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Abstract

The goal of this paper is to investigate the advantages aadidantages of learn-
ing in Banach spaces over Hilbert spaces. While many works baen carried
out in generalizing Hilbert methods to Banach spaces, mghper, we consider
the simple problem of learning a Parzen window classifierriepaoducing kernel
Banach space (RKBS)—uwhich is closely related to the notf@mtbedding prob-
ability measures into an RKBS—in order to carefully undamstits pros and cons
over the Hilbert space classifier. We show that while thisegalivation yields
richer distance measures on probabilities compared toilkeH space counter-
part, it however suffers from serious computational draskdamiting its practi-
cal applicability, which therefore demonstrates the nesdléveloping efficient
learning algorithms in Banach spaces.

1 Introduction

Kernel methods have been popular in machine learning andrpatnalysis for their superior per-

formance on a wide spectrum of learning tasks. They are bretablished as an easy way to
construct nonlinear algorithms from linear ones, by embegldata points into reproducing kernel

Hilbert spaces (RKHSs) [1, 16, 17]. Over the last few yeaesgalization of these techniques to
Banach spaces has gained interest. This is because any lvertHipaces over a common scalar
field with the same dimension are isometrically isomorphiitl@/Banach spaces provide more va-
riety in geometric structures and norms that are potentiedeful for learning and approximation.

To sample the literature, classification in Banach spacess generally in metric spaces were stud-
ied in [3, 24, 12, 6]. Minimizing a loss function subject to egularization condition on a norm
in a Banach space was studied by [3, 14, 26, 23] and onlineiteain Banach spaces was con-
sidered in [19]. While all these works have focused on th@akgeneralizations of Hilbert space
methods to Banach spaces, the practical viability and ariteromputational issues associated with
the Banach space methods has so far not been highlightedgdeti®f this paper is to study the
advantages/disadvantages of learning in Banach spacesipacison to Hilbert space methods, in
particular, from the point of view of embedding probabilibeasures into these spaces.

The concept of embedding probability measures into RKHS [40, 18] provides a powerful and
straightforward method to deal with high-order statist€sandom variables. An immediate appli-
cation of this notion is to problems of comparing distribut based on finite samples: examples
include tests of homogeneity [10], independence [11], amdlitional independence [8]. Formally,
suppose we are given the sgt(X') of all Borel probability measures defined on the topological
spaceX, and the RKHS X, k) of functions onX” with k as its reproducing kernel (r.k.). K is
measurable and bounded, then we can enfbiedH as

P /X k(- x) dP(z). Q)



Given the embedding in (1), the RKHS distance between theeddibgs ofP and Q defines a
pseudo-metric betweéhandQ as

(P, Q) := )

/Xk(-,x)d]P’(:v)—/ k(- x)dQ(x)

X

H

It is clear that when the embedding in (1) is injective, tfieand Q can be distinguished based
on their embedding§,, k(-, z) dP(x) and [,, k(-, z) dQ(x). [20] related RKHS embeddings to the
problem of binary classification by showing that(P, Q) is the negative of the optimal risk associ-
ated with the Parzen window classifierdfi Extending this classifier to Banach space and studying
the highlights/issues associated with this generalimatid throw light on the same associated with
more complex Banach space learning algorithms. With thisvaion, in this paper, we consider
the generalization of the notion of RKHS embedding of pralitglmeasures to Banach spaces—in
particular reproducing kernel Banach spaces (RKBSs) [28]e-then compare the properties of the
RKBS embedding to its RKHS counterpart.

To derive RKHS based learning algorithms, it is essentiagpeal to the Riesz representation
theorem (as an RKHS is defined by the continuity of evaludtimetionals), which establishes the
existence of a reproducing kernel. This theorem hingesefeitt that a notion of inner product can
be defined on Hilbert spaces. In this paper, as in [26], wewli#aRKBSs that ar@niformly Fréechet
differentiableanduniformly conveXcalled as s.i.p. RKBS) as many Hilbert space arguments—+mos
importantly the Riesz representation theorem—can beazhorier to such spaces through the notion
of semi-inner-products.i.p.) [13], which is a more general structure than aniimmeduct. Based
on Zhang et al. [26], who recently developed RKBS countéspafr RKHS based algorithms like
regularization networks, support vector machines, kepmnielcipal component analysis, etc., we
provide a review of s.i.p. RKBS in Section 3. We present ouinneantributions in Sections 4 and
5. In Section 4first, we derive an RKBS embedding Bfinto B’ as

P /XK(-,:E) dP(x), 3)

whereB is an s.i.p. RKBS withK as its reproducing kernel (r.k.) arifl is the topological dual of
B. Note that (3) is similar to (1), but more general than (1)@am (3) need not have to be positive
definite (pd), in fact, not even symmetric (see Section 3j aée Examples 2 and 3). Based on (3),
we define

Q)= | [ Keo)apo) - [ Koy

X X B’
a pseudo-metric o’ (X'), which we show to be the negative of the optimal risk assediatith the
Parzen window classifier ii’. Secondwe characterize the injectivity of (3) in Section 4.1 where
we show that the characterizations obtained for the injggif (3) are similar to those obtained for
(1) and coincide with the latter whéhis an RKHS.Third, in Section 4.2, we consider the empirical
estimation ofyx (P, Q) based on finite random samples drawn i.i.d. frBrand Q and study its
consistency and the rate of convergence. This is usefulphicgtions like two-sample tests (also in
binary classification as it relates to the consistency oP&ezen window classifier) where different
P andQ are to be distinguished based on the finite samples drawntfrem and it is important that
the estimator is consistent for the test to be meaningful skidav that the consistency and the rate
of convergence of the estimator depend onRaglemacher typef B’. This result coincides with
the one obtained foy, when3B is an RKHS.

The above mentioned results, while similar to results olewifor RKHS embeddings, are signifi-
cantly more general, as they apply RKBS spaces, which sub&KiHSs. We can therefore expect
to obtain “richer” metricsyx than when being restricted to RKHSs (see Examples 1-3). ©n th
other hand, one disadvantage of the RKBS framework ishd®, Q) cannot be computed in a
closed form unlikey, (see Section 4.3). Though this could seriously limit thecpcal impact of
the RKBS embeddings, in Section 5, we show that closed fopmession foryx and its empirical
estimator can be obtained for some non-trivial Banach spésme Examples 1-3). However, the
critical drawback of the RKBS framework is that the compiotabf v, and its empirical estima-
tor is significantly more involved and expensive than the FBdamework, which means a simple
kernel algorithm like a Parzen window classifier, when galieed to Banach spaces suffers from
a serious computational drawback, thereby limiting itscpical impact. Given the advantages of
learning in Banach space over Hilbert space, this work,efloee demonstrates the need for the



development of efficient algorithms in Banach spaces inraenake the problem of learning in
Banach spaces worthwhile compared to its Hilbert spacetegpart. The proofs of the results in
Sections 4 and 5 are provided in the appendix.

2 Notation

We introduce some notation that is used throughout the pdfmra topological spac&’, C'(X)
(resp.Cy (X)) denotes the space of all continuotessp. bounded continuous) functions dn For
a locally compact Hausdorff spacg, f € C(X) is said tovanish at infinityif for everye > 0 the
set{x : |f(x)] > €} is compact. The class of all continuogison X which vanish at infinity is
denoted a€’y(X'). For a Borel measurg on X', L?(X, ;1) denotes the Banach spacepepower
(p > 1) p-integrable functions. For a functiofi defined onR<, f and fV denote the Fourier
and inverse Fourier transforms ¢f Sincef and ¥ onR¢ can be defined irl.', L? or more

generally indistributionalsenses, they should be treated in the appropriate sensediegen the
context. In theL! sense, the Fourier and inverse Fourier transformg ef L' (R?) are defined as:

fly) = @m)=%2 [, f(x) e ") dz and f¥ (y) = (27)~ %2 [oa fz) ! ) da, wherei denotes
the imaginary unit/—1. ¢p := [5. ¢!~*) dP(z) denotes the characteristic functionfof

3 Preliminaries: Reproducing Kernel Banach Spaces

In this section, we briefly review the theory of RKBSs, whichsarecently studied by [26] in the
context of learning in Banach spaces. Bébe a prescribed input space.

Definition 1 (Reproducing kernel Banach spacé&n RKBSB on X’ is a reflexive Banach space of
functions onY such that its topological duab’ is isometric to a Banach space of functions.&n
and the point evaluations are continuous linear functienah bothB and B’.

Note that ifB is a Hilbert space, then the above definition of RKBS coingidith that of an RKHS.
Let (-, -)s be a bilinear form o x B’ wherein(f, ¢*)s := ¢*(f), f € B, g* € B’. Theorem 2in
[26] shows that ifB is an RKBS onX, then there exists a unique functiégh: X x X — C called
the reproducing kernel (r.k.) @, such that the following hold:

(a1) K(z,-) € B,K(-,x) € B',z € X,

(a2) f(x) = (f, K(,2))s, [*(z) = (K(z,:), f*)s, f € B, fr € B, x e X.
Note thatK satisfiesK (z,y) = (K(x,-), K(-,y))s and thereford({(-, ) andK (z, -) are reproduc-
ing kernels forB andB’ respectively. WherB is an RKHS,K is indeed the r.k. in the usual sense.
Though an RKBS has exactly one r.k., different RKBSs may hla@esame r.k. (see Example 1) un-
like an RKHS, where no two RKHSs can have the same r.k (by therttéronszajn theorem [4]).
Due to the lack of inner product id (unlike in an RKHS), it can be shown that the r.k. for a general
RKBS can be any arbitrary function otix X for a finite set¥’ [26]. In order to have a substitute for
inner products in the Banach space setting, [26] considRKeRIS B that are uniformly Fréchet dif-
ferentiable and uniformly convex (referred to as s.i.p. FRBs it allows Hilbert space arguments to
be carried over t&—most importantly, an analogue to the Riesz representtt@orem holds (see
Theorem 3)—through the notion sémi-inner-products.i.p.) introduced by [13]. In the following,
we first present results related to general s.i.p. spacethandconsider s.i.p. RKBS.

Definition 2 (S.i.p. space) A Banach spac® is said to be uniformly Rechet differentiable if for

all f,g € B, limyer 10 w exists and the limit is approached uniformly ffirg in the
unit sphere ofB. B is said to be uniformly convex if for adl > 0, there exists @ > 0 such that
lf +glls <2—dforall f,g € Bwith|fl|z = |lgl|ls =1and||f — g||lz > €. Bis called an
s.i.p. space if it is both uniformly Echet differentiable and uniformly convex.

Note that uniform Fréchet differentiability and uniforrmroexity are properties of the norm associ-
ated withB. [9, Theorem 3] has shown thatlfis an s.i.p. space, then there exists a unique function
[,-]s : B x B — C, called the semi-inner-product such that foraly, » € B and\ € C:

(as) [.f+gvh]3 = [fa h]3 + [gvh]fn
(a4) [)\f7 g]‘B = )\[fa g]B’ [fa Ag]B = X[fa g]B:
(as) [f, fls =t If]|% > 0for f #0,



(ag) (Cauchy-Schwartz)f, gls|* < || fII5%lg/1%.

andlimger 1o Hf“g”i:‘”f”ﬂ — Re(H[J‘vagﬂ‘), f.g € B, f # 0, where R¢a) anda represent the

real part and complex conjugate of a complex numheNote that s.i.p. in general do not satisfy

conjugate symmetnyif, gls = [g, f]s for all f,¢g € B and therefore is not linear in the second
argument, unless is a Hilbert space, in which case the s.i.p. coincides wighitimer product.

SupposeB is an s.i.p. space. Then for eabhe B, f — [f,h]s defines a continuous linear
functional onB, which can be identified with a unique elemérite B’, called thedual functionof

h. By this definition ofh*, we haveh*(f) = (f,h*)s = [f, h]s, f,h € B. Using the structure of
s.i.p., [9, Theorem 6] provided the following analogueHrto the Riesz representation theorem of
Hilbert spaces.

Theorem 3([9]). Supposé is an s.i.p. space. Then

(a7) (Riesz representation theorem) For eagte B’, there exists a unique € B such that
g=nh"ie.g(f)=1[f hls, f€Band|gllz = |hls.
(ag) B’ is an s.i.p. space with respect to the s.i.p. definethbyf*]s. = [f, h]s, f,h € B
and||h*||5 = [h*, h*] 7
For more details on s.i.p. spaces, we refer the reader toy@pncrete example of an s.i.p. space

is as follows, which will prove to be useful in Section 5. Lét, <7, 1) be a measure space and
B = LP(X,u) for somep € (1,+00). Itis an s.i.p. space with du&’ := L(X, ) where

q= ﬁ. For eachf € B, its dual element irB’ is f* = W Consequently, the semi-inner-
LP(X,p)
product onB is ’
. falglP~? du
[f, 9] =g"(f) = f— (4)
Hg”LP(X M)

Having introduced s.i.p. spaces, we now discuss s.i.p. RWBiSh was studied by [26]. Using the
Riesz representation for s.i.p. spaces (e (Theorem 9 in [26] shows that® is an s.i.p. RKBS,
then there exists a uniquerk. : ¥ x X — C and a s.i.p. kerngl : X x X — C such that:

(ag) G(z,-) e Bforall x € X, K(-,z) = (G(x,"))*, z € X,
(ar0) f(z) =[f,G(x, )]s, f*(x) = [K(x,-), f]p forall f € B,z € X.

Itis clear thatG(z,y) = [G(z,-), Gy, )]s, z,y € X. Since s.i.p. in general do not satisfy conju-
gate symmetryZ need not be Hermitian nor pd [26, Section 4.3]. The Kkand the s.i.p. kernel
G coincide when spdiG(z, -) : @ € X'} is dense irB, which is the case wheh is an RKHS [26,
Theorems 2, 10 and 11]. This means wheis an RKHS, then the conditionsd) and 1) reduce
to the well-known reproducing properties of an RKHS with $hign. reducing to an inner product.

4 RKBS Embedding of Probability Measures

In this section, we present our main contributions of dagvand analyzing the RKBS embedding
of probability measures, which generalize the theory of FKdinbeddings. First, we would like to
remind the reader that the RKHS embedding in (1) can be dkbyehoosingF = {f : || f|l+c < 1}

= sup

=l [ sie- [ 1|

See [21, 22] for details. Similar to the RKHS case, in Theodeme show that the RKBS embed-
dings can be obtained by choosifig= {f : ||f||lz < 1} in v5(P, Q). Interestingly, thougtB does
not have an inner product, it can be seen that the structwenoifFinner-product is sufficient enough
to generate an embedding similar to (1).

Theorem 4. LetB be an s.i.p. RKBS defined on a measurable sgaedgth GG as the s.i.p. kernel
and K as the reproducing kernel with both and K being measurable. Lék = {f : || f||z < 1}

andG be bounded. Then
- | K.2)d00)
X

1k (P, Q) := ®)

B/



Based on Theorem 4, it is clear th&t can be seen as being embedded ifoas P —
S K(-,z) dP(z) andyx (P, Q) is the distance between the embedding®aindQ. Therefore,
we arrive at an embedding which looks similar to (1) and cdies with (1) wher is an RKHS.

Given these embeddings, two questions that need to be aadveeithese embeddings to be practi-
cally useful are: £) When is the embedding injective? and) Canvx (P, Q) in (5) be estimated
consistently and computed efficiently from finite random pkas drawn i.i.d. froni? andQ? The
significance of £) is that if (3) is injective, then such an embedding can beal usdlifferentiate
between differen andQ, which can then be used in applications like two-sample testifferen-
tiate betweer® andQ based on samples drawn i.i.d. from them if the answexdi6 affirmative.
These questions are answered in the following sections.

Before that, we show how these questions are important arpidassification. Following [20], it
can be shown thafy is the negative of the optimal risk associated with a Parzedew classifier
in B’, that separates the class-conditional distributiBrasdQ (see Section A.2 for details). This
means that if (3) is not injective, then the maximum risk taiaed forP # Q, i.e., distinct distribu-
tions are not classifiable. Therefore, the injectivity ofi€of primal importance in applications. In
addition, the question ink) is critical as well, as it relates to the consistency of thezBn window
classifier.

4.1 Whenis (3) injective?

The following result provides various characterizatiomsthe injectivity of (3), which are similar
(but more general) to those obtained for the injectivityl)fgdnd coincide with the latter whel is
an RKHS.

Theorem 5(Injectivity of vx). Supposé is an s.i.p. RKBS defined on a topological spatwith
K andG asiits r.k. and s.i.p. kernel respectively. Then the folhgahiold:

(a) Let X be a Polish space that is also locally compact Hausdorff. @®spG is bounded and
K(xz,-) € Cyo(X) forall x € X. Then (3) is injective i3 is dense irCy (X).

(b) Suppose the conditions in (a) hold. Then (3) is injedfi#&is dense inL? (X, ) for any Borel
probability measurg: on X’ and some € [1, c0).

Since it is not easy to check for the denseness of Cy (X') or LP(X, i), in Theorem 6, we present
an easily checkable characterization for the injectivityf3) when K is bounded continuous and
translation invariant oiR?. Note that Theorem 6 generalizes the characterization[24e€2]) for
the injectivity of RKHS embedding (in (1)).

Theorem 6 (Injectivity of v for translation invariants). Let X = RY. SupposeK (z,y) =
¥(z —y), wherey : R — Ris of the formy(z) = [, '™ dA(w) and A is a finite complex-
valued Borel measure dR?. Then (3) is injective isupgA) = R?. In addition if K" is symmetric,
then the converse holds.

Remark 7. If 1) in Theorem 6 is a real-valued pd function, then by Bochnéestem A has to be
real, nonnegative and symmetric, i.4(dw) = A(—dw). Sincey need not be a pd function fdt

to be a real, symmetric r.k. &, A need not be nonnegative. More generally)ifs a real-valued
function onR<, thenA is conjugate symmetric, i.e\(dw) = A(—dw). An example of a translation
invariant, real and symmetric (but not pd) r.k. that satisftae conditions of Theorem 6 can be
obtained withy(z) = (425 + 92% — 1822 + 15) exp(—2?). See Example 3 for more details.

4.2 Consistency Analysis

Consider a two-sample test, wherein given two sets of rangamples,{ X;}72, and {Y;}7_,
drawn i.i.d. from distribution® and Q respectively, it is required to test whetlHér= Q or not.
Given a metricyyx on & (X), the problem can equivalently be posed as testing faf®, Q) = 0

or not, based ofi.X;}72, and{Y;}}_,, in which caseyx (P, Q) is estimated based on these random
samples. For the test to be meaningful, it is important thstestimate ofyx is consistent. [10]
showed thatk (P.,,, Q,,) is a consistent estimator of; (P, Q) when3B is an RKHS, wher@®,,, :=

% Z;.”:l Ox;r Qn = %Z?:l dy; andd, represents the Dirac measurezate X. Theorem 9
generalizes the consistency result in [10] by showing thafP.,., Q,,) is a consistent estimator of



vk (P, Q) and the rate of convergenced§m (! —*/t + n(1=0/t) if B’ is oftypet, 1 < ¢ < 2. Before
we present the result, we define tigpeof a Banach spacé [2, p. 303].

Definition 8 (Rademacher type dB). Let1 < ¢t < 2. A Banach spacé is said to be oft-
Rademacher (or more shortly, ¢fpe t) if there exists a constart™ such that for anyN > 1

and any{f;} Y =1 C B (EHZ;\[:1 ijthB)l/t < C*(Zg L 511%) )M Where{97 = are
i.i.d. Rademacher (symmetricl-valued) random variables.

Clearly, every Banach space is of type 1. Since having tyfor ¢’ > ¢ implies having typé, let us

definet*(B) := sup{t : B has typet}.

Theorem 9(Consistency ofyx (P,,, Q,,)). LetB be an s.i.p. RKBS. Assume= sup{./G(z, ) :

r € X} < oo. Fixd € (0, 1). Then with probabilityl —d over the choice of samplgsy; } 7 Yk p
i. z d.

and{Y;}7_,

7K (Pr, Qn) — 75 (P, Q)| < QC*V(TI’L¥ + n¥) + /1812 1og(4/96) (m_% + n_%),
wheret = ¢*(B’) andC* is some universal constant.

It is clear from Theorem 9 that if (B’) € (1,2], thenyx (P, Q,,) is a consistent estimator of
vx (P, Q). In addition, the best rate is obtainedi{B’) = 2, which is the case iB is an RKHS. In
Section 5, we will provide examples of s.i.p. RKBSs thatsati*(B’) = 2.

Q, we have

4.3 Computation of yx (P, Q)

We now consider the problem of computing(P,Q) and vk (P.,,Q,). Define \; :=
Jo K (z). Consider

* * (a‘) * * * * (a\) * * * * * *
7%(?’7@) = ||/\n»—)\@|\293/ - [/\n»—/\@J\n»—/\@]?s/ = [/\n»a/\n»—A@]B'—[/\@7)\11»—)\@]8'

/K 2), Ap — /K 2), s — /\:@}B

= / K (), A — Ayl dP(z) — / K (), 3 — Nyl dQ(z)

- [ [t [ Kt @)(Xﬂ L AP-Q)). ©)

(6) is notreducible as the s.i.p. is not linear in the secagdraent unles$ is a Hilbert space. This
meansyk (P, Q) is not representable in terms of the kernel functiffiy, y) unlike in the case of
B being an RKHS, in which case the s.i.p. in (6) reduces to aariproduct providing

2 (P,Q) = //K:cy (P - Q)(z) d(P - Q)(y).

Since this issue holds for afiy Q € £2(X), it also holds foi?,,, andQ,,, which means/x (P,,,, Q,,)
cannot be computed in a closed form in terms of the ked&¢k, ) unlike in the case of an RKHS
whereyk (P, Q,,) can be written as a simple V-statistic that depends only<@m, y) computed
at{X;}7, and{Y;}7_,. This is one of the main drawbacks of the RKBS approach wheze t
S.i.p. stfucture does not allow closed form representatiorierms of the kernel (also see [26]
where regularization algorithms derived in RKBS are notable unlike in an RKHS), and therefore
could limit its practical viability. However, in the folloing section, we present non-trivial examples
of s.i.p. RKBSs for whichyk (P, Q) and~yx (P,,, Q,,) can be obtained in closed forms.

5 Concrete Examples of RKBS Embeddings

In this section, we present examples of RKBSs and then dére&eorrespondingx (P, Q) and

vk (P, Q,,) in closed forms. To elaborate, we present three examplestivar the spectrum:
Example 1 deals with RKBS (in fact a family of RKBSs inducedtbg same r.k.) whose r.k. is pd,
Example 2 with RKBS whose r.k. is not symmetric and therefartgpd and Example 3 with RKBS
whose r.k. is symmetric but not pd. These examples showhkaBanach space embeddings result
in richer metrics on??(X’) than those obtained through RKHS embeddings.



Example 1 (K is positive definite) Let i be a finite nonnegative Borel measure®f. Then for
anyl < p < cowithg = p%l

BRI(RY) = {fu( )= [ w0t du) < we L@ ), o e Rd} , )
Rd
is an RKBS withi (z, y) = G(z,y) = (u(R%))P=2/P [, e~ @8 dy(t) as the rk. and
x(P,Q) = | /R i@ - Q)| =167 = delame- (8)

First note that is a translation invariant pd kernel o®? as it is the Fourier transform of a
nonnegative finite Borel measuye, which follows from Bochner’s theorem. Therefore, though t
s.i.p. kernel and the r.k. of an RKBS need not be symmetesghce in (7) is an interesting example

of an RKBS, which is induced by a pd kernel. In particularait e seen that many RKBSﬁf(Rd)
foranyl < p < oo) have the same r.k (ignoring the scaling factor which can lagenone for any

p by choosing: to be a probability measure). Second, note mg‘i isan RKHS whep = ¢ = 2
and therefore (8) generalizeg (P, Q) = [|¢p — dgl|L2(re,,)- By Theorem 6, it is clear thaty in

(8) is a metric onZ?(R?) if and only ifsupg ;) = R?. Refer to Section A.7 for an interpretation of
32“(11@) as a generalization of Sobolev space [25, Chapter 10].

Example 2(K is not symmetric) Letu be a finite nonnegative Borel measure such that its moment-
generating function, i.eM,,(z) := [y, e dpu(t) exists. Then for any < p < co with ¢ = s

BI(RY) := {fu( ) = /Rdu(t)ew du(t) : uw e LP(R?, p), = eRd}

is an RKBS With (z,y) = G(z,y) = (M,(qz))? /" M,,(x(q — 1) + y) as the rk. Suppose
P andQ are such thatMp and Mg exist. Thenyg (P, Q) = || fpu €™ d(P — Q)(@) || Lo (ra ) =
[Mp — Mgl 4(ra, ) Which is the weighted ? distance between the moment-generating functions

of P andQ. Itis easy to see that fupgy) = RY, thenyx (P,Q) = 0 = Mp = Mga.e.= P =
Q, which means/x is a metric on#(R?). Note thatK is not symmetric (fog # 2) and therefore
is not pd. Whep = ¢ =2, K(z,y) = M,(z +y)is pd anngS(Rd) is an RKHS.

Example 3 (K is symmetric but not positive definite) Let () =
Ae=" (425 4 92% — 1822 + 15) with A := (1/243) (472/25)"/°. Then
BIPIR) = { fulz) = / (x —t)%e”
2 R
is an RKBS with r.kK (z,y) = G(x,y) = 1(x —y). Clearly,s and therefores” are not pd (though

3(x—1)2
2

u(t)dt : ue L3(R), z € R}

z—y)

~ £_y
symmetric orR) as(z) = ?@Tf (:z: — 39z* + 21622 324) iS not nonnegative at every

z € R. Refer to Section A.8 for the derivation &fand¢. In addition,yx (P,Q) = | Jp0( —

2) d(P — Q@) ow) = (0 (6p = $0))” | a(r), Whered(t) = t%e~3"". Sincesuppid) = R, we
haveyr (P,Q) = 0 = (8 (¢p — ¢g))" =0 = 0 (¢p — ¢g) = 0 = ¢p = ¢g a.e., which implies
P = Q and thereforeyx is a metric onZ(R).

So far, we have presented different examples of RKBSs, wihare have demonstrated the nature
of the r.k., derived the Banach space embeddings in cloged dod studied the conditions under
which it is injective. These examples also show that the Ri€B®eddings result in richer distance
measures on probabilities compared to those obtained biRiK¢S embeddings—an advantage
gained by moving from Hilbert to Banach spaces. Now, we amsrsihe problem of computing
vk (P, Q,,) in closed form and its consistency. In Section 4.3, we shaatlyx (P,,, Q,,) does
not have a nice closed form expression unlike in the cagelding an RKHS. However, in the fol-
lowing, we show that fod< in Examples 1-3 (more generally f&f in Corollary 15),yx (P, Q)
has a closed form expression for certain choicegs dfet us consider the estimation of (IED, Q):

) = | [ e aE e /\/ (2 0)d(B ~ Q) (@)| du(t)

:/‘EZb(Xj —%anby t‘ dp(t 9
X j=1 j=1




whereb(z,t) = '@ in Example 1h(x,t) = ¢ in Example 2 and(z,t) = 6(x — t) with
g = 3 andy being the Lebesgue measure in Example 3. Since the duals BSRIKonsidered in
Examples 1-3 are of of typ@in(g,2) for 1 < ¢ < oo [2, p. 304], by Theorem %y (P, Q)

max(1—q,—1)

max(1—q,—1

estimatesyx (P, Q) consistently at a convergence rate((fm ina D) +n =@y ) forq e

(1,00), with the best rate oD (m /2 + n~1/2) attainable whery € [2,00). This means for
€ (2,00), the same rate as attainable by the RKHS can be achieved. thewroblem reduces

to computingyx (P, Q,,). Note that (9) cannot be computed in a closed form foralisee the

discussion in Section A.9 about approximating(P,,, Q,). However, whery = 2, (9) can be

computed very efficiently in closed form (in terms &) as a V-statistic [10], given by

4,1=1 Gi=1 =1

=

<.

More generally, it can be shown thatjif= 2s, s € N, then (9) reduces to

A(z1,...,2q)

(P, Q) = / //Hb (2251, t)b(2;, ) du(t) ﬁ — Qn)(z)) (11)

for which closed form computation is possible for approfgriahoices ofb and . See Sec-
tion A. 10 for the derivation of (11). Fob andy as in Example 1, we havé(z,...,z4) =

(1 (Rd)) ‘K (ZJ LE2j—15 D50 xgj), while for b and p as in Example 2, we have
Az1,...,2q) = Mﬂ(zgzl x;). By appropriately choosing and x in Example 3, we can ob-
tain a closed form expression fgt(z1, . .., z,)—see Section A.11 for details. Note that choosing
s = 1in (11) results in (10). (11) shows thaf, (P,,, Q,,) can be computed in a closed form in
terms of A at a complexity ofO(m?), assumingn = n, which means the least complexity is ob-
tained forg = 2. The above discussion shows that for appropriate choicesi@f,,q € (2, ), the
RKBS embeddings in Examples 1-3 are useful in practiceg®,,, Q,,) is consistent and has a

closed form expression. However, the drawback of the RKB&&éwork is that the computation of
vk (Pr,, Q,,) is more involved than its RKHS counterpart.

6 Conclusion & Discussion

With a motivation to study the advantages/disadvantaggsméralizing Hilbert space learning algo-
rithms to Banach spaces, in this paper, we generalized tienraf RKHS embedding of probability
measures to Banach spaces, in particular RKBS that arermiyfé-réchet differentiable and uni-
formly convex—note that this is equivalent to generalizingKHS based Parzen window classifier
to RKBS. While we showed that most of results in RKHS like atjgty of the embedding, con-
sistency of the Parzen window classifier, etc., nicely galimr to RKBS yielding richer distance
measures on probabilities, the generalized notion is kssctive in practice compared to its RKHS
counterpart because of the computational disadvantageiat=d with it. Since most of the existing
literature on generalizing kernel methods to Banach spadealsvith more complex algorithms than
a simple Parzen window classifier that is considered in thjgep we believe that most of these
algorithms may have limited practical applicability, tlgbuthey are theoretically appealing. This,
therefore raises an important open problem of developimgpedationally efficient Banach space
based learning algorithms.
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A Appendix: Proofs

We provide proofs for the results in Sections 4 and 5.

A.1 Proof of Theorem 4

The following supplementary result will be useful to provesbrem 4.

Lemma 10. Let B be an s.i.p. RKBS defined on a measurable sgaedth G as the s.i.p. kernel
and K as the reproducing kernel with both and K being measurable an@ bounded. Suppoge
be a finite signed measure én Then, for anyf € B, we have

[ @ ute) = [ 1), 5N i) = | [ Ko duto), 5 @
Proof. Consider T,,[f] = [, f(z)du(x). Since B is an s.ip. RKBS, then by ao)
there exists a uniqué such thatf(z) = [f,G(z, )]s “2“ [K(.,x),f*]s. There-

aig (ae)
fore, we have|T,[f]l ‘% |[,If,G(z, s du(@)| < [y llf,Glx, s dpl(z) <

(alo) .
I flls [ VIG(@, ), Gz, )]s dlpl(x) "= IIfIIB - Jx V/G(x,x)d|p|(z) < oo, which means
T, € B'. By (ar), there exists a uniquxe € B such thaﬂ“,t =N, e, Tf] = [f, \uls, [ € B.

In other words, [, [f,G(z,)]s du(z) = [, f( = T.lf] = [f; \ul» = N ] -
Choosingf = K(y,-) € B for somey € X g|ves/\j;(y) (aé()) (K(y,), \ls = [ K(y,2) du(z).
This means\;, = [, K(-,z) du(x) and the result follows. O

Note that wherB is an RKHS, we havé' = K and therefore

/X f(@) du(z) = /X (f. Gz, ) du(z) = /X @) Pz du(z) = /X (@) s dulz)

(/. K(~7fc)du(x),f>3-

Proof of Theorem 4Consider

Q) Hfsllli}ll / JaE= Hfs||l;p§1 [/ K(2)dP - Q). f* :|3/
= HJS\ESQ [/ K( (x)_/xK("x)dQ(x)’f*L,

- [ K(.5) Q)

A.2 vk (P,Q) and the Parzen window classifier

B’

therefore proving the result.

Consider the binary classification problem with being aX’-valued random variabley” being

a {—1,1}-valued random variable and the product spatex {—1,1}, being endowed with an
induced probability measurg, A discriminant functionf is a real-valued measurable function on
X, whose sign is used to make a classification decision. GilessdunctionZ : R x {—1,1} — R,
the goal is to choose afithat minimizes the risk associated with given as

Rualf)i= [ @iy =7 [ 1)@+ -m [ 1710

X
with the optimalL-risk defined as

Ri o = inf Roy(f),



whereJ is chosen to be the set of all measurable function& o := n(-|Y = 1), Q := n(-|Y =
—1)andr := n(X,Y = 1), i.e.,[P andQ represent the class conditional distributions anid the
prior distribution of clasd. Choosing

L(t,1)=—t/m, Lt,—-1)=t/1—m)andF ={f:||fllz <1}

gives
’YK(]P)v Q) = _Rz,n.ﬂ’a

i.e.,vx (P, Q) is the negative of the optimdl-risk associated with a classifier (we show below that
this is a Parzen window classifier) that separates the clasgitional distributionsP andQ. It is
easy to see that sinde; , ; = 0 is the maximum risk attainable, if (3) is not injective, thitre
maximum risk is attained faP # Q, i.e., distinct distributions are not classifiable. Theref the
injectivity of (3) is of primal importance in applicationsNote that for these choices éf andJ,
R}, 5 is attained atf* = (VK (P,Q)) fX —Q)(x ) which is clearly the Parzen
window classifier as sidrif*(x)) = 1 if fx (x y d]P’ ) > [ K(z,y) dQ(y) and—1, otherwise.
This means, the question im() is critical as weII as it relates to the consistency of tlagzBn
window classifier.

A.3 Proof of Theorem 5

(a) We first show that ifG is bounded ands (z,-) € Cy(X),Vz € X, thenB C Cy(X). SinceG
is bounded, we havif (z)| = |[f, G(z,)]s| < |fllzs/G(z,z) < ||f||5]|G|l~ forall f € B and
x € X, whichmeans|f|lcc < ||Gllllfllz, Vf € B. Here||G||w := sup{\/G(z,z) : € X}.
Thismeansid B — (. (X) is well-defined andlid : B — (. (X)|| < |G|, Wherel(X) is the
space of bounded functions on Let us defineB,,.. := spaf K (z,-) : ¢ € X'}. SinceK (z,-) €
Co(X),Vz € X, itis clear thatB,,. C Cy(X). Theorem 2 in [26] shows thd},,. is dense irB,
which means for any € B, there exists a sequeng¢,} C B, such thalim,, , || f — ful/s =
0 and the continuity of id B — /. (X") then yieldslim,,_, || f — fnllcc = 0. The completeness
of Cy(X) shows thatC(X) is a closed subspace 6f,(X'), and sincef,, € Co(X), Vn, we can
conclude thaf € Cy(X). Therefore, the inclusion idB — Cy(X) is well-defined and continuous.

We now show that ifB is dense inCy(X), then (3) is injective. To show this, we first obtain an

equivalent representation for the densene$8 of Cy (X') and then show that if (3) is not injective,

then3B is not dense iy (X'), thereby proving the result. By the Hahn-Banach theoremTh®&o-

rem 3.5],B is dense irCy (X) if and only if B+ = {u € My(X) : V f € B, [, fdu=0} = {0},

whereM,,(X) is the space of all bounded complex-valued Borel measurés dret us assume that

= [y ( x)dp(z), p € My(X) is notinjective. This means there exigts M, (X)\{0} such

that [, K(-,x) du(x) = 0, which means[,, f(z)du(z) = [[, K(-, ) du(x), f*]s = 0 for any

f € B, where we used (12). In other words;- # {0}, which meansB is not dense irCy(X).

Therefore, ifB is dense inCy(X), theny — [, K(-,x)du(x), p € My(X) is injective, which

means (3) is injective.

(b) Suppose the conditions (@) hold. We claim tha® is dense irC, (X) if and only if B is dense

in LP (X, ) for all Borel probability measures on X and some € [1, o0). If this claim is true,

then clearly the result in Theorem 5(b) follows. The prooftaf claim is as follows, which is essen-

tially based on [5, Theorem 1].

(<) SupposeB is dense irCy(X). This means, for any > 0 and for anyg € Cy(X), there exists

[ € Bsuchthat|f — gl|oo < 5. SinceX is a locally compact Hausdorff spacg; (') is dense

in LP (X, u) for all Borel probability measureg on X’ and allp € [1,00). This implies, for any

e > 0 and foranyh € LP(X, i), there existy € Co(X) such that|g — Al zr(x ) < 5. Consider

If = hllrxw < If = gllorern + 119 = bllzrx,p < § + 5 = € which holds for any and any

f € LP(X, ). ThereforeB is dense inL? (X, 1) for all Borel probability measurgson X and all

p € [1,00).

(=) SupposeB is not dense inCy(X). Then, by the Hahn-Banach theorem, there exists a
€ (Co(X)), T # 0suchthatl'(f) = 0 forall f € B. [5, Theorem 7] showed that for any
€ (Cy(X))', there exists a probability measyieon X’ and a unique function € L>°(X, u)

such thatl'(f) = [, f(z)h(z)du(z), f € Co(X) with ||T|| = [|h| oo (x, ). SinceT # 0, we

haveh # 0. In addition, since: is a probability measuré, € L9(X, 1), which means there exists

10



h#0,h € (LP(X, )" such thatf,, f(x)h(x)du(z) = 0. ThereforeB is not dense irL? (X, )
for some Borel probability measureand anyp € [1, o0).

A.4 Proof of Theorem 6

To prove the sufficiency in Theorem 6, we need some supplamergsults. The following lemma
is a standard result, popularly known as the convolutioord®. See [21, Theorem 22] for a proof.

Lemma 11. Let i be a finite Borel measure anflbe a bounded function oR?. Supposef is
written as

f@) = [ e an),
Rd
with a finite Borel measura onR<. Definef * p := Jga f(- —t)du(t). Then
Frp=@m)¥2 (A),
where the right hand side is a finite Borel measwaad the equality holds as a tempered distribution.

Using Lemma 11, in the following, we obtain an alternate espntation foryx (P, Q)—see (5)—
when K satisfies the assumptions in Theorem 6. This result usesathe glea as used in [21,
Lemma 13] wheré3 is assumed to be an RKHS.

Lemma 12 (Fourier representation ofx). Supposds satisfies the conditions in Theorem 6. Then

1k (P,Q) = 2" | (B — d)A) " - (14)

B’

where(¢p — E@)A represents a finite Borel measure defined by (13).

Proof. Consider
K(-,z)dP(z) = (- —x)dP(x) =« P.
Rd Rd
By Lemma 11, we have P = (27)%/2(PA), which means) « P = (27)%/2(PA)V, whereP(w) =
Jpa €71 @®) dP(z), w € R Note thatP = ¢;. Therefore, substituting fof,,, K (-, ) dP(z) in
vk (P, Q) yields (14). O

Lemma 13([21, Proposition 16]) Letd be a bounded continuous functionBA. SupposéA = 0,
whereA is defined as in Theorem 6 afid is a finite Borel measure defined by (13). Tsepd6) C

cl(R¥\supgA)).

Proof of Theorem 6 < ): We show that if supf\) = R?, thenyx (P, Q) is a metric onZ (X)),
i.e., (3) is injective. Letyx(P,Q) = 0, which by Lemma 12 implieg(¢p —E@)A)v =0,ie.,
(dp — ¢g)A = 0. Defined := ¢p — ¢ so that)A = 0. By Lemma 13, this implies sup) C
RZ\supgA). Therefore, if sup@\) = R9, thend = 0 a.e., i.e.gpp = ¢g a.e. Sincepp andepg are
uniformly continuous oiR?, we haveP = Q, i.e.,yx is a metric onZ(X).

(=) Supposé is real and symmetric. We need to show that if (3) is injectiien suppA) = R<,
First note that sincds is real and symmetric, we have thatis also real and symmetric, i.e.,
A(dw) = A(—dw). Suppose sugp) € RY. Then there exists an open gétC R< such that
A(U) = 0. This implies, there exists < R‘?H andwy > S (element-wise inequality) such that
[wo — B,wo + B] C U, wherewy = (wo 1, . .., wo,a) @ands = (b1, .., B4). Define

0 :=a(fs,w, + [8,—ws), @ € R\{0},

1The finite Borel measure in (13) is defined in the followingssenL ety be a finite Borel measure anfd
be a bounded measurable function®h We then define a finite Borel measufg by

((E) = [ Le@)f@) (o), (13

whereF is an arbitrary Borel set anfi is its indicator function.

11



wherefs ., € C*(R?) is the following function supported ijfwg — 3, wo + A):

fﬁwo Hhﬁjwf)ﬂ wJ

with .
hap(y) :=Ljaa(y —b)e 7007,
w = (w1, ...,wq) andC>=(R?) is the space of all infinitely differentiable functions BA. Leta be
such that
0<la] < Gi ,
2sup, |T[—y b, o) (L + [as]2)! cos((wo, )

whereC; = H?Zl (Ja(X+ |z5%) " d:cj)_l. From the definition of), it is clear that sup@) =
[—wo — B, —wo + B] U wo — B,wo + O] is compact. In addition, supf) = R%\supgA). Also, it
is easy to check tha@tc L'(R?) N L2(R?) andd¥ € L' (RY) N L?(RY). Note that, by construction,
Jga 0¥ (z)dz = (2m)%/26(0) = 0. LetQ be a probability measure dk? with densityq(z) =
C szl(l +]z;/)7! 1 € Nandx = (21,...,24). Definep := ¢ + 6. Note thatp € L*(R?),
Jga p(x) dz = 1. It can be verified thap(z) > 0, Va € R?. Thereforep represents a probability
density function corresponding to some probability meaBuConsider/;, /(- —z) d(P—Q)(z) =
Jpa ¥(-—x) 9V( ) dz = [AB]Y = 0, which means there exisks# Q such that],, ¥ (- —z) dP(z) =
Jza ¥ (- — ) dQ(z), which implies (3) is not injective. O

A.5 Proof of Theorem 9
Note that|vk (P, Qn) — vk (P, Q)| < vk (P, P) + v (Q, Q). Now, let us consider bounding

vk (P, P). By invoking concentration (McDiarmid’s inequality), synetrization and concentra-
tion for v (P,,,, P), we have

V& (P, P) < %E{H i 0; K (-, Xj)

Note that Eof| 377", oK (X))l < (Bl 7L, oK X))V 1 < ¢ <
2, which follows from Jensen's inequality, whereE,| > ", oK (-, X;)|s =
E[|l Z;.”:l 0; K (-, Xj)|ls [ {X;}jL,]. SinceB’ is of typet := t*(B’), there exists a univer-
sal constan€* such that

(=, x|, )" < (ZHK )" (Zn i)

as m m 1/
W e (Yo ) = o (e x) ) < et
j=1

j=1

o] e e 1

which meansyx (P,,,P) < 2C*vm=9/t + /18v2m~11og(4/5). Carrying out similar analysis
for v (Q,, Q) gives the desired result.

A.6 Proofs of Examples 1-3

Examples 1-3 can be obtained as special cases of Corollawhiéh is proved using the following
result by [26, Theorem 10].

Theorem 14([26]). LetW be an s.i.p. space antl : X — W such that
cl(span®(X)) =W, cl(spand*(X)) = W',
where®* : X — W' is defined agb*(z) = (®(z))*, € X. ThenB := {[u, ®()]y : u € W}

equipped with
[[u, @ ()l » [0, R ()l s = [u, v]hg

12



andB’ := {[®(),u],, : u € W} with
[[@(-), U]W ) [(I)(')vv]w]%’ = [Uvu]W
are s.i.p. RKBSs, wher8’ is the dual ofB with the bilinear form([u, ®(-)],y , [®(), v]\y) 5 =
[, v]w, u,v € W. Moreover, the s.i.p. kerné} of B is given by
G(z,y) = [®(x), 2(y)lyy, z,y € X,
which coincides with its reproducing kerné..

As a corollary to Theorem 14, we obtain the following result.
Corollary 15. Let (X,.«/, ) be a measure space. Then for ahy< p < oo, 1 < ¢ < o0,

p gt =1,

B,(X) = {fu(x) = /Xu(t)b(:v,t) du(t) - uwe LP(X,pn), x € X}

equipped with
Jga wtloP=2 dp

ol 2

q—2 p—2
(@) :/ b(w, 1)[b(w, 1)|12u(t) |u(t)| dult) - ue LP(X,p), z e X}
X ”b( )HLq X #)HU‘HLP(X M)

with [f7, f3]s; = [v,u]rs(x ) are s.i.p. RKBSs with

b(a, t)|b(w, t)|*"*

K(e) = Gley) = [ 2000 o))

3

[fuafv]er = [U,’U]Lp(/—n“) =

as the reproducing kernel (also the s.i.p. kernel), whéfe,-) € LI(X,u),Vz € X,

cl(spadb(z, ) : x € X}) = LI(X,u) andcl <span{$ﬂc”q2 XS X}> = LP(X, p).
L9(X,p)

/Xb(x,-)d]P’(:C)—/Xb(:v,-)d(@(x)

Proof. LetW = LP(X, u) and®(x) = ijn? Note thatW’ = L9(X, ). We now show
L9(X,p)
that®*(x) = b(x, -). Consider

Moreover,

(0= |

La(X, ) '

bz, )bz, %~ 2 | b(z,)|b(z, o] 2|

p=2 l[b(z, )17 [b(z, )12,
*(x) = (B(a)) = 2 L@~ _ >
@ (2)[lvp (@ |b(e, )\q 2
[ZERTEREN W
b(x, ) |b(:v, .)|q72+p72+(¢1*2)(10*2) B b(:v, )
= B -2 _ _o||P—
b, )95 |[pCa, ) Ib(z, )77 b, )14 |[bC, ) [b(z, )|~
W W
Note that
[FT a2, = [ i e P au /|bwt|q Au(t) = o, )y
which means||b(z, )% Hb(a:,-)|b(:c,~)|q72HW = |[|b(x, )HZ,V,QJr »®*=? _ 1 and therefore

®*(x) = b(x, ). Using these in Theorem 14, we have

W [ WB@W O, :
ey & | HOEEIEEIOE—du() = [ @ @) duce)

= / u(t)b(z, t) du(t)
X
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and

o001y @ [ (2N W@ e,

l[ullfe

therefore yieldingB,, (X') andB},(X'). Now, consider

(P, Q) = /K d(P - Q)(x)

B

-1/ / ”b PO O 1) dpt) (P - @) ()

Lq(X ©)

B,
A(t)

@ || [ BB, B2 . OVa
= / T / b, ) d(P — Q)(z) dpu(t)

NEatem

B
= [[®0): Ahwllg, = 47 -

(ag)

where we have invoked Fubini’s theorem i).(Since||A*||,, = |/ 4ll,y., the result follows. [

Corollary 15 shows that the embeddinglbﬁnto B’ as [, K(-,z)dP(z) can be interpreted as
embeddingP into LY(X, 1) as [, b(x,-) dP(x) since these embeddings are isometric. Based on
Corollary 15, Examples 1, 2 and 3 are obtained by chodsingt) = ¢(***) z,y € R, b(x,t) =
ez y e R andb(z, t) = (x — t)%e~2@D° 2 y € R with ;2 as the Lebesgue measureldn
andg = 3, respectively.

A.7 Interpretation of Br4(R?) in Example 1
Bff’(Rd) can also be interpreted as follows. Define
vle) = (YT [ e dut)
so thatK (z,y) = ¢(z —y). Suppose) € Cy(RY) N L'(RY) is strictly pd so thauu(t) =

(2m)~ 4/29)(t) dt, whereg(z) > 0, Yz € R% andi) € L!(R?), which follows from Corollary 6.12
in [25]. Then (7) can be written as

pd d': ) — ﬂ,—d/2 z(;vt n - p(@d ) T d .
BRY) = { ) = (20 2 [ Ou)F0ar s e D), 0 e R

Sinced) € L'(RY) andu € LP(RY,¢), it is easy to check thaty) € L'(R?). Therefore, any
fu € BPUR?) can be written ag,, = (u1))", which meangf, = u, i.e.,

fu
h1/a

—~

Iv c p®e D) o

€ LP(RY).

Therefore (7) is equivalent to

o~

o

B(RY) = { feCRY) . i € LP(Rd)}.

f
Jl/q

By defining|| f|| g = (27)~ %

and using| - HBzd in

L (R4)
I+ 85 s = 1 i + £ s = s
. : P P . : P P
R B as)
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yields ~ >
J@I@Ig) 2@ w) = (16)

—2
Il

Lf, g]{Bzd = 2m)472 Jpa

where we have quoted (15) from Proposition 28 of [26]. Not thhenp = ¢ = 2, Bgd(Rd)

reduces to an RKHS,
72
BYRY) ={ fe CRY) : / E o
R )

with (16) being an inner product,

o~ —

f (g)?(m d

o = (27m) "4/
<fag>32 (2 ) Rd 1/)(&])

W.

Suppose

2175 o .
v(@) = gy el Kaja-s(lalle),

whereK represents the modified Bessel function and d/2. Thent(w) = (1 + ||w||2)~*, which
means

BRY) = {f € CRY: (1+ - [3)7 F e P(RY)}

represents a Sobolev space of orgler

A.8 Derivation of K and $ in Example 3

Let ;. be the Lebesgue measureRnd(x) = 22e= %5 andq = 3. Defineb(z,t) = 6(x —t). Since
0(z) = 0(—x), Vo € Randf(z) > 0, Vz € R, usingdb(z,t) in Corollary 15 yieldsK (z,y) =
Y(x — y) with

~ )V
b(@) = @020 = i) (0%0) (@). (17)
In the following, we use the following identities, whete> 0.

d

_ 2 TN 2
e—allzll g — (_)
R4 (6%

(o 1 (2r)!
A a(z—b)? do = z N
/R(:c ) v a (20)7 7! 2r7 re
Tallel3 = LB
e = (2a)d/2€
d2
ﬁe_w2 =« (404:02 - 2) e_‘”2
T
d4
We_‘”2 =a? (16a2x4 — 48aix® + 12) g0’
T
d° —au? 3 3.6 2 4 2 —ax?
ﬁe =« (64a z° — 480 z™ + 720cx” — 120) e
znf(z) =" — f(x)

Now consider

10 = Izé g = ( [w—nre s dt)_ - <\/§—3!(£)8‘)3> —9(50m)7F, (18)

~ — 4 — 4 4 2
92(17):;048*312:‘[_6*3127 Lodt 2 2t —3622 4108 .2

= ——0¢ ,
dat V6 dzt 1296+/2

Wl
(M

o)
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and

0(z) = _Ld_Qefﬁ _3- x26*¢
- V/3da? 93 '
Therefore
(935) (2) = (3 — 22)(a* — 3622 + 108) 2
2537
28 — 3924 + 21622 — 324) .2
- ( 2237 ) o (19)
PN -1 — .2
(929) (r) = 5y (08 = 392 + 21622 = 324)e %
d? =
= de +216d2+324 e 1

g
2
1 d?
—ﬁ —+39—+216F+324

( 6425 — 4802* + 72022 — 120) + 39(162* — 4822 + 12)

[\]

437
1216(422 — 2) + 324)

425 + 9% — 1822 + 15
Gt ) (20)
37

Using (18) and (20) in (17) yields

e (4r2\® 6 4 2
Y(z) = 55\ o5 (42° 4+ 92* — 182” + 15) . (21)

Note thaty in (21) is real and symmetric. We show that is however not pd, by show-

ing that there exists an interval over whidid in (19) is negative (and the claim there-
fore follows from Bochner's theorem). Defing := 020. 1t is easy to show thay

is increasing on[—+/13 — v/97,0] and [v/13 — v/97, /13 + v/97], while it is decreasing on

—V134+ V97, =13 — v/97] and [0, v/13 — v/97], with {0, =1/13 + /97} being its stationary

points. Alsog(0) > 0, g(+v/13 4+ v/97) > 0 while g(+1/13 — v/97) < 0. This means there exists
a € [0,v/13 — /97 andb € [v/13 — /97, v/13 + /97 such thaty(z) < 0 for all = € (a,b).

Therefore, by Bochner’s theorem,is not pd.

A.9 Approximation of v (P,,,Q,) in (9)

Since computing (9) in closed form may not be possible fog,a9) can be approximated as

m

w . N
35 (P, Q) = (u(X))/2 (%;%Zbuj, ) 23 bt )

Jj=1 Jj=1

where{t, I | are N random samples drawn i.i.d. from the probability measyres= p/u(X),
assumingu is finite onX’. Now, we requireyx (P,,,, Q,,) to be a consistent estimator of (P, Q).
Note that

We showed that fo3,,(X') in Corollary 15,

max(l—q,—1) max(l—gq,—1)
¢ (B Q) = 12 (B, Q)] = O (™ wa n™ia ).
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Definef := [, b(z,) d(Ppr—Qn)(z )—%Z;":lb(Xj,-)—%Zj 1 b(Y;, ). Now, let us consider

1 Y 1/q
|wwm@m—w@m@m=wwwm<ﬁg}mmq —(Auwwmw)

1/q

N
1
< )5 Sl = [ 1 dnt)
s=1
Assumingb(z, -) is bounded for alk: € X, by Hoeffding’s inequality, we get

17k (P, Qn) — Vi (P, Q)| = O(N~1/29).

Assumingm = n, if we draw N = O(m?), q € [2,00) or N = O(m?(¢=1) ¢ € (1,2] from 7,
vk (P, Q) can be consistently estimated fram (P,,,, Q,,).

A.10 Derivation of (11)

Definingyp := [, b(x,-) dP(z), we have
&m&maﬂwm%mﬁwww
=Awwww@%:%@wfwmw@wﬁsﬁaﬁww
:/:/um¢m@m—@mmy/aaﬁwwm—@w@ﬁf-
X JX X
/b(xq 15 ) ( Qn)(xq—l)/xb(xqvt) d(Pm_Qn)(xq)dﬂ(t)

/(// (w1,6)b(@2, 1) d(Pm — Qn)(@1) d(Prn —Qn)(x2)> .
(//x“’x“< = Q) (eg1) B~ o)) ) )

/ (/ /Hb Toj_1,t)b(z25,1) ﬁ - Qn) :c])) du(t)

j=1

@[ //Hmwjmpw ﬁ - Qu)(ay), (22)

where we have invoked Fubini’s theorem(if).

A1l Computation of A(z1,...,z,)

Letf(z) = e **", z € R anddu(t) = ¢ P dt. We show thatd(z1,...,z4) in (22) can be
computed in a closed form. To simplify the calculation, here assume = 4. Consider

Az, x2, 23, 74) = /RH(xl —1)0(x2 — t)0(x3 — t)0(xq — t) dp(t)

:/e—a((wl—t>2+(wz—t>2+(wa—t>2+(z4—t)2)e—/3t2 dt.
R

Using

w+5s)2

(z—w)2+6(z—s)2:16?(10—5)24—(14—5) (z— s
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we get

a 2, a 2, a 2 aB 2
T e—(g(wl—wz) +5 (w3—xa)"+F (T1+@2—23—24)" + 55575 (T1+T2+T3+T4) )

da+

Therefore, with this choice ¢f andy in Example 3;yx (P, Q,,) can be computed in a closed form
(see (22)).

A($1,$2,$€3,$4) =
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