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Abstract

The multi-armed bandit (MAB) setting is a useful abstraction of many online
learning tasks which focuses on the trade-off between exploration and exploita-
tion. In this setting, an online algorithm has a fixed set of alternatives (“arms”),
and in each round it selects one arm and then observes the corresponding reward.
While the case of small number of arms is by now well-understood, a lot of re-
cent work has focused on multi-armed bandits with (infinitely) many arms, where
one needs to assume extra structure in order to make the problem tractable. In
particular, in the Lipschitz MAB problem there is an underlying similarity metric
space, known to the algorithm, such that any two arms that are close in this metric
space have similar payoffs. In this paper we consider the more realistic scenario
in which the metric space is implicit – it is defined by the available structure but
not revealed to the algorithm directly. Specifically, we assume that an algorithm
is given a tree-based classification of arms. For any given problem instance such
a classification implicitly defines a similarity metric space, but the numerical sim-
ilarity information is not available to the algorithm. We provide an algorithm for
this setting, whose performance guarantees (almost) match the best known guar-
antees for the corresponding instance of the Lipschitz MAB problem.

1 Introduction

In a multi-armed bandit (MAB) problem, a player is presented with a sequence of trials. In each
round, the player chooses one alternative from a set of alternatives (“arms”) based on the past history,
and receives the payoff associated with this alternative. The goal is to maximize the total payoff of
the chosen arms. The multi-armed bandit setting was introduced in 1950s and has since been studied
intensively since then in Operations Research, Economics and Computer Science, e.g. see [8] for
background. This setting is often used to model the tradeoffs between exploration and exploitation,
which is the principal issue in sequential decision-making under uncertainty.

One standard way to evaluate the performance of a multi-armed bandit algorithm is regret, defined
as the difference between the expected payoff of an optimal arm and that of the algorithm. By
now the multi-armed bandit problem with a small finite number of arms is quite well understood
(e.g. see [22, 3, 2]). However, if the set of arms is exponentially or infinitely large, the problem
becomes intractable, unless we make further assumptions about the problem instance. Essentially,
an MAB algorithm needs to find a needle in a haystack; for each algorithm there are inputs on which
it performs as badly as random guessing.

The bandit problems with large sets of arms have received a considerable attention, e.g. [1, 5, 23,
12, 21, 10, 24, 25, 11, 4, 16, 20, 7, 19]. The common theme in these works is to assume a certain
structure on payoff functions. Assumptions of this type are natural in many applications, and often
lead to efficient learning algorithms, e.g. see [18, 8] for a background.
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In particular, the line of work [1, 17, 4, 20, 7, 19] considers the Lipschitz MAB problem, a broad
and natural bandit setting in which the structure is induced by a metric on the set of arms.1 In this
setting an algorithm is given a metric space (X,D), whereX is the set of arms, which represents the
available similarity information (information on similarity between arms). Payoffs are stochastic:
the payoff from choosing arm x is an independent random sample with expectation µ(x). The metric
space is related to payoffs via the following Lipschitz condition:2

|µ(x)− µ(y)| ≤ D(x, y) for all x, y ∈ X. (1)

Performance guarantees consider regret R(t) as a function of time t, and focus on the asymptoti-
cal dependence of R(·) on a suitably defined “dimensionality” of the problem instance (X,D, µ).
Various upper and lower bounds of the form R(t) = Θ̃(tγ), γ < 1 have been proved.

We relax an important assumption in Lipschitz MAB that the available similarity information pro-
vides numerical values in the sense of (1).3 Specifically, following [21, 24, 25] we assume that an
algorithm is (only) given a taxonomy on arms: a tree-based classification modeled by a rooted tree
T whose leaf set is X . The idea is that any two arms in the same subtree are likely to have sim-
ilar payoffs. Motivations include contextual advertising and web search with topical taxonomies,
e.g. [25, 6, 29, 27], Monte-Carlo planning [21, 24], and Computer Go [13, 14].

We call the above formulation the Taxonomy MAB problem; a problem instance is a triple (X, T , µ).
Crucially, in Taxonomy MAB no numerical similarity information is explicitly revealed. All prior
algorithms for Lipschitz MAB (and in particular, all algorithms in [20, 7]) are parameterized by
some numerical similarity information, and therefore do not directly apply to Taxonomy MAB.

One natural way to quantify the extent of similarity between arms in a given subtree is via the
maximum difference in expected payoffs. Specifically, for each internal node v we define the width
of the corresponding subtree T (v) to be W(v) = supx,y∈X(v) |µ(x) − µ(y)|, where X(v) is the set
of leaves in T (v). Note that the subtree widths are non-increasing from root to leaves. A standard
notion of distance induced by subtree widths, henceforth called implicit distance, is as follows:
Dimp(x, y) is the width of the least common ancestor of leaves x, y. It is immediate that this is
indeed a metric, and moreover that it satisfies (1). In fact, Dimp(x, y) is the smallest “width-based”
distance that satisfies (1). If the widths are strictly decreasing, T can be reconstructed from Dimp.

Thus, an instance (X, T , µ) of Taxonomy MAB naturally induces an instance (X,Dimp, µ) of Lip-
schitz MAB which (assuming the widths are strictly decreasing) encodes all relevant information.
The crucial distinction is that in Taxonomy MAB the metric space (X,Dimp) is implicit: the subtree
widths are not revealed to the algorithm. In particular, the algorithms in [20, 7] do not apply.

We view Lipschitz MAB as a performance benchmark for Taxonomy MAB. We are concerned with
the following question: can an algorithm for Taxonomy MAB perform as if it was given the implicit
metric space (X,Dimp)? More formally, we ask whether it is possible to obtain guarantees for
Taxonomy MAB that (almost) match the state-of-art for Lipschitz MAB.

We answer this question in the affirmative as long as the implicit metric space (X,Dimp) has a small
doubling constant (see Section 2 for a milder condition). We provide an algorithm with guarantees
that are almost identical to those for the zooming algorithm in [20].4

Our algorithm proceeds by estimating subtree widths of near-optimal subtrees. Thus, we encounter
a two-pronged exploration-exploitation trade-off: samples from a given subtree reveal information
not only about payoffs but also about the width, whereas in Lipschitz MAB we only need to worry
about the payoffs. Dealing with this more complicated trade-off is the main new conceptual hurdle
(which leads to some technical complications such as the proof of Lemma 4.4). These complications
aside, our algorithm is similar to those in [17, 20] in that it maintains a partition of the space of arms
into regions (in this case, subtrees) so that each region is treated as a “meta-arm”, and this partition
is adapted to the high-payoff regions.

1This problem has been explicitly defined in [20]. Preceding work [1, 17, 9, 4] considered a few special
cases such as a one-dimensional real interval with a metric defined by D(x, y) = |x− y|α, α ∈ (0, 1].

2Lipschitz constant is clip = 1 without loss of generality: else, one could take a metric clip ×D.
3In the full version of [20] the setting is relaxed so that (1) needs to hold only if x is optimal, and the

distances between non-optimal points do not need to be explicitly known; [7] provides a similar result.
4The guarantees in [7] are similar but slightly different technically.
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1.1 Preliminaries

The Taxonomy MAB problem and the implicit metric space (X,Dimp) are defined as in Section 1.
We assume stochastic payoffs [2]: in each round t the algorithm chooses a point x = xt ∈ X and
observes an independent random sample from a payoff distribution Ppayoff(x) with support [0, 1]
and expectation µ(x).5 The payoff function µ : X → [0, 1] is not revealed to an algorithm. The
goal is to minimize regret with respect to the best expected arm:

R(T ) , µ∗T − E
[∑T

t=1 µ(xt)
]

= E
[∑T

t=1 ∆(xt)
]
, (2)

where µ∗ , supx∈X µ(x) is the maximal expected payoff, and ∆(x) , µ∗−µ(x), is the “badness”
of arm x. An arm x ∈ X is called optimal if µ(x) = µ∗.

We will assume that the number of arms is finite (but possibly very large). Extension to infinitely
many arms (which does not require new algorithmic ideas) is not included to simplify presentation.
Also, we will assume a known time horizon (total number of rounds), denoted Thor.

Our guarantees are in terms of the zooming dimension [20] of (X,Dimp, µ), a concept that takes
into account both the dimensionality of the metric space and the “goodness” of the payoff function.
Below we specialize the definition from [20] to Taxonomy MAB.
Definition 1.1 (zooming dimension). For X ′ ⊂ X , define the covering number N cov

δ (X ′) as the
smallest number of subtrees of width at most δ that cover X ′. Let Xδ , {x ∈ X : 0 < ∆(x) ≤ δ}.
The zooming dimension of a problem instance I = (X, T , µ), with multiplier c, is

ZoomDim(I, c) , inf{d ≥ 0 : N cov
δ/8 (Xδ) ≤ c δ−d ∀δ > 0}. (3)

In other words, we consider a covering property N cov
δ/8 (Xδ) ≤ c δ−d, and define the zooming dimen-

sion as the smallest d such that this covering property holds for all δ > 0. The zooming dimension
essentially coincides with the covering dimension of (X,D) 6 for the worst-case payoff function µ,
but can be (much) smaller when µ is “benign”. In particular, zooming dimension would “ignore” a
subtree with high covering dimension but significantly sub-optimal payoffs.

The doubling constant cDBL of a metric space is the smallest k such that any ball can be covered by
k balls of half the radius. (In our case, any subtree can be covered by k subtrees of half the width.)
Doubling constant has been a standard notion in theoretical computer science literature since [15];
since then, it was used to characterize tractable problem instances for a variety of problems. It is
known that cDBL = O(2d) for any bounded subset S ⊂ Rd′ of linear dimension d, under any metric
`p, p ≥ 1. Moreover, cDBL ≥ c 2d if d is the covering dimension with multiplier c.

2 Statement of results

We will prove that our algorithm (TaxonomyZoom) satisfies the following regret bound:

For each instance I of Taxonomy MAB, each c > 0 and each T ≤ Thor,

R(T ) ≤ O(cKI log Thor)
1/(2+d) × T 1−1/(2+d), d = ZoomDim(I, c). (4)

We will bound the factor KI below. For KI = 1 this is the guarantee for the zooming algorithm
in [20] for the corresponding instance (X,Dimp, µ) of Lipschitz MAB. Note that the definition of
zooming dimension allows a trade-off between c and d, and we obtain the optimal trade-off since (4)
holds for all values of c at once. Following the prior work on Lipschitz MAB, we identify the
exponent in (4) as the crucial parameter, as long as the multiplier c is sufficiently small.7

Our first (and crude) bound for KI is in terms of the doubling constant of (X,Dimp).
Theorem 2.1 (Crude bound). Given an upper bound c′DBL on the doubling constant of (X,Dimp),
TaxonomyZoom achieves (4) with KI = f(c′DBL) log |X|, where f(n) = n 2n.

5Other than support and expectation, the “shape” of Ppayoff(x) is not essential for this paper.
6Covering dimension is defined as in (3), replacing Ncov

δ/8(Xδ) with Ncov
δ (X)..

7One can reduce ZoomDim by making c huge, e.g. ZoomDim = 0 for c = |X|. However, this is not likely to
lead to useful regret bounds. Similar trade-off (dimension vs multiplier) is implicit in [7].
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Our main result (which implies Theorem 2.1) uses a more efficient bound for KI .

Recall that in Taxonomy MAB subtree widths are not revealed, and the algorithm has to use sam-
pling to estimate them. Informally, the taxonomy is useful for our purposes if and only if subtree
widths can be efficiently estimated using random sampling. We quantify this as a parameter called
quality, and bound KI in terms of this parameter.

We use simple random sampling: start at a tree node v and choose a branch uniformly at random at
each junction. LetP(u|v) be the probability that node u is reached starting from v. The probabilities
P(·|v) induce a distribution on X(v), the leaf set of subtree T (v). A sample from this distribution
is called a random sample from T (v), with expected payoff µ(v) ,

∑
x∈X(v) µ(x) P(x|v).

Definition 2.2. The quality of the taxonomy for a given problem instance is the largest number
q ∈ (0, 1) with the following property: for each subtree T (v) containing an optimal arm there exist
tree nodes u, u′ ∈ T (v) such that P(u|v) and P(u′|v) are at least q and

|µ(u)− µ(u′)| ≥ 1
2 W(v). (5)

One could use the pair u, u′ in Definition 2.2 to obtain reliable estimates for W(v). The definition
focuses on the difficulty of obtaining such pair via random sampling from T (v). The definition is
flexible: it allows u and u′ to be at different depth (which is useful if node degrees are large and
non-uniform) and the widths of other internal nodes in T (v) cannot adversely impact quality. The
constant 1

2 in (5) is arbitrary; we fix it for convenience.

For a particularly simple example, consider a binary taxonomy such that for each subtree T (v)
containing an optimal arm there exist grandchildren u, u′ of v that satisfy (5). For instance, such
u, u′ exist if the width of each grandchild of v is at most 1

4 W(v). Then quality ≥ 1
4 .

Theorem 2.3 (Main result). Assume an lower bound q ≤ quality(I) is known. Then
TaxonomyZoom achieves (4) with KI = deg

q log |X|, where deg is the degree of the taxonomy.

Theorem 2.1 follows because, letting cDBL be the doubling constant of (X,Dimp), all node degrees
are at most cDBL and moreover quality ≥ 2−cDBL (we omit the proof from this version).

Discussion. The guarantee in Theorem 2.3 is instance-dependent: it depends on deg/quality
and ZoomDim, and is meaningful only if these quantities are small compared to the number of arms
(informally, we will call such problem instances “benign”). Also, the algorithm needs to know
a non-trivial lower bound on quality; very conservative estimates would not suffice. However,
underestimating quality (and likewise overestimating Thor) is relatively inexpensive as long as the
“influence” of these parameters on regret is eventually dominated by the T 1−1/(2+d) term.

For benign problem instances, the benefit of using the taxonomy is the vastly improved dependence
on the number of arms. Without a taxonomy or any other structure, regret of any algorithm for
stochastic MAB scales linearly in the number of (near-optimal) arms, for a sufficiently large t.
Specifically, let Nδ be the number of arms x such that δ2 < ∆(x) ≤ δ. Then the worst-case regret
(over all problem instances) cannot be better than R(t) = min(δt,Ω( 1

δ Nδ)). 8

An alternative approach to MAB problems on trees (without knowing the “widths”) are the “tree
bandit algorithms” explored in [21, 24]. Here for each tree node v there is a separate, independent
copy of UCB1 [2] or a UCB1-style index algorithm (call it Av), so that the “arms” for Av corre-
spond to children u of v, and selecting a child u in a given round corresponds to playing Au in
this round. [21, 24] report successful empirical performance of such algorithms on some examples.
However, regret bounds for these algorithms do not scale as well with the number of arms: even if
the tree widths are given, then letting ∆min , minx∈X: ∆(x)>0 ∆(x), the regret bound is propor-
tional to |Xδ|/∆min (where Xδ is as in Definition 1.1), whereas the regret bound in Theorem 2.3 is
(essentially) in terms of the covering numbers N cov

δ/8 (Xδ).

8This is implicit from the lower-bounding analysis in [22] and [3].

4



3 Main algorithm

Our algorithm TaxonomyZoom(Thor, q) is parameterized by the time horizon Thor and the quality
parameter q ≤ quality. In each round the algorithm selects one of the tree nodes, say v, and plays
a randomly sampled arm x from T (v). We say that a subtree T (u) is hit in this round if u ∈ T (v)
and x ∈ T (u). For each tree node v and time t, let nt(v) be the number of times the subtree T (v)
has been hit by the algorithm before time t, and let µt(v) be the corresponding average reward. Note
that E[µt(v) |nt(v) > 0] = µ(v). Define the confidence radius of v at time t as

radt(v) ,
√

8 log(Thor|X|) / (2 + nt(v)). (6)

The meaning of the confidence radius is that |µt(v)− µ(v)| ≤ radt(v) with high probability.

For each tree node v and time t, let us define the index of v at time t as

It(v) , µt(v) + (1 + 2 kA) radt(v), where kA , 4
√

2/q. (7)

Here we posit µt(v) = 0 if nt(v) = 0. Let us define the width estimate9

Wt(v) , max(0, Ut(v)− Lt(v)), where
{
Ut(v) , maxu∈T (v), s≤t µs(u)− rads(u),

Lt(v) , minu∈T (v), s≤t µs(u) + rads(u).
(8)

Here Ut(v) is the best available lower confidence bound on maxx∈X(v) µ(x), and Lt(v) is the best
available upper confidence bound on minx∈X(v) µ(x). If both bounds hold then Wt(v) ≤ W(v).

Throughout the phase, some tree nodes are designated active. We maintain the following invariant:

Wt(v) < kA radt(v) for each active internal node v. (9)

TaxonomyZoom(Thor, q ) operates as follows. Initially the only active tree node is the root. In each
round, the algorithm performs the following three steps:

(S1) While Invariant (9) is violated by some v, de-activate v and activate all its children.
(S2) Select an active tree node v with the maximal index (7), breaking ties arbitrarily.
(S3) Play a randomly sampled arm from T (v).

Note that each arm is activated and deactivated at most once.

Implementation details. If an explicit representation of the taxonomy can be stored in memory,
then the following simple implementation is possible. For each tree node v, we store several statis-
tics: nt, µt, Ut and Lt. Further, we maintain a linked list of active nodes, sorted by the index.
Suppose in a given round t, a subtree v is chosen, and an arm x is played. We update the statistics
by going up the x→ v path in the tree (note that only the statistics on this path need to be updated).
This update can be done in time O(depth(x)). Then one can check whether Invariant (9) holds for
a given node in time O(1). So step (S1) of the algorithm can be implemented in time O(1 + N),
where N is the number of nodes activated during this step. Finally, the linked list of active nodes
can be updated in time O(1 +N). Then the selections in steps (S2) and (S3) are done in time O(1).

Lemma 3.1. TaxonomyZoom can be implemented with O(1) storage per each tree node, so that in
each round the time complexity is O(N + depth(x)), where N is the number of arms activated in
step (S1), and x is the arm chosen in step (S3).

Sometimes it may be feasible (and more space-efficient) to represent the taxonomy implicitly, so that
a tree node is expanded only if needed. Specifically, suppose the following interface is provided:
given a tree node v, return all its children and an arbitrary arm x ∈ T (v). Then TaxonomyZoom can
be implemented so that it only stores the statistics for each node u such that P(u|v) ≥ q for some
active node v (rather than for all tree nodes).10 The running times are as in Lemma 3.1.

9Defining Ut, Lt in (8) via s ≤ t (rather than s = t) improves performance, but is not essential for analysis.
10The algorithm needs to be modified slightly; we leave the details to the full version.
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4 Analysis: proof of Theorem 2.3

First, let us fix some notation. We will focus on regret up to a fixed time T ≤ Thor. In what follows,
let d = ZoomDim(I, c) for some fixed c > 0. Recall the notation Xδ , {x ∈ X : ∆(x) ≤ δ} from
Definition 1.1. Here δ is the “ distance scale”; we will be interested in δ ≥ δ0, for

δ0 , (KT )1/(d+2), where K , O(c deg k2
A log Thor). (10)

We identify a certain high-probability behavior of the algorithm, and argue deterministically condi-
tional on the event that this behavior actually holds.
Definition 4.1. An execution of TaxonomyZoom is called clean if for each time t ≤ T and all tree
nodes v the following two properties hold:

(P1) |µt(v)− µ(v)| ≤ radt(v) as long as nt(v) > 0.
(P2) If u ∈ T (v) then

nt(v)P(u|v) ≥ 8 log T ⇒ nt(u) ≥ 1
2 nt(v)P(u|v).

Note that in a clean execution the quantities in (8) satisfy the desired high-confidence bounds:
Ut(v) ≤ maxx∈X(v) µ(x) and Lt(v) ≥ minx∈X(v) µ(x), which implies W(v) ≥ Wt(v).

Lemma 4.2. An execution of TaxonomyZoom is clean with probability at least 1− 2T−2
hor.

Proof. For part (P1), fix a tree node v and let ζj to be the payoff in the j-th round that v has been
hit. Then {

∑n
j=1(ζj − µ(v))}n=1..T is a martingale.11 Let ζ̄n , 1

n

∑n
j=1 ζj be the n-th average.

Then by the Azuma-Hoeffding inequality, for any n ≤ Thor we have:

Pr[ |ζ̄n − µ(v)| > r(n)] ≤ (Thor |X|)−2, where r(n) ,
√

8 log(Thor|X|) / (2 + n). (11)
Note that radt(v) = r(nt(v)). We obtain (P1) by taking the Union Bound for (11) over all nodes v
and all n ≤ T . (This is the only place where we use the log |X| term in (6).)

Part (P2) is proved via a similar application of martingales and Azuma-Hoeffding inequality.

From now on we will argue about a clean execution. Recall that by definition of W(·),
µ(v) ≤ µ(u) + W(v) for any tree node u ∈ T (v). (12)

The crux of the proof of Theorem 2.3 is that at all times the maximal index is at least µ∗.
Lemma 4.3. Consider a clean execution of TaxonomyZoom(Thor, q). Then the following holds: in
any round t ≤ Thor, at any point in the execution such that the invariant (9) holds, there exists an
active tree node v∗ such that It(v∗) ≥ µ∗.

Proof. Fix an optimal arm x∗ ∈ X . Note that in each round t, there exist an active tree node v∗t
such that x∗ ∈ T (v∗). (One can prove it by induction on t, using the (de)activation rule (S1) in
TaxonomyZoom.) Fix round t and the corresponding tree node v∗ = v∗t .

By Definition 2.2, there exist v0, v1 ∈ Tq(v∗) such that |µ(v1)− µ(v0)| ≥ W(v∗)/2.

Assume that ∆ , W(v∗) > 0, and define f(∆) = 83 log(Thor) ∆−2. Then for each tree node v
radt(v) ≤ ∆/8 ⇐⇒ nt(v) ≥ f(∆). (13)

Now, for the sake of contradiction let us suppose that nt(v∗) ≥ ( 1
4 kA)2 f(∆). By (13), this is

equivalent to ∆ ≥ 2 kA radt(v
∗). Note that nt(v∗) ≥ (2/q) f(∆) by our assumption on kA, so

by property (P2) in the definition of the clean execution, for each node vj , j ∈ {0, 1} we have
nt(vj) ≥ f(∆), which implies radt(vj) ≤ ∆/8. Therefore (8) gives a good estimate of W(v∗),
namely Wt(v

∗) ≥ ∆/4. It follows that Wt(v∗) ≥ kA radt(v
∗), which violates Invariant (9).

We proved that W(v∗) ≤ 2 kA radt(v
∗). Using (12), we have ∆(v∗) ≤ W(v∗) < 2 kA radt(v

∗) and
It(v

∗) ≥ µ(v∗) + 2 kA radt(v
∗) ≥ µ∗, (14)

where the first inequality in (14) holds by definition (7) and property (P1) of a clean execution.
11To make ζn well-defined for any n ≤ Thor, consider a hypothetical algorithm which coincides with

TaxonomyZoom for the first Thor rounds and then proceeds so that each tree node is selected Thor times.
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We use Lemma 4.3 to show that the algorithm does not activate too many tree nodes with large
badness ∆(·), and each such node is not played too often. For each tree node v, let N(v) be the
number of times node v was selected in step (S2) of the algorithm. Call v positive if N(v) > 0. We
partition all positive tree nodes and all deactivated tree nodes into sets

Si = {positive tree nodes v : 2−i < ∆(v) ≤ 2−i+1},
S∗i = {deactivated tree nodes v : 2−i < 4 W(v) ≤ 2−i+1}.

Lemma 4.4. Consider a clean execution of algorithm TaxonomyZoom(Thor, q ).

(a) for each tree node v we have N(v) ≤ O(k2
A log Thor) ∆−2(v).

(b) if node v is de-activated at some point in the execution, then ∆(v) ≤ 4 W(v).
(c) For each i, |S∗i | ≤ 2Ki, where Ki , c 2(i+1) d.
(d) For each i, |Si| ≤ O(degKi+1).

Proof. For part (a), fix an arbitrary tree node v and let t be the last time v was selected in step (S2)
of the algorithm. By Lemma 4.3, at that point in the execution there was a tree node v∗ such that
It(v

∗) ≥ µ∗. Then using the selection rule (step (S2)) and the definition of index (7), we have

µ∗ ≤ It(v∗) ≤ It(v) ≤ µ(v) + (2 + 2 kA) radt(v),

∆(v) ≤ (2 + 2 kA) radt(v). (15)

N(v) ≤ nt(v) ≤ O(k2
A log Thor) ∆−2(v).

For part (b), suppose tree node v was de-activated at time s. Let t be the last round in which v was
selected. Then

W(v) ≥ Ws(v) ≥ kA rs(v) ≥ 1
3 (2 + 2 kA) radt(v) ≥ 1

3 ∆(v). (16)

Indeed, the first inequality in (16) holds since we are in a clean execution, the second inequality
in (16) holds because v was de-activated, the third inequality holds because ns(v) = nt(v) + 1, and
the last inequality in (16) holds by (15).

For part (c), let us fix i and define Yi = {x ∈ X : ∆(x) ≤ 2−i+1}. By Definition 1.1, this set can
be covered by Ki subtrees T (v1), . . . , T (vKi

), each of width < 2−i/4. Fix a deactivated tree node
v ∈ S∗i . For each arm x ∈ X in subtree T (v) we have, by part (b),

∆(x) ≤ ∆(v) + W(v) ≤ 4 W(v) ≤ 2−i+1,

so x ∈ Yi and therefore is contained in some T (vj). Note that vj ∈ T (v) since W(v) > W(vj). It
follows that the subtrees T (v1), . . . , T (vK) cover the leaf set of T (v).

Consider the graph G on the node set S∗i ∪ {v1, . . . , vK}, where two nodes u, v are connected by a
directed edge (u, v) if there is a path from u to v in the tree T . This is a directed forest of out-degree
at least 2, whose leaf set is a subset of {v1, . . . , vKi}. Since in any directed tree of out-degree ≥ 2
the number of nodes is at most twice the number of leaves, G contains at most Ki internal nodes.
Thus |S∗i | ≤ 2Ki, proving part (c).

For part (d), let us fix i and consider a positive tree node u ∈ Si. SinceN(u) > 0, either u is active
at time Thor, or it was deactivated in some round before Thor. In the former case, let v be the parent
of u. In the latter case, let v = u. Then by part (b) we have 2−i ≤ ∆(u) ≤ ∆(v) + W(v) ≤ 4 W(v),
so v ∈ S∗j for some j ≤ i+ 1.

For each tree node v, define its family as the set which consists of u itself and all its children.
We have proved that each positive node u ∈ Si belongs to the family of some deactivated node
v ∈ ∪i+1

j=1S
∗
j . Since each family consists of at most 1 + deg nodes, it follows that

|Si| ≤ (1 + deg) (
∑i+1
j=1Kj) ≤ O(degKi+1).

Proof of Theorem 2.3: The theorem follows Lemma 4.4(ad). Let us assume a clean execution.
(Recall that by Lemma 4.2 the failure probability is sufficiently small to be neglected.) Then:∑

v∈Si
N(v) ∆(v) ≤ O(k2

A log Thor)
∑
v∈Si

1
∆(v) ≤ O(k2

A log Thor) |Si| 2i ≤ K 2(i+2)(1+d),
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where K is defined in (10). For any δ0 = 2−i0 we have
R(T ) ≤

∑
tree nodes v N(v) ∆(v)

=
(∑

v: ∆(v)<δ0
N(v) ∆(v)

)
+
(∑

v: ∆(v)≥δ0 N(v) ∆(v)
)

≤ δ0T +
(∑

i≤i0
∑
v∈Si

N(v) ∆(v)
)
≤ δ0T +

∑
i≤i0 K 2(i+2)(1+d)

≤ δ0T +O(K) ( 8
δ0

)(1+d).

We obtain the desired regret bound (4) by setting δ0 as in (10).

5 (De)parameterizing the algorithm

Recall that TaxonomyZoom needs to be parameterized by Thor and q. dependence on the param-
eters can be removed using a suitable version of the standard doubling trick: consider a “meta-
algorithm” that proceeds in phases so that in each phase i = 1, 2, 3, . . . a fresh instance of
TaxonomyZoom(2i, qi) is run for 2i rounds, where qi slowly decreases with i. For instance, if we
take qi = 2−αi for some α ∈ (0, 1) then this meta-algorithm has regret

R(T ) ≤ O(c deg log T )1/(2+d) × T 1−(1−α)/(2+d) ∀T ≥ quality−1/α (17)
where d = ZoomDim(I, c), for any given c > 0.

While the doubling trick is very useful in theory of online decision problems, its practical importance
is questionable, as running a fresh algorithm instance in each phase seems unnecessarily wasteful.
We conjecture that in practice one could run a single instance of the algorithm while gradually
increasing Thor and decreasing q. However, providing provable guarantees for this modified algo-
rithm seems beyond the current techniques. In particular, extending a much simpler analysis of the
zooming algorithm [20] to arbitrary time horizon remains a challenge.12

Further, we conjecture that TaxonomyZoom will typically work in practice even if the parameters are
misspecified, i.e. even if Thor is too low and q is too optimistic. Indeed, recall that our algorithm
is index-based, in the style of UCB1 [2]. The only place where the parameters are invoked is in
the definition of the index (7), namely in the constant in front of the exploration term. It has been
observed in [28, 29] that in a related MAB setting, reducing this constant to 1 from the theoretically
mandated Θ(log T )-type term actually improves algorithms’ performance in simulations.

6 Conclusions

In this paper, we have extended previous multi-armed bandit learning algorithms with large numbers
of available strategies. Whereas the most effective previous approaches rely on explicitly knowing
the distance between available strategies, we consider the case where the distances are implicit in a
hierarchy of available strategies. We have provided a learning algorithm for this setting, and show
that its performance almost matches the best known guarantees for the Lipschitz MAB problem.
Further, we have shown how our approach results in stronger provable guarantees than alternative
algorithms such as tree bandit algorithms [21, 24].

We conjecture that the dependence on quality (or some version thereof) is necessary for the worst-
case regret bounds, even if ZoomDim is low. It is an open question whether there are non-trivial
families of problem instances with low quality for which one could achieve low regret.

Our results suggest some natural extensions. Most interestingly, a number of applications recently
posed as MAB problems over large sets of arms – including learning to rank online advertisements
or web documents (e.g. [26, 29]) – naturally involve choosing among arms (e.g. ads) that can be clas-
sified according to any of a number of hierarchies (e.g. by class of product sold, geographic location,
etc). In particular, such different hierarchies may be of different usefulness. Selecting among, or
combining from, a set of available hierarchical representations of arms poses interesting challenges.
More generally, we would like to generalize Theorem 2.3 to other structures that implicitly define
a metric space on arms (in the sense of (1)). One specific target would be directed acyclic graphs.
While our algorithm is well-defined for this setting, the theoretical analysis does not apply.

12However, [7] obtains similar guarantees for arbitrary time horizon, with a different algorithm.
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