
Supplementary Material:
Multi-View Learning of Word Embeddings via CCA

Our goal is to find a v × k matrix A that maps each of the v words in the vocabulary to a k-
dimensional state vector. We will show that the A we find preserves the information in our data and
allows a significant data reduction.

Let L be an n × hv matrix giving the words in the left context of each of the n tokens, where the
context is of length h, R be the corresponding n × hv matrix for the right context, and W be an
n× v matrix of indicator functions for the words themselves.

We will use three assumptions at various points in our proof:
Assumption 1. L, W, and R come from a rank k HMM i.e it has a rank k observation matrix and
a rank k transition matrix both of which have the same domain.

For example, if the dimension of the hidden state is k and the vocabulary size is v then the obser-
vation matrix, which is k × v, has rank k. This rank condition is similar to the one used by Siddiqi
et al. (2010).
Assumption 1A. For the three views, L, W and R assume that there exists a “hidden state H” of
dimension n × k, where each row Hi has the same non-singular variance-covariance matrix and
such that E(Li|Hi) = Hiβ

T
L and E(Ri|Hi) = Hiβ

T
R and E(Wi|Hi) = Hiβ

T
W where all β’s are of

rank k, where Li, Ri and Wi are the rows of L, R and W respectively.

This assumption actually follows from the previous one.
Assumption 2. ρ(L,W), ρ(L,R) and ρ(W,R) all have rank k, where ρ(X1,X2) is the expected
correlation between X1 and X2.

This is a rank condition similar to that in Hsu et al. (2009).
Assumption 3. ρ([L,R],W) has k distinct singular values.

This assumption just makes the proof a little cleaner, since if there are repeated singular values,
then the singular vectors are not unique. Without it, we would have to phrase results in terms of
subspaces with identical singular values.

We also need to define the CCA function that computes the left and right singular vectors for a pair
of matrices:
Definition 1 (CCA). Compute the CCA between two matrices X1 and X2. Let ΦX1 be a matrix
containing the d largest singular vectors for X1 (sorted from the largest on down). Likewise for
ΦX2 . Define the function CCAd(X1,X2) = [ΦX1 ,ΦX2 ]. When we want just one of these Φ’s, we
will use CCAd(X1,X2)left = ΦX1 for the left singular vectors and CCAd(X1,X2)right = ΦX2

for the right singular vectors.

Note that the resulting singular vectors, [ΦX1
,ΦX2

] can be used to give two redundant estimates,
X1ΦX1

and X2ΦX2
of the “hidden” state relating X1 and X2, if such a hidden state exists.

Definition 2. Define the symbol “≈” to mean

X1 ≈ X2 ⇐⇒ lim
n→∞

X1 = lim
n→∞

X2

where n is the sample size.
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Lemma 1. Define A by the following limit of the right singular vectors:

CCAk([L,R],W)right ≈ A.

Under assumptions 2, 3 and 1A, such that if CCAk(L,R) ≡ [ΦL,ΦR] then we have

CCAk([LΦL,RΦR],W)right ≈ A.

This lemma shows that instead of finding the CCA between the full context and the words, we can
take the CCA between the Left and Right contexts, estimate a k dimensional state from them, and
take the CCA of that state with the words and get the same result.

Proof:

By assumption 1A, we see that:
E(LβL|H) = HβT

LβL

and
E(RβR|H) = HβT

RβR

Since, again by assumption 1A both of the β matrixes have full rank, βT
LβL is a k × k matrix of

rank k, and likewise for βT
RβR. So

E(βT
RRTLβL|H) = βT

RβRHTHβLβ
T
L

So,
βT
RE(RTL)βL = βT

RβRE(HTH)βLβ
T
L

since βT
RβR, E(HTH) and βT

LβL are all k × k full rank matrices, βR and βL span the same
subspace as the singular values of the CCA between L and R since by assumption 2 they have rank
k also. Similar arguments hold when relating L with W and when relating R with W. Thus if
CCAk(L,R),W) ≡ [ΦL,ΦR],

CCAk(LΦL,RΦR)right ≈ CCAk([LβL,RβR],W)right

(where we have used assumption 3 to ensure that not only are the subspaces the same, but that the
actual singular vectors are the same.)

Finally by 3 we know that the rank of CCAk([L,R],W)right is k we see that

CCAk([LβL,RβR],W)right ≈ CCAk([L,R],W)right.

Calling this common limit A yields our result.
q.e.d.

Let Ãh denote a matrix formed by stacking h copies of A on top of each other. Right multiplying
L or R by Ãh projects each of the words in that context into the k-dimensional reduced rank space.

The following theorem addresses the core of a new LR-MVL(II) algorithm, showing that there is an
A which gives the desired dimensionality reduction.

Theorem 1. Under assumptions 1, 2 and 3 there exists a unique matrix A such that if
CCAk(LÃh,RÃh) ≡ [Φ̃L, Φ̃R] then

CCAk([LÃhΦ̃L,RÃhΦ̃R],W)right ≈ A

where Ãh is the stacked form of A.

Proof: We start by noting that assumption 1 implies assumption 1A. Thus, the previous lemma
follows. So we know

CCAk([L,R],W)right ≈ CCAk([LΦL,RΦR],W)right
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where, as usual, CCAk(L,R) ≡ [ΦL,ΦR], which allows us to define A. This A has the property
that the rank of CCA(WA,H)left is the same as CCA(W,H)left where H is the hidden state
process associated with our data. Hence anything which is not in the domain of A won’t have any
correlation with H and hence no correlation with other observed states. So L and LÃh have the
same “information.” More precisely,

[ÃhΦ̃L, ÃhΦ̃R] ≈ CCAk(L,R)

where CCAk(LÃh,RÃh) ≡ [Φ̃L, Φ̃R] Putting this together with our first equation shows our
desired result.
q.e.d.
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