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Abstract

This document contains detailed proofs of theorems stated in the main article en-
titled Similarity-based Learning via Data Driven Embeddings

1 Proof of Theorem 2

We first recall the definition of a good similarity function.

Definition 1 (Good Similarity Function). A similarity function K : X × X → R is said to be an
(ε, γ, B)-good similarity for a learning problem where ε, γ, B > 0 if for some transfer function
f : R→ R and some weighing function w : X ×X → [−B,B], at least a (1− ε) probability mass
of examples x ∼ D satisfies

E
x′,x′′∼D×D

[w (x′, x′′) f (K(x, x′)−K(x, x′′)) |`(x′) = `(x), `(x′′) 6= `(x)] ≥ Cfγ (1)

where Cf = sup
x,x′∈X

f(K(x, x′))− inf
x,x′∈X

f(K(x, x′))

Theorem 2 (Theorem 2 restated). If K is an (ε, γ, B)-good similarity with respect to transfer func-
tion f and weight function w then for any ε1 > 0, with probability at least 1 − δ over the choice
of d = (8/γ2) ln(2/δε1) positive and negative samples,

{
x+i
}d
i=1
⊂ D+ and

{
x−i
}d
i=1
⊂ D−

respectively, the following classifier has error no more than ε+ ε1 at margin γ
2

h(x) = sgn[g(x)], g(x) =
1

d

d∑
i=1

w(x+i , x
−
i )f

(
K(x, x+i )−K(x, x−i )

)
.

Proof. We shall prove that with probability at least 1 − δ, at least a 1 − ε1 fraction of points x that
satisfy Equation 1 are classified correctly by the classifier h(x). Overestimating the error by treating
the points that do not satisfy Equation 1 as always being misclassified will give us the desired result.

For any fixed x ∈ X+ that satisfies Equation 1, we have

E
x′,x′′∼D×D

[w(x′, x′′)f (K(x, x′)−K(x, x′′)) |`(x′) = 1, `(x′′) = −1] ≥ Cfγ

hence the Hoeffding Bounds give us

Pr
[
g(x) <

γ

2

]
= Pr

[
1

d

d∑
i=1

w(x+i , x
−
i )f

(
K(x, x+i )−K(x, x−i )

)
<
γ

2

]
≤ 2 exp

(
−γ

2d

8

)
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Similarly, for any fixed x ∈ X− that satisfies Equation 1, we have

E
x′,x′′∼D×D

[w(x′, x′′)f (K(x, x′)−K(x, x′′)) |`(x′) = −1, `(x′′) = 1] ≥ Cfγ

hence the Hoeffding Bounds give us

Pr
[
g(x) >

γ

2

]
= Pr

[
1

d

d∑
i=1

w(x+i , x
−
i )f

(
K(x, x+i )−K(x, x−i )

)
>
γ

2

]

= Pr

[
1

d

d∑
i=1

w(x+i , x
−
i )f

(
K(x, x−i )−K(x, x+i )

)
<
γ

2

]
≤ 2 exp

(
−γ

2d

8

)
where in the second step we have used antisymmetry of f .

Since we have shown that this result holds true individually for any point x that satisfies Equation 1,
the expected error (where the expectation is both over the choice of domain points as well as choice
of the landmark points) itself turns out to be less than 2 exp

(
−γ

2d
8

)
≤ ε1δ. Applying Markov’s

inequality gives us that the probability of obtaining a set of landmarks such that the error on points
satisfying Equation 1 is greater than ε1 is at most δ.

Assuming, as mentioned earlier, that the points not satisfying Equation 1 can always be misclassified
proves our desired result.

2 Comparison with the models of Balcan-Blum and Wang et al

In [1], Wang et al consider a model of learning with distance functions. Their model is similar to our
but for the difference that they restrict themselves to the use of a single transfer function namely the
sign function f = sgn(). More formally they have the following notion of a good distance function.
Definition 3 ([2] Definition 4). A distance functionX , d : X×X → R is said to be an (ε, γ, B)-good
distance for a learning problem where ε, γ, B > 0 if there exist two class conditional probability
distributions D̃(x|`(x) = 1) and D̃(x|`(x) = −1) such that for all x ∈ X , D̃(x|`(x)=1)

D(x|`(x)=1) <
√
B

and D̃(x|`(x)=−1)
D(x|`(x)=−1) <

√
B where D(x|`(x) = 1) and D(x|`(x) = −1) are the class conditional

probability distributions of the problem, such that at least a 1 − ε probability mass of examples
x ∼ D satisfies

D̃
x′,x′′∼D̃×D̃

[d(x, x′) < d(x, x′′)|`(x′) = `(x), `(x′′) 6= `(x)] ≥ 1

2
+ γ (2)

It can be shown (and is implicit in the proof of Theorem 5 in [1]) that the above condition is equiva-
lent to

E
x′,x′′∼D×D

[
w`(x)(x

′)w−`(x)(x
′′) sgn (d(x, x′′)− d(x, x′)) |`(x′) = `(x), `(x′′) 6= `(x)

]
≥ 2γ

where w1(x) := D̃(x|`(x)=1)
D(x|`(x)=1) and w−1(x) := D̃(x|`(x)=−1)

D(x|`(x)=−1) . Now define $(x′, x′′) :=

w`(x′)(x
′)w`(x′′)(x

′′) and take f = sgn() as the transfer function in our model. We have, for a
1− ε fraction of points,

E
x′,x′′∼D×D

[$ (x′, x′′) f (K(x, x′)−K(x, x′′)) |`(x′) = `(x), `(x′′) 6= `(x)] ≥ Cfγ

which is clearly seen to be equivalent to

E
x′,x′′∼D×D

[
w`(x)(x

′)w−`(x)(x
′′) sgn (K(x, x′)−K(x, x′′)) |`(x′) = `(x), `(x′′) 6= `(x)

]
≥ γ

since Cf = 1 for the sgn() function. Thus the Wang et al model of learning is an instantiation of
our proposed model.

In [2], Balcan-Blum present a model of learning with similarity functions. Their model does not
consider landmark pairs, just singletons. Accordingly, instead of assigning a weight to each land-
mark pair, one simply assigns a weight to each element of the domain. Consequently one arrives at
the following notion of a good similarity.
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Definition 4 ([1], Definition 3). A similarity measure K : X × X → R is said to be an (ε, γ)-good
similarity for a learning problem where ε, γ > 0 if for some weighing function w : X → [−1, 1], at
least a 1− ε probability mass of examples x ∼ D satisfies

E
x′∼D

[w (x′)K(x, x′)|`(x′) = `(x)] ≥ E
x′∼D

[w (x′)K(x, x′)|`(x′) 6= `(x)] + γ (3)

Now define w+ := E
x∼D

[w (x) |`(x) = 1] and w− := E
x∼D

[w (x) |`(x) = −1]. Furthermore, take

$(x′, x′′) = w(x′)w(x′′) as the weight function and f = id() as the transfer function in our model.
Then we have, for a 1− ε fraction of the points,

E
x′,x′′∼D×D

[$ (x′, x′′) f (K(x, x′)−K(x, x′′)) |`(x′) = `(x), `(x′′) 6= `(x)] ≥ Cfγ

≡ E
x′,x′′∼D×D

[$ (x′, x′′) (K(x, x′)−K(x, x′′)) |`(x′) = `(x), `(x′′) 6= `(x)] ≥ γ

≡ E
x′,x′′∼D×D

[$ (x′, x′′)K(x, x′)|`(x′) = `(x), `(x′′) 6= `(x)] ≥

E
x′,x′′∼D×D

[$ (x′, x′′)K(x, x′′)|`(x′) = `(x), `(x′′) 6= `(x)] + γ

≡ w−`(x) E
x′∼D

[w(x′)K(x, x′)|`(x′) = `(x)] ≥ w`(x) E
x′∼D

[w(x′)K(x, x′)|`(x′) 6= `(x)] + γ

≡ E
x′∼D

[w′(x′)K(x, x′)|`(x′) = `(x)] ≥ E
x′∼D

[w′(x′)K(x, x′)|`(x′) 6= `(x)] + γ

where Cf = 1 for the id() function and w′(x) = w(x)w−`(x). Note that this again guarantees a
classifier with margin γ in the landmarked space. Thus the Balcan-Blum model can also be derived
in our model.

3 Proof of Theorem 3

Theorem 5 (Theorem 3 restated). Let F be a compact class of transfer functions with respect to
the infinity norm and ε1, δ > 0. Let N (F , r) be the size of the smallest ε-net over F with respect

to the infinity norm at scale r = ε1
4CLB

. Then if one chooses d =
64B2C2

L

ε21
ln
(

16B·N (F,r)
δε1

)
random

landmark pairs then we have the following with probability greater than (1− δ)

sup
f∈F

[∣∣∣ E
x∼D

[
L
(
g(f,w(g,f))(x)

)]
− E
x∼D

[
L
(
G(f,w(G,f))(x)

)]∣∣∣] ≤ ε1
We shall prove the theorem in two parts. As we shall see, one of the parts is fairly simple to prove.
To prove the other part, we shall exploit the Lipschitz properties of the loss function as well as
the fact that the class of transfer functions chosen form a compact set. Let us call a given set of
landmark pairs to be good with respect to a fixed transfer function f ∈ F if for the corresponding
g, E

x
[L(g(x))] ≤ E

x
[L(G(x))] + ε1 for some small fixed ε1 > 0.

We will first prove, using Lipschitz properties of the loss function that if a given set of landmarks is
good with respect to a given transfer function, then it is also good with respect to all transfer func-
tions in its neighborhood. Having proved this, we will apply a standard covering number argument
in which we will ensure that a large enough set of landmarks is good with respect to a set of transfer
functions that form an ε-net over F and use the previous result to complete the proof.

We first prove a series of simple results which will be used in the first part of the proof. In the
following f and f ′ are two transfer functions such that f ′ ∈ B∞(f, r) ∩ F .
Lemma 6. The following results are true

1. For any fixed f ∈ F , E
x∼D

[
L
(
G(f,w(G,f))(x)

)]
≤ E
x∼D

[
L
(
G(f,w)(x)

)]
for all w ∈ W .

2. For any fixed f ∈ F , any fixed g obtained by an arbitrary choice of landmark pairs,
E
x∼D

[
L
(
g(f,w(g,f))(x)

)]
≤ E
x∼D

[
L
(
g(f,w)(x)

)]
for all w ∈ W .

3. For any f ′ ∈ B∞(f, r)∩F ,
∣∣∣ E
x∼D

[
L
(
G(f,w(G,f))(x)

)]
− E
x∼D

[
L
(
G(f ′,w(G,f′))

(x)
)]∣∣∣ ≤

CLrB.
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4. For any fixed g obtained by an arbitrary choice of landmark pairs, f ′ ∈ B∞(f, r) ∩ F ,∣∣∣ E
x∼D

[
L
(
g(f,w(g,f))(x)

)]
− E
x∼D

[
L
(
g(f ′,w(g,f′))

(x)
)]∣∣∣ ≤ CLrB.

Proof. We prove the results in order,

1. Immediate from the definition of w(G,f).

2. Immediate from the definition of w(g,f).

3. We have E
x∼D

[
L
(
G(f ′,w(G,f′))

(x)
)]
≤ E

x∼D

[
L
(
G(f ′,w(G,f))(x)

)]
by an application of

Lemma 6.1 proven above. For sake of simplicity let us denote w(G,f) = w for the next set
of calculations. Now we have

G(f ′,w)(x) = E
x′,x′′∼D×D

[w (x′, x′′) f ′ (K(x, x′)−K(x, x′′)) |`(x′) = `(x), `(x′′) 6= `(x)]

≤ E
x′,x′′∼D×D

[w (x′, x′′) (f (K(x, x′)−K(x, x′′)) + r) |`(x′) = `(x), `(x′′) 6= `(x)]

= E
x′,x′′∼D×D

[w (x′, x′′) f (K(x, x′)−K(x, x′′)) |`(x′) = `(x), `(x′′) 6= `(x)]

+ r · E
x′,x′′∼D×D

[w (x′, x′′) |`(x′) = `(x), `(x′′) 6= `(x)]

≤ G(f,w)(x) + rB

where in the second inequality we have used the fact that ‖f − f ′‖∞ ≤ r and in the fourth
inequality we have used the fact that w ∈ W . Thus we have G(f ′,w)(x) ≤ G(f,w)(x) +

rB. Using the Lipschitz properties of L we can now get E
x∼D

[
L
(
G(f ′,w)(x)

)]
≤

E
x∼D

[
L
(
G(f,w)(x)

)]
+ CLrB. Thus we have E

x∼D

[
L
(
G(f ′,w(G,f′))

(x)
)]

≤

E
x∼D

[
L
(
G(f ′,w(G,f))(x)

)]
≤ E
x∼D

[
L
(
G(f,w(G,f))(x)

)]
+ CLrB.

Similarly we can also prove E
x∼D

[
L
(
G(f,w(G,f))(x)

)]
≤ E

x∼D

[
L
(
G(f ′,w(G,f′))

(x)
)]

+

CLrB. This gives us the desired result.

4. The proof follows in a manner similar to the one for Lemma 6.3 proven above.

Using the above results we get a preliminary form of the first part of our proof as follows :

Lemma 7. Suppose a set of landmarks is (ε1/2)-good for a particular landmark f ∈ F
(i.e. E

x∼D

[
L
(
g(f,w(G,f))(x)

)]
< E

x∼D

[
L
(
G(f,w(G,f))(x)

)]
+ ε1/2), then the same set of

landmarks are also ε1-good for any f ′ ∈ B∞(f, r) ∩ F (i.e. for all f ′ ∈ B∞(f, r) ∩ F ,

E
x∼D

[
L
(
g(f ′,w(g,f′))

(x)
)]
≤ E
x∼D

[
L
(
G(f ′,w(G,f′))

(x)
)]

+ ε1) for some r = r (ε1).

Proof. Theorem 9 proven below guarantees that for any fixed f ∈ F , with probability 1 − δ that
E
x∼D

[
L
(
g(f,w(G,f))(x)

)]
< E

x∼D

[
L
(
G(f,w(G,f))(x)

)]
+ ε1/2. This can be achieved with d =

(64B2C2
L/ε

2
1) ln(8B/δε1). Now assuming that the above holds, using the above results we can get
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the following for any f ′ ∈ B∞(f, r) ∩ F .

E
x∼D

[
L
(
g(f ′,w(g,f′))

(x)
)]

≤ E
x∼D

[
L
(
g(f,w(g,f))(x)

)]
+ CLrB

(using Lemma 6.4)

≤ E
x∼D

[
L
(
g(f,w(G,f))(x)

)]
+ CLrB

(using Lemma 6.2)

≤ E
x∼D

[
L
(
G(f,w(G,f))(x)

)]
+ ε1/2 + CLrB

(using Theorem 9)

≤ E
x∼D

[
L
(
G(f ′,w(G,f′))

(x)
)]

+ ε1/2 + 2CLrB

(using Lemma 6.3)

Setting r = ε1
4CLB

gives us the desired result.

Proof. (of Theorem 3) As mentioned earlier we shall prove the theorem in two parts as follows :

1. (Part I) In this part we shall prove the following :

sup
f∈F

[
E
x∼D

[
L
(
g(f,w(g,f))(x)

)]
− E
x∼D

[
L
(
G(f,w(G,f))(x)

)]]
≤ ε1

We first set up an ε-net over F at scale r = ε1
4CLB

. Let there be N (F , r) elements in this
net. Taking d = (64B2C2

L/ε
2
1) ln(8B · N (F , r) /δε1) landmarks should ensure that the

landmarks, with very high probability, are good for all functions in the net by an application
of union bound. Since every function in F is at least r-close to some function in the net,
Lemma 7 tells us that the same set of landmarks are, with very high probability, good for
all the functions in F . This proves the first part of our result.

2. (Part II) In this part we shall prove the following :

sup
f∈F

[
E
x∼D

[
L
(
G(f,w(G,f))(x)

)]
− E
x∼D

[
L
(
g(f,w(g,f))(x)

)]]
≤ ε1

This part is actually fairly simple to prove. Intuitively, since one can imagine G as being
the output of an algorithm that is allowed to take the entire domain as its landmark set,
we should expect E

x∼D

[
L
(
G(f,w(G,f))(x)

)]
≤ E

x∼D

[
L
(
g(f,w(g,f))(x)

)]
to hold uncon-

ditionally for every f . For a formal argument, let us build up some more notation. As we
have said before, for any transfer function f and arbitrary choice of d landmark pairs P , we
let w(g,f) ∈ [−B,B]

d be the best weighing function for this choice of transfer function and
landmark pairs. Now let w(g,f) be the best possible extension of w(g,f) to the entire do-
main. More formally, for any w∗ ∈ [−B,B]

d let w∗ = argmin
w∈W,w|P=w∗

E
x∼D

[
L
(
G(f,w)(x)

)]
.

Now Lemma 6.1 tells us that for any f ∈ F and any choice of landmark pairs P ,
E
x∼D

[
L
(
G(f,w(G,f))(x)

)]
≤ E
x∼D

[
L
(
G(f,w(g,f))(x)

)]
. Furthermore, sincew(g,f) is cho-

sen to be the most beneficial extension ofw(g,f), we also have E
x∼D

[
L
(
G(f,w(g,f))(x)

)]
≤

E
x∼D

[
L
(
g(f,w(g,f))(x)

)]
. Together, these two inequalities give us the second part of the

proof.

4 Proof of Theorem 5

We first recall the definition of a good similarity under a given loss function.
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Definition 8. A similarity measure over a domain X , K : X ×X → R is said to be an (ε, B)-good
similarity for a learning problem with respect to a loss function L : R→ R+ where ε > 0 if for some
transfer function f : R → R and some weighing function w : X × X → [−B,B], the following
holds true

E
x∼D

[L(G(x))] ≤ ε (4)

where G(x) = E
x′,x′′∼D×D

[w (x′, x′′) f (K(x, x′)−K(x, x′′)) |`(x′) = `(x), `(x′′) 6= `(x)]

Theorem 9 (Theorem 5 restated). If K is an (ε, B)-good similarity measure with respect to a CL-
Lipschitz loss function L then for any ε1 > 0, with probability at least 1 − δ over the choice of
d = (16B2C2

L/ε
2
1) ln(4B/δε1) positive and negative samples from D+ and D− respectively, the

following classifier has expected loss no more than ε+ ε1 with respect to the loss function L

h(x) = sgn[g(x)], g(x) =
1

d

d∑
i=1

w
(
x+i , x

−
i

)
f
(
K(x, x+i )−K(x, x−i )

)
.

i.e. E
x∼D

[L(g(x))] ≤ ε+ ε1 where
{
x+i
}d
i=1

are the positive samples and
{
x−i
}d
i=1

are the negative

samples.

Proof. For any x ∈ X , we have, by an application of Hoeffding bounds Pr
g
[|G(x)− g(x)| > ε1] <

2 exp
(
− ε21d

2B2

)
since |g(x)| ≤ B. Here the notation Pr

g
signifies that the probability is over the

choice of the landmark points. Thus for d > 4B2

ε21
ln
(
2
δ

)
, we have Pr

g
[|G(x)− g(x)| > ε1] < δ2.

For sake of simplicity let us denote by BAD (x) the event |G(x)− g(x)| > ε1. Thus we have, for
every x ∈ X , E

g

[
1BAD(x)

]
< δ2. Since this is true for every x ∈ X , this also holds in expectation i.e.

E
x
E
g

[
1BAD(x)

]
< δ2. The expectation over x is with respect to the problem distribution D. Applying

Fubini’s Theorem gives us E
g
E
x

[
1BAD(x)

]
< δ2 which upon application of Markov’s inequality gives

us Pr
g

[
E
x

[
1BAD(x)

]
> δ
]
< δ. Thus, with very high probability we would always choose landmarks

such that Pr
x
[BAD(x)] < δ. Thus we have, in such a situation, E

x
[|G(x)− g(x)|] ≤ (1−δ)ε1+δ·2B

since sup
x∈X
|G(x)− g(x)| ≤ 2B. For small enough δ we have E

x
[|G(x)− g(x)|] ≤ 2ε1.

Thus we have E
x
[L(g(x))] − E

x
[L(G(x))] = E

x
[L(g(x))− L(G(x))] ≤ E

x
[CL · |g(x)−G(x)|] =

CL · E
x
[|g(x)−G(x)|] ≤ 2CLε1 where we used the Lipschitz properties of the loss function L to

arrive at the second inequality. Putting ε1 =
ε′1

2CL
we have E

x
[L(g(x))] ≤ E

x
[L(G(x))]+ ε′1 ≤ ε+ ε′1

which gives us our desired result.

Actually we can prove something stronger since
∣∣∣E
x
[L(g(x))]− E

x
[L(G(x))]

∣∣∣ =∣∣∣E
x
[L(g(x))− L(G(x))]

∣∣∣ ≤ E
x
[|L(g(x))− L(G(x))|] ≤ E

x
[CL · |g(x)−G(x)|] ≤ ε′1. Thus

we have ε− ε′1 ≤ E
x
[L(g(x))] ≤ ε+ ε′1.
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