
Supplementary Material: Message-Passing for
Approximate MAP Inference with Latent Variables

Appendix A: Variational Derivation for Hybrid Message Passing Algorithm

The Marginal-MAP problem can be formulated by

argmax
x̄∈X

log p(x̄) = argmax
x̄∈X

A(θx̄) (1)

whereX is the set of all possible assignments. The corresponding max-marginals satisfy

µmax ∈Mx̄ = {µx̄|for anyx′ ∈ X , µx̄(x
′) = 1 iff x′ = x̄}

So solving Marginal-MAP problem is equivalent to solving the following optimization problem:

max
x̄∈X

sup
µother∈M(Gx̄)

〈θ, µ〉+HBethe(µ) ≈ sup
µmax∈Mx̄

sup
µother∈M(Gx̄)

〈θ, µ〉+HBethe(µ) (2)

µother contains all the marginals exceptµmax. By relaxingµsums to satisfy only normalization
and marginalization conditions, and only relaxing the constraints onµsum→max (Here we distinguish
betweenµsum→max andµmax→sum by the direction of messages). Define

Lz(Gx̄) =
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∑

zs
µs(zs) = 1, µs(xs) = 1 iff xs = x̄s,
∑

zt
µst(vs, zt) = µs(vs),

∑

zs
µst(zs, vt) = µt(vt),

µst(xs, zt) = µt(zt) iff xs = x̄s,
µst(xs, xt) = 1 iff xs = x̄s, xt = x̄t.



















OnMx̄ ×Lz, we only allowx to take integral solutions and fixed the corresponding assignment for
pairwise marginalsµmax→sum, but we allowµsum→max to assign partial probability to max nodes. In
2, the Bethe entropy terms can be written as (H is the entropy andI is mutual information)

HBethe(µ) = Hµmax +Hµsum− Iµmax→µmax − Iµsum→µsum− Iµmax→µsum− Iµsum→µmax

We have

• Entropy of max nodesHµmax = Hs(µs) = 0, ∀s ∈ X.

• Mutual information between max nodesIµmax→µmax = Ist(xs, xt) = 0, ∀s, t ∈ X.

• Mutual information from max node to sum node

Iµmax→µsum = Ist(xs, zt) (3)

=
∑

(xs,zt)∈Xs×Zt

µst(xs, zt) log
µst(xs, zt)

µs(xs)µt(zt)
(4)

=
∑

zt∈Zt

µst(x
∗, zt) log

µst(x
∗, zt)

µs(x∗)µt(zt)
(5)

= 0, ∀s ∈ X, t ∈ Z (6)

wherex∗ is the assigned state ofx at nodes.

1



• Entropy for sum nodes, Mutual information between sum nodes, and from sum node to
max node is nonzero as we allow sum nodes assign probabilities to max nodes.

Now, we do the LP-relaxation on max nodes and the relaxed optimization problem on new domain
L(G) is

sup
µ∈L(G)

〈µ, θ〉+H(µsum)− I(µsum→sum)− I(µsum→max) (7)

where

L(G) =







µ ≥ 0

∣

∣

∣

∣

∣

∣

∑

vs
µs(vs) = 1,

∑

vt
µst(vs, vt) = µs(vs),

∑

vs
µst(vs, vt) = µt(vt).







Let s, t ∈ V , λss be a Lagrangian multiplier associated with the normalization constraintCss(µ) =
0, where

Css(µ) = 1−
∑

vs

µs(vs)

.

Similarly, we define the constraints for each directiont→ s for every possible edge.

Cts(vs;µ) = µs(vs)−
∑

vt

µst(vs, vt)

and its Lagrange multiplierλts(vs). Then the Lagrangian for the Bethe variational problem (BVP)
is

L(µ, λ; θ) = sup
µ∈L(G)

〈µ, θ〉+H(µsum)− I(µsum→sum)− I(µsum→max)

+
∑

s∈V

λssCss(µ) +
∑

(s,t)∈E

[

∑

vs

λts(vs)Cts(vs;µ) +
∑

yt

λst(vt)Cst(vt;µ)

]

(8)

Now we show that the partial derivative with respect to differentµs are identical to the derivatives
in the standard sum/max product formulations (depending onthe node type).

Taking the derivative with respect to the node marginals of:

Sum Nodes

For sum nodes, denote its (pseudo-)marginal asµs.

∇µs
L = ∇µs

{〈θsum, µsum〉+H(µsum) +
∑

s∈V

λssCss(µ) +
∑

(s,t)∈E

[
∑

vs

λts(vs)Cts(vs;µ) +
∑

vt

λst(vt)Cst(vt;µ)]}

= θs(zs) + λss +
∑

t∈N(s)

λts(zs)− log µs(zs) (9)

In [1] (page 84, eq. (4.19)), using our notation, the Lagrangian for the BVP to marginal problem is

Lsum(µ, λ; θ) = 〈θ, µ〉+H(µ) +
∑

s∈Z

λssCss(µ) +
∑

(s,t)∈E

[

∑

zs

λts(zs)Cts(zs;µ) +
∑

zt

λst(zt)Cst(zt;µ)

]

(10)

∇µs
Lsum = ∇µs

L

So, for sum nodes, the derivative of node marginals is the same as those for the BVP to marginal
problem. Similar arguments hold for the pairwise marginalsbetween sum nodes, and sum→max
node pair. Thus we have the identical equations to Eq.(4.23), Eq(4.24)[1]:

µs(zs) = κ exp(θs(zs))
∏

u∈N(s)

Mst(zt) (11)

µst(zs, zt) = κ′ exp(θst(zs, zt) + θs(zs) + θt(zt))
∏

u∈N(s)\t

Mus(zs)
∏

u∈N(t)\s

Mut(zt)(12)
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For any type of nodet in the graph, its marginal can be represented as

µt(vt) = κ exp{θt(vt)}
∏

s∈N(t)

Mst(vt)

(We will show this for max node in the following subsection.)Similarly, taking the derivative w.r.t.
µst, s ∈ Z andt ∈ X and combine with Eq (12),

µst(zs, vt) = κ′ exp(θst(zs, vt) + θs(zs) + θt(vt))
∏

u∈N(s)\t

Mus(zs)
∏

u∈N(t)\s

Mut(vt)(13)

By applying the marginalization constraints
∑

zs
µst(zs, vt) = µt(vt), we get the message from

sum nodet to any nodes:

Mts(vs)← κ1

∑

z′

t
∈Zt







exp[θst(vs, z
′
t) + θt(z

′
t)]

∏

u∈N(t)\s

Mut(z
′
t)







Max Nodes

For the derivative w.r.t. node marginals of max nodesµs, s ∈ X.

∇µs
L = θs(xs) + λss +

∑

t∈N(s)

λts(xs) = ∇µs
Lmax

whereLmax is the Lagrangian of pure MAP problem. Similarly, we also have

∇µmax→maxL = ∇µmax→maxLmax = ∇µmax→sumL

It is identical to follow [1] (Section 8.2) to check that max marginal:

µs(xs) = κ exp(θs(xs))
∏

u∈N(s)

Mst(xt)

and the fixed point of max messages:

Mts(vs)← κ2 max
x′

t
∈Xt







exp[θst(vs, x
′
t) + θt(x

′
t)]

∏

u∈N(t)\s

Mut(x
′
t)







provide a solution to the (partial) problem (µmax, µmax→µmax, µmax→µsum). In conclusion, the hybrid
message passing gives an approximation to the Marginal-MAPproblem.

Appendix B: EM via Message Passing

B.1 EM Objective

Note here that standard EM doesmaxθ
∑

z pθ(x|z) for fixed x, but we wantmaxx
∑

z pθ(x|z)
for fixed θ. The derivation is nearly identical and we do not write down the dependency onθ for
convenience. DefineF (p̃, x) = Ep̃[log p(x, z)]+H(p̃(z)) based on the following routine application
of Jensen’s inequality:

log p(x) = log
∑

z

p(x, z)

= log
∑

z

p̃(z)
1

p̃(z)
p(x, z)

≥
∑

z

p̃(z) log

[

1

p̃(z)
p(x, z)

]

=
∑

z

p̃(z) log p(x, z)−
∑

z

p̃(z) log p(z) (14)

So log p(x) ≥ Ep̃(z) log p(x, z)− Ep̃(z) log p̃(z) = Ep̃[log p(x, z)] +H(p̃(z))
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B.2 Proof1 of Proposition 1

Proposition 1. With the value ofx fixed in functionF , the unique solution to maximizingF (p̃, x) is
given byp̃(z) = p(z|x).

Proof. Sincep̃(z) is a distribution overz,
∑

z p̃(z) = 1. This is a constrained optimization problem,
so the Lagrangian is

L(p̃, x) = F (p̃, x)− λ

(

∑

z

p̃(z)− 1

)

λ is the Lagrange multiplier. So at the maximum̃p(z), the derivative ofL with respect to the
components of̃p should be zero. Then we have where

λ = log p(x, z)− log p̃(z)− 1

This indicates̃p(z) ∝ p(x, z) and given the constraint that
∑

z p̃(z) = 1, the unique solution to this
optimization problem is̃p(z) = p(z|x). (Notex is fixed here.)

B.3 Proof of Proposition 2

Proposition 2. If p̃(z) = p(z|x), thenF (p̃, x) = log p(x) = log
∑

z p(x, z).

Proof.

F (p̃, x) = Ep̃(z) [log p(x, z)] +H(p̃)

= Ep̃(z) [log p(x, z)]− Ep̃(z)[log p(z|x)]

= Ep̃(z)[log p(x, z)− log p(z|x)]

= Ep̃(z)[log p(x)]

= log p(x) (15)

B.4 Derivation of EM via Message Passing

E-step: Estimatẽp(z) = p(z|x) given x.

M-step: Consider the conditional,

pθ(x | z) =
exp [〈θ, φ(x, z)〉 −A(θ)]

∑

x′ exp [〈θ, φ(x′, z)〉 −A(θ)]
= exp [〈θ, φ(x, z)〉 −Bz(θ)]

whereBz(θ) = log
∑

x exp [〈θ, φ(x, z)〉].

Fixing x in p(z|x) to bex̄, the assignment given by the previous M-step,

max
x

Ez∼pθ(z | x̄) log pθ(x, z) = max
x

Ez∼pθ(z | x̄) log pθ(x | z)

= max
x

∑

z

p(z | x̄)[〈θ, φ(x, z)〉 −Bz(θ)]

= max
x

∑

z

p(z | x̄)〈θ, φ(x, z)〉 (16)

We use the shorthand notation of overcomplete representation of sufficient statistics in the following
table.

1The proofs in B.2 and B.3 are almost identical to Lemma 1 and 2 in [2] page 4-5.
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SYMBOL EXPRESSION

Θx

∑

s∈X

∑

i θs;iIs;i(xs)

Θz

∑

s∈Z

∑

i θs;iIs;i(zs)

Θxx

∑

(s,t)∈E,s,t∈X

∑

(i,j) θst;ijIst;ij(xs, xt)

Θzz

∑

(s,t)∈E,s,t∈Z

∑

(i,j) θst;ijIst;ij(zs, zt)

Θxz

∑

(s,t)∈E,s∈X,t∈Z

∑

(i,j) θst;ijIst;ij(xs, zt)

Then
∑

z

p(z | x̄)〈θ, φ(x, z)〉 =
∑

z

p(z | x̄) [Θx +Θz +Θxx +Θzz +Θxz]

= Θx +Θxx +
∑

z

p(z | x̄)Θxz + C

≈ Θx +Θxx +
∑

(s,t)∈E,s∈X,t∈Z

∑

(i,j)

θst;ijIs;i(xs)µt;j + C

=
∑

s∈X,i



θs;i +
∑

t∈Z,j

µt;jθst;ij



 Is;i(xs)

+
∑

(s,t)∈E,s,t∈X

∑

(i,j)

θst;ijIst;ij(xs, xt) + C (17)

whereC subsumes the terms irrelevant to the maximization overx. µt is the pseudo-marginal
of nodet given x̄, so we get an approximation instead of an equality, and we usethe fact that
∑

z p(z | x̄) = 1. Then, the M-step amounts to running the max product algorithm with potentials
onx nodes modified according to Eq (17).

Appendix C: Hybrid Tree-Reweighted Message Passing Algorithm

On loopy graphs, we can also apply the hybrid scheme and get a hybrid tree-reweighted message
passing algorithm (which we use in the experiments on the loopy graphs and the protein data). It is
sketched in Algorithm 1.

Appendix D: Related Work and Discussion

On a high-level, the Marginal-MAP problem can be seen as doing a search over the space of all
possible assignments over the max nodes of the graph, havingdone a variable elimination over the
sum nodes. Several heuristics exists to perform this searchstep. Typical approaches under this cat-
egory include methods such as branch-and-bound and beam-search [3, 4]. However these methods
are designed to give only the MAP estimates for the max nodes whereas our hybrid message-passing
algorithm provides both the MAP estimates for the max nodes and marginals for the sum nodes.

In principle, we note however that the Expectation-Maximization algorithm [5] can also be used
if the marginal posterior in the E-step can be computed in closed-form. If not, then Monte-Carlo
simulations can be used to estimate the expectation. Alternatively, [6, 7] proposed an MCMC-based
algorithm fordirect maximization of marginal posterior distributions by introducing an artificially
augmented probability model, whose sampling gives marginal-MAP estimates of the variables of
interest. Recently, [8] proposed a Sequential Monte Carlo based approach (similar to simulated
annealing) which is much less sensitive to initialization than EM/MCMC algorithms.

In our work, we take a different approach and show how message-passing algorithms for graphical
models can be used to obtain marginal-MAP estimates in a variational framework [1]. A lot of work
has gone into improving the standard sum-product and max-product algorithms [9, 10], and there is
no apparent reason why such advances cannot also improve ourhybrid message passing algorithm.
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Algorithm 1 Hybrid Tree-Reweighted Message-Passing Algorithm

Inputs: GraphG = (V,E), V = X ∪ Z, potentialsθv, s ∈ V andθst, (s, t) ∈ E.

1. Initialize the messages to some arbitrary value.

2. (Greedily) Find a set of spanning treesT that covers G, and compute the edge appearance
probabilitywst, for (s, t) ∈ E.

3. For each nodes in G, do the following until messages converge (or maximum number of
iterations reached)

• If s ∈ X, update messages by

Mts(vs)← κ max
x′

t
∈Xt

{

exp[
1

wst

θst(vs, x
′
t) + θt(x

′
t)]

∏

u∈N(t)\s M
wut

ut (x′
t)

M1−wst

st (x′
t)

}

(18)

• If s ∈ Z, update messages by

Mts(vs)← κ
∑

z′

t
∈Xt

{

exp[
1

wst

θst(vs, z
′
t) + θt(z

′
t)]

∏

u∈N(t)\s M
wut

ut (z′t)

M1−wst

st (z′t)

}

(19)

4. Compute the local belief for each nodes. µs(vs) = κ exp{θs(vs)}
∏

t∈N(s) M
wts

ts (vs)

5. For allxs ∈ X, returnargmaxxs∈Xs
µs(xs)

6. For allzs ∈ Z, returnµs(zs).

Before concluding, we discuss another recent work by Liu andIhler [11] which is most similar
in spirit to our work, and is a simultaneous development. Liuand Ihler [11] proposed a method
based optimizing a variational objective on specific graph structures. Here we would highlight the
similarities and the differences between their work and ours.

In particular, we define the log-partition function for the marginal-MAP problem by fixing thex
assignments tōx and constructing a new graphGx̄. Liu and Ihler [11], on the other hand, use
the conditional entropy (conditioned on the max nodes) to define the free energy term in the log
partition function. Both ways of defining the log partition function are equivalent because fixing the
x assignments amounts to conditioning.

In our approach, we then define the marginal polytope w.r.t. the MAPx assignments we are seeking,
and propose relaxations that give us our final variational objective (11). We then derive a hybrid
message-passing algorithm for this variational objective(details in appendix A), in a way similar to
how standard sum and max product algorithms are derived (Wainright and Jordan, 2008).

In contrast, Liu and Ihler [11] propose relaxations of theirvariational objective to solve the marginal
MAP probel but their relaxations also require specific constraints on the structure of the graphs to
ensure local or global optima (e.g., sum nodes forming a tree).

Liu and Ihler [11] also proposed a hybrid algorithm similar to ours except for one difference: in our
case, a max-product message is sent from a max node to sum node; in their case this message is
defined by a set of ”mixed-marginals”, which requires solving an extra local MAP problem.

Another important difference is the way the connection to EMis shown. Liu and Ihler [11] do it from
variational principles and derive an EM algorithm which solves their original variational objective
in an alternating fashion for sum and max nodes. In contrast,we do so by deriving a “message
passing variant” of the EM algorithm to solve the marginal-MAP problem, and then showing how
the messages in the E and M steps of this algorithm are akin to the messages passed in our hybrid
message passing algorithm.

Establishing the guarantee about convergence [12] of the hybrid message-passing algorithm we
describe in this paper is another open issue, and we hope thatrelated theoretic developments (e.g.,
[13, 14]) will be able to shed more light on this.
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