p(x) — d(x) log, B(x) — log, B(x)(a(x) — 4(x))dz
- / o(x) Tog, p(x) — () log, p(x)dx

Du(pl|B) = —Hulp) + Hi(p) - / (@) - q())

D Mean field approximation in the ¢-exponential family

Mean field method is another widely used deterministic approximate method. Consider the N-
dimensional multivariate ¢-exponential family of distribution

p(x;0) = exp, ((®(2),6) — g:(6)) -

where © = (x1,...,2y). Similar to the case of the exponential family [2], the approximation error
incurred as a result of replacing p by D is given by the relative t-entropy

91(0) = sup { (71.6) + Hy(p(a: 6(7)) } = inf Dy (p ). (©3)

I

where
i= [ @) ae: 6())dn = Eq[e(z)

Note that unlike minimizing D;(p|| p) in the previous method that we introduced, the mean field
method (63) is attempting to minimize D;(D ||p). As in the exponential family, we choose to ap-
proximate p(z; 6) by

.13,“ n), Where (64)

u’,:]z

Dy, (%0 én) = exp, (<<I>n(xn),0~n> — gt,n(én)) .
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Ifwefixan € {1,..., N} and denote p; = p;(z;; 6 ;). and q; the corresponding escort distribution,
then one can rewrite the KL divergence as

Dip ) = [ a, { J1ow vt [T, dasj} o, - [, { J1oz vt T4, dxj} dzp.
Jj#n j#n

If we keep all éj for j # n fixed, then the KL divergence is minimized by setting

/logt p(x;0) H q; drvj = /logtp(x; 0) H q; dx; + const. (65)

i#n i#n

Using the fact that | Hj?én q; drj =1, we can write

T R U 1
/logt p(as0) [ [ a; doj = — [ 57" (@:0) [] q doy — —;
Jj#En Jj#n

) 1 B ) 1
/logtp(fc;9) [1a doj=— [ »"7"@:0) []q;dn; —
Jj#n i#n

Since p(z; 0) is t-exponential family,

/ ! (w:6) [] a4y dey = / L+ (1 =) (@), 0) - 9:(6) | | 4 de

J#n iin
= (1 +(1— f)(<]Eaj¢n [ ()] ,9> - gt(Q))) , (66)

where we defined Eq,,  [®(z)] = J ®(x) [1;4n 4; dz;. Similarly,

/ﬁH(x;é) 114, dz;

J#n

— / (1 +(1-1) <<I>n(xn), én> - gt,n(én)>

H (1 +(1-1¢) <‘I)j($j),§j> — gt,j@j)) q; dx;

J#n

= (14 0= O(@a(@a), 1) — 910(0)))
11 (1 +(1- t)(<Eaj [©(z;)] 79~j> - gm‘(éj))) ; (67)
J#n

where we defined Eq, [®;(z;)] = [ ®;(x;)q; dz;. Putting together (66) and (67) by using (65)
yields

(1+ (1= O((Bq, .. (@()),0) - 9.(0)))
=(14+(01- t)(<®n(mn),9~n> - gtn(én)))
11 (1 +(1- t)(<ﬂ‘3qj (®;(z5)], §j> - gt,j(éj))) + const.

i#n

Absorbing all the terms which do not depend on z,, into the constant, we can rewrite the update
equation for the t-exponential distributions as

(@), 0,) = (Eq,, [0)].0) T] exvy ((Eq, [952)).0,) —9,0) + const.

j#n
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E Maean field approximation on the multivariate Student’s ¢-distribution

Suppose we want to approximate a k-dimensional Student’s ¢-distribution with degree of freedom
v and parameters g and 3 as in (54) by k one-dimensional Student’s ¢-distributions with degree
of freedom v. Recall that the ¢ parameter of the exp, distribution and the degree of freedom v of
the Student’s ¢-distribution are related by 15 = “t%. Therefore, we need to set ;27 = “t* =
Gjl, which yields v = v + k — 1. We now write the approximating distribution as p(z; é) =
IL, P, (xn;0,) where

D (703 0n) = exp, (<9~n7®n($n)> - gtm(én)) :

If we define K,, = (¥52)~" and

then,
Bin(0n) = — (@nffn i+, — 1) J(1—1).

Furthermore, ®,,(z,,) = [z,;22] and 0, = [én,l;én,g] with éml = -2V, K, i, /(1 —t) and
On,2 =¥, K, /(1 —t). Now we can write

<ém @n(xn)> :%@n : (—2f<n i, Tn + Knxi)

(0., [2(x)]) :%_t\p (~2n KB, 5]+ or (KB, [xxT]))

1
:ﬁ\lj . (_2“T kn 2 + 2’1;7571 KjstnnTn + knnxi) + const.

where fi;,, denotes the vector {ﬁj k,, denotes the n-th column of K, and kj+, ,

}jzlu.k,j#n’
denotes the n-th column of K after its n-th element is deleted. Recall that /i; = Eq [x;] and

532. = qu [x?] — qu [x]-]2. Therefore

(=N

€XPy <<éj’E€1j [(I)j(xj)]> - gt](éj)> = eXPy ( ljfi{ : (_2 ﬁj qu [:C]] +E€]J‘ [:U?}) - gt,j(éj)>

=0

= exp, ( T (2205 +07) - gt,j(aj)>

1w -
= —(=+VY,-1) .
eXPt<1_t(\~, + ¥ )>

The last line follows because K, = (¥52)~! and by expanding g, , ().

Putting everything together, the iterative updates for the Student’s ¢-distribution are given by

3§ >—<v+1>/v [(v/2)%/ Yt/
L((¥41)/2)%/ %%

- t—1
. 1 0, .
where, K,V,, = ¥k, H exp, <1—t(\7j +V; — 1))
Jj#n

To empirically validate the above updates, we use a 10-dimensional Student’s ¢-distribution with
degrees of freedom v = 5, which corresponds to setting ¢ = 1.13. Overall 500 variational updates
were made and the negative relative entropy (—D;(p ||p)) is plotted as a function of the number of
iterations in Figure 5. The graph shows that the approximate distribution monotonically gets close to
the real distribution until it hits a stationary point. The stationary point indicates the optimal product
of one dimensional Student’s ¢-distributions which approximate the multi-dimensional Student’s
t-distribution.
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Figure 5: Negative relative entropy vs. the number of mean field updates
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