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Abstract

How do people determine which elements of a set are most representative of that
set? We extend an existing Bayesian measure of representativeness, which indi-
cates the representativeness of a sample from a distribution, to define a measure of
the representativeness of an item to a set. We show that this measure is formally
related to a machine learning method known as Bayesian Sets. Building on this
connection, we derive an analytic expression for the representativeness of objects
described by a sparse vector of binary features. We then apply this measure to a
large database of images, using it to determine which images are the most repre-
sentative members of different sets. Comparing the resulting predictions to human
judgments of representativeness provides a test of this measure with naturalistic
stimuli, and illustrates how databases that are more commonly used in computer
vision and machine learning can be used to evaluate psychological theories.

1 Introduction

The notion of “representativeness” appeared in cognitive psychology as a proposal for a heuristic
that people might use in the place of performing a probabilistic computation [1, 2]. For example, we
might explain why people believe that the sequence of heads and tails HHTHT is more likely than
HHHHH to be produced by a fair coin by saying that the former is more representative of the output
of a fair coin than the latter. This proposal seems intuitive, but raises a new problem: How is rep-
resentativeness itself defined? Various proposals have been made, connecting representativeness to
existing quantities such as similarity [1] (itself an ill-defined concept [3]), or likelihood [2]. Tenen-
baum and Griffiths [4] took a different approach to this question, providing a “rational analysis”
of representativeness by trying to identify the problem that such a quantity solves. They proposed
that one sense of representativeness is being a good example of a concept, and then showed how
this could be quantified via Bayesian inference. The resulting model outperformed similarity and
likelihood in predicting human representativeness judgments for two kinds of simple stimuli.

In this paper, we extend this definition of representativeness, and provide a more comprehensive
test of this account using naturalistic stimuli. The question of what makes a good example of a
concept is of direct relevance to computer scientists as well as cognitive scientists, providing a way
to build better systems for retrieving images or documents relevant to a user’s query. However, the
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model presented by Tenenbaum and Griffiths [4] is overly restrictive in requiring the concept to
be pre-defined, and has not been tested in the context of a large-scale information retrieval system.
We extend the Bayesian measure of representativeness to apply to the problem of deciding which
objects are good examples of a set of objects, show that the resulting model is closely mathematically
related to an existing machine learning method known as Bayesian Sets [5], and compare this model
to similarity and likelihood as an account of people’s judgments of the extent to which images drawn
from a large database are representative of different concepts. In addition, we show how measuring
the representativeness of items in sets can also provide a novel method of finding outliers in sets.

By extending the Bayesian measure of representativeness to apply to sets of objects and testing it
with a large image database, we are taking the first steps towards a closer integration of the methods
of cognitive science and machine learning. Cognitive science experiments typically use a small set
of artificial stimuli, and evaluate different models by comparing them to human judgments about
those stimuli. Machine learning makes use of large datasets, but relies on secondary sources of
“cognitive” input, such as the labels people have applied to images. We combine these methods by
soliciting human judgments to test cognitive models with a large set of naturalistic stimuli. This
provides the first experimental comparison of the Bayesian Sets algorithm to human judgments, and
the first evaluation of the Bayesian measure of representativeness in a realistic applied setting.

The plan of the paper is as follows. Section 2 provides relevant background information, including
psychological theories of representativeness and the definition of Bayesian Sets. Section 3 then
introduces our extended measure of representativeness, and shows how it relates to Bayesian Sets.
Section 4 describes the dataset derived from a large image database that we use for evaluating this
measure, together with the other psychological models we use for comparison. Section 5 presents
the results of an experiment soliciting human judgments about the representativeness of different
images. Section 6 provides a second form of evaluation, focusing on identifying outliers from sets.
Finally, Section 7 concludes the paper.

2 Background

To approach our main question of which elements of a set are most representative of that set, we first
review previous psychological models of representativeness with a particular focus on the rational
model proposed by Tenenbaum and Griffiths [4]. We then introduce Bayesian Sets [5].

2.1 Representativeness

While the notion of representativeness has been most prominent in the literature on judgment and
decision-making, having been introduced by Kahneman and Tversky [1], similar ideas have been
explored in accounts of human categorization and inductive inference [6, 7]. In these accounts,
representativeness is typically viewed as a form of similarity between an outcome and a process
or an object and a concept. Assume some data d has been observed, and we want to evaluate
its representativeness of a hypothesized process or concept h. Then d is representative of h if
it is similar to the observations h typically generates. Computing similarity requires defining a
similarity metric. In the case where we want to evaluate the representativeness of an outcome to a
set, we might use metrics of the kind that are common in categorization models: an exemplar model
defines similarity in terms of the sum of the similarities to the other objects in the set (e.g., [8, 9]),
while a prototype model defines similarity in terms of the similarity to a prototype that captures the
characteristics of the set (e.g., [10]).

An alternative to similarity is the idea that representativeness might track the likelihood function
P (d|h) [11]. The main argument for this proposed equivalence is that the more frequently h leads
to observing d, the more representative d should be of h. However, people’s judgments from the
coin flip example with which we started the paper go against this idea of equivalence, since both
flips have equal likelihood yet people tend to judge HHTHT as more representative of a fair coin.
Analyses of typicality have also argued against the adequacy of frequency for capturing people’s
judgments about what makes a good example of a category [6].

Tenenbaum and Griffiths [4] took a different approach to this question, asking what problem repre-
sentativeness might be solving, and then deriving an optimal solution to that problem. This approach
is similar to that taken in Shepard’s [12] analysis of generalization, and to Anderson’s [13] idea of
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rational analysis. The resulting rational model of representativeness takes the problem to be one
of selecting a good example, where the best example is the one that best provides evidence for the
target process or concept relative to possible alternatives. Given some observed data d and a set of
of hypothetical sources, H, we assume that a learner uses Bayesian inference to infer which h ∈ H
generated d. Tenenbaum and Griffiths [4] defined the representativeness of d for h to be the evidence
that d provides in favor of a specific h relative to its alternatives,

R(d, h) = log
P (d|h)∑

h′ 6=h P (d|h′)P (h′)
, (1)

where P (h′) in the denominator is the prior distribution on hypotheses, re-normalized over h′ 6= h.

2.2 Bayesian Sets

If given a small set of items such as “ketchup”, “mustard”, and “mayonnaise” and asked to produce
other examples that fit into this set, one might give examples such as “barbecue sauce”, or “honey”.
This task is an example of clustering on-demand, in which the original set of items represents some
concept or cluster such as “condiment” and we are to find other items that would fit appropriately
into this set. Bayesian Sets is a formalization of this process in which items are ranked by a model-
based probabilistic scoring criterion, measuring how well they fit into the original cluster [5].

More formally, given a data collectionD, and a subset of itemsDs = {x1, . . . ,xN} ⊂ D represent-
ing a concept, the Bayesian Sets algorithm ranks an item x∗ ∈ {D \ Ds} by the following scoring
criterion

Bscore(x∗) =
p(x∗,Ds)
p(x∗)p(Ds)

(2)

This ratio intuitively compares the probability that x∗ and Ds were generated by some statistical
model with the same, though unknown, model parameters θ, versus the probability that x∗ and Ds
were generated by some statistical model with different model parameters θ1 and θ2.

Each of the three terms in Equation 2 are marginal likelihoods and can be expressed
as the following integrals over θ since the model parameter is assumed to be un-
known: p(x∗) =

∫
p(x∗|θ)p(θ)dθ, p(Ds) =

∫ [∏N
n=1 p(xn|θ)

]
p(θ)dθ, and p(x∗,Ds) =∫ [∏N

n=1 p(xn|θ)
]
p(x∗|θ)p(θ)dθ.

For computational efficiency reasons, Bayesian Sets is typically run on binary data. Thus, each
item in the data collection, xi ∈ D, is represented as a binary feature vector xi = (xi1, . . . , xiJ)
where xij ∈ {0, 1}, and defined under a model in which each element of xi has an indepen-
dent Bernoulli distribution p(xi|θ) =

∏
j θ

xij

j (1 − θj)1−xij and conjugate Beta prior p(θ|α, β) =∏
j

Γ(αj+βj)
Γ(αj)Γ(βj) θ

αj−1
j (1−θj)βj−1. Under these assumptions, the scoring criterion for Bayesian Sets

reduces to

Bscore(x∗) =
p(x∗,Ds)
p(x∗)p(Ds)

=
∏
j

αj + βj
αj + βj +N

(
α̃j
αj

)x∗j ( β̃j
βj

)1−x∗j

(3)

where α̃j = αj +
∑N
n=1 xnj and β̃j = βj +N −

∑N
n=1 xnj . The logarithm of this score is linear

in x and can be computed efficiently as

log Bscore(x∗) = c+
∑
j

sjx∗j (4)

where c =
∑
j log(αj +βj)− log(αj +βj +N)+ log β̃j − log βj , sj = log α̃j − logαj − log β̃j +

log βj , and x∗j is the jth component of x∗.

The Bayesian Sets method has been tested with success on numerous datasets, over various applica-
tions including content-based image retrieval [14] and analogical reasoning with relational data [15].
Motivated by this method, we now turn to extending the previous measure of representativeness for
a sample from a distribution, to define a measure of representativeness for an item to a set.
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3 A Bayesian Measure of Representativeness for Sets of Objects

The Bayesian measure of representativeness introduced by Tenenbaum and Griffiths [4] indicated
the representativeness of data d for a hypothesis h. However, in many cases we might not know what
statistical hypothesis best describes the concept that we want to illustrate through an example. For
instance, in an image retrieval problem, we might just have a set of images that are all assigned to the
same category, without a clear idea of the distribution that characterizes that category. In this section,
we show how to extend the Bayesian measure of representativeness to indicate the representativeness
of an element of a set, and how this relates to the Bayesian Sets method summarized above.

Formally, we have a set of data Ds and we want to know how representative an element d of that set
is of the whole set. We can perform an analysis similar to that given for the representativeness of d
to a hypothesis, and obtain the expression

R(d,Ds) =
P (d|Ds)∑

D′ 6=Ds
P (d|D′)P (D′)

(5)

which is simply Equation 1 with hypotheses replaced by datasets. The quantities that we need to
compute to apply this measure, P (d|Ds) and P (D′), we obtain by marginalizing over all hypotheses.
For example, P (d|Ds) =

∑
h P (d|h)P (h|Ds), being the posterior predictive distribution associated

with Ds. If the hypotheses correspond to the continuous parameters of a generative model, then this
is better expressed as P (d|Ds) =

∫
P (d|θ)P (θ|Ds).

In the case where the set of possible datasets that is summed over in the denominator is large, this de-
nominator will approximate

∑
D′ P (d|D′)P (D′), which is just P (d). This allows us to observe that

this measure of representativeness will actually closely approximate the logarithm of the quantity
Bscore produced by Bayesian Sets for the dataset Ds, with

R(d,Ds) = log
P (d|Ds)∑

D′ 6=Ds
P (d|D′)P (D′)

≈ log
P (d|Ds)
P (d)

= log
P (d,Ds)
P (d)P (Ds)

= log Bscore(d)

This relationship provides a link between the cognitive science literature on representativeness and
the machine learning literature on information retrieval, and a new way to evaluate psychological
models of representativeness.

4 Evaluating Models of Representativeness Using Image Databases

Having developed a measure of the representativeness of an item in a set of objects, we now focus
on the problem of evaluating this measure. The evaluation of psychological theories has historically
tended to use simple artificial stimuli, which provide precision at the cost of ecological validity. In
the case of representativeness, the stimuli previously used by Tenenbaum and Griffiths [4] to evaluate
different representativeness models consisted of 4 coin flip sequences and 45 arguments based on
predicates applied to a set of 10 mammals. One of the aims of this paper is to break the general trend
of using such restricted kinds of stimuli, and the formal relationship between our rational model and
Bayesian Sets allows us to do so. Any dataset that can be represented as a sparse binary matrix can
be used to test the predictions of our measure.

We formulate our evaluation problem as one of determining how representative an image is of a
labeled set of images. Using an existing image database of naturalistic scenes, we can better test
the predictions of different representativeness theories with stimuli much more in common with the
environment humans naturally confront. In the rest of this section, we present the dataset used for
evaluation and outline the implementations of existing models of representativeness we compare our
rational Bayesian model against.

4.1 Dataset

We use the dataset presented in [14], a subset of images taken from the Corel database commonly
used in content-based image retrieval systems. The images in the dataset are partitioned into 50
labeled sets depicting unique categories, with varying numbers of images in each set (the mean is
264). The dataset is of particular interest for testing models of representativeness as each image
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Algorithm 1 Representativeness Framework

input: a set of items, Dw, for a particular category label w
for each item xi ∈ Dw do

let Dwi = {Dw \ xi}
compute score(xi,Dwi)

end for
rank items in Dw by this score
output: ranked list of items in Dw

(a) (b)

Figure 1: Results of the Bayesian model applied to the set labelled coast. (a) The top nine ranked
images. (b) The bottom nine ranked images.

from the Corel database comes with multiple labels given by human judges. The labels have been
criticized for not always being of high quality [16], which provides an additional (realistic) challenge
for the models of representativeness that we aim to evaluate.

The images in this dataset are represented as 240-dimensional feature vectors, composed of 48
Gabor texture features, 27 Tamura texture features, and 165 color histogram features. The images
were additionally preprocessed through a binarization stage, transforming the entire dataset into a
sparse binary matrix that represents the features which most distinguish each image from the rest of
the dataset. Details of the construction of this feature representation are presented in [14].

4.2 Models of Representativeness

We compare our Bayesian model against a likelihood model and two similarity models: a prototype
model and an exemplar model. We build upon a simple leave-one-out framework to allow a fair
comparison of these different representativeness models. Given a set of images with a particular
category label, we iterate through each image in the set and compute a score for how well this image
represents the rest of the set (see Algorithm 1). In this framework, only score(xi,Dwi) varies across
the different models. We present the different ways to compute this score below.

Bayesian model. Since we have already shown the relationship between our rational measure and
Bayesian Sets, the score in this model is computed efficiently via Equation 2. The hyperparameters
α and β are set empirically from the entire dataset, α = κm, β = κ(1−m), where m is the mean
of x over all images, and κ is a scaling factor. An example of using this measure on the set of 299
images for category label coast is presented in Figure 1. Panels (a) and (b) of this figure show the
top nine and bottom nine ranked images, respectively, where it is quite apparent that the top ranked
images depict a better set of coast examples than the bottom rankings. It also becomes clear how
poorly this label applies to some of the images in the bottom rankings, which is an important issue
if using the labels provided with the Corel database as part of a training set for learning algorithms.
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Likelihood model. This model treats representative judgments of an item x∗ as p(x∗|Ds) for a set
Ds = {x1, . . . ,xN}. Since this probability can also be expressed as p(x∗,Ds)

p(Ds) , we can derive an
efficient scheme for computing the score similar to the Bayesian Sets scoring criterion by making
the same model assumptions. The likelihood model scoring criterion is

Lscore(x∗) =
p(x∗,Ds)
p(Ds)

=
∏
j

1

αj + βj +N
(α̃j)

x∗j
(
β̃j

)1−x∗j
(6)

where α̃j = αj +
∑N
n=1 xnj and β̃j = βj + N −

∑N
n=1 xnj . The logarithm of this score is also

linear in x and can be computed efficiently as

log Lscore(x∗) = c+
∑
j

wjx∗j (7)

where c =
∑
j log βj − log(αj + βj +N) and wj = log α̃j − log β̃j . The hyperparameters α and

β are initialized to the same values used in the Bayesian model.

Prototype model. In this model we define a prototype vector xproto to be the modal features for a
set of items Ds. The similarity measure then becomes

Pscore(x∗) = exp{−λ dist(x∗,xproto)} (8)

where dist(·, ·) is the Hamming distance between the two vectors and λ is a free parameter. Since
we are primarily concerned with ranking images, λ does not need to be optimized as it plays the role
of a scaling constant.

Exemplar model. We define the exemplar model using a similar scoring metric to the prototype
model, except rather than computing the distance of x∗ to a single prototype, we compute a distance
for each item in the set Ds. Our similarity measure is thus computed as

Escore(x∗) =
∑
xj∈Ds

exp{−λ dist(x∗,xj)} (9)

where dist(·, ·) is the Hamming distance between two vectors and λ is a free parameter. In this
case, λ does need to be optimized as the sum means that different values for λ can result in different
overall similarity scores.

5 Modeling Human Ratings of Representativeness

Given a set of images provided with a category label, how do people determine which images are
good or bad examples of that category? In this section we present an experiment which evaluates
our models through comparison with human judgments of the representativeness of images.

5.1 Methods

A total of 500 participants (10 per category) were recruited via Amazon Mechanical Turk and com-
pensated $0.25. The stimuli were created by identifying the top 10 and bottom 10 ranked images
for each of the 50 categories for the Bayesian, likelihood, and prototype models and then taking the
union of these sets for each category. The exemplar model was excluded in this process as it required
optimization of its λ parameter, meaning that the best and worst images could not be determined in
advance. The result was a set of 1809 images, corresponding to an average of 36 images per cate-
gory. Participants were shown a series of images and asked to rate how good an example each image
was of the assigned category label. The order of images presented was randomized across subjects.
Image quality ratings were made on a scale of 1-7, with a rating of 1 meaning the image is a very
bad example and a rating of 7 meaning the image is a very good example.

5.2 Results

Once the human ratings were collected, we computed the mean ratings for each image and the mean
of the top 10 and bottom 10 results for each algorithm used to create the stimuli. We also computed
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Figure 2: Mean quality ratings of the top 10 and bottom 10 rankings of the different representative-
ness models over 50 categories. Error bars show one standard error. The vertical axis is bounded by
the best possible top 10 ratings and the worst possible bottom 10 ratings across categories.

bounds for the ratings based on the optimal set of top 10 and bottom 10 images per category. These
are the images which participants rated highest and lowest, regardless of which algorithm was used
to create the stimuli. The mean ratings for the optimal top 10 images was slightly less than the
highest possible rating allowed (m = 6.018, se = 0.074), while the mean ratings for the optimal
bottom 10 images was significantly higher than the lowest possible rating allowed (m = 2.933,
se = 0.151). The results are presented in Figure 2. The Bayesian model had the overall highest
ratings for its top 10 rankings (m = 5.231, se = 0.026) and the overall lowest ratings for its
bottom 10 rankings (m = 3.956, se = 0.031). The other models performed significantly worse,
with likelihood giving the next highest top 10 (m = 4.886, se = 0.028), and next lowest bottom
10 (m = 4.170, se = 0.031), and prototype having the lowest top 10 (m = 4.756, se = 0.028),
and highest bottom 10 (m = 4.249, se = 0.031). We tested for statistical significance via pairwise
t-tests on the mean differences of the top and bottom 10 ratings over all 50 categories, for each pair
of models. The Bayesian model outperformed both other algorithms (p < .001).

As a second analysis, we ran a Spearman rank-order correlation to examine how well the actual
scores from the models fit with the entire set of human judgments. Although we did not explicitly
ask participants to rank images, their quality ratings implicitly provide an ordering on the images
that can be compared against the models. This also gives us an opportunity to evaluate the exemplar
model, optimizing its λ parameter to maximize the fit to the human data. To perform this correlation
we recorded the model scores over all images for each category, and then computed the correlation of
each model with the human judgments within that category. Correlations were then averaged across
categories. The Bayesian model had the best mean correlation (ρ = 0.352), while likelihood (ρ =
0.220), prototype (ρ = 0.160), and the best exemplar model (λ = 2.0, ρ = 0.212) all performed
less well. Paired t-tests showed that the Bayesian model produced statistically significantly better
performance than the other three models (all p < .01).

5.3 Discussion

Overall, the Bayesian model of representativeness provided the best account of people’s judgments
of which images were good and bad examples of the different categories. The mean ratings over the
entire dataset were best predicted by our model, indicating that on average, the model predictions
for images in the top 10 results were deemed of high quality and the predictions for images in the
bottom 10 results were deemed of low quality. Since the images from the Corel database come
with labels given by human judges, few images are actually very bad examples of their prescribed
labels. This explains why the ratings for the bottom 10 images are not much lower. Additionally,
there was some variance as to which images the Mechanical Turk workers considered to be “most
representative”. This explains why the ratings for the top 10 images are not much higher, and thus
why the difference between top and bottom 10 on average is not larger. When comparing the actual
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Table 1: Model comparisons for the outlier experiment

Model Average Outlier Position S.E.
Bayesian Sets 0.805 ± 0.014
Likelihood 0.779 ± 0.013
Prototype 0.734 ± 0.015
Exemplar 0.734 ± 0.016

scores from the different models against the ranked order of human quality ratings, the Bayesian
account was also significantly more accurate than the other models. While the actual correlation
value was less than 1, the dataset was rather varied in terms of quality for each category and thus it
was not expected to be a perfect correlation. The methods of the experiment were also not explicitly
testing for this effect, providing another source of variation in the results.

6 Finding Outliers in Sets

Measuring the representativeness of items in sets can also provide a novel method of finding outliers
in sets. Outliers are defined as an observation that appears to deviate markedly from other members
of the sample in which it occurs [17]. Since models of representativeness can be used to rank items
in a set by how good an example they are of the entire set, outliers should receive low rankings.
The performance of these different measures in detecting outliers provides another indirect means
of assessing their quality as measures of representativeness.

To empirically test this idea we can take an image from a particular category and inject it into
all other categories, and see whether the different measures can identify it as an outlier. To find
a good candidate image we used the top ranking image per category as ranked by the Bayesian
model. We justify this method because the Bayesian model had the best performance in predicting
human quality judgments. Thus, the top ranked image for a particular category is assumed to be a
bad example of the other categories. We evaluated how low this outlier was ranked by each of the
representativeness measures 50 times, testing the models with a single injected outlier from each
category to get a more robust measure. The final evaluation was based on the normalized outlier
ranking for each category (position of outlier divided by total number of images in the category),
averaged over the 50 injections. The closer this quantity is to 1, the lower the ranking of outliers.

The results of this analysis are depicted in Table 1, where it can be seen that the Bayesian model
outperforms the other models. It is interesting to note that these measures are all quite distant from
1. We interpret this as another indication of the noisiness of the original image labels in the dataset
since there were a number of images in each category that were ranked lower than the outlier.

7 Conclusions

We have extended an existing Bayesian model of representativeness to handle sets of items and
showed how it closely approximates a method of clustering on-demand – Bayesian Sets – that had
been developed in machine learning. We exploited this relationship to allow us to evaluate a set
of psychological models of representativeness using a large database of naturalistic images. Our
Bayesian measure of representativeness significantly outperformed other proposed accounts in pre-
dicting human judgments of how representative images were of different categories. These results
provide strong evidence for this characterization of representativeness, and a new source of valida-
tion for the Bayesian Sets algorithm. We also introduced a novel method of detecting outliers in sets
of data using our representativeness measure, and showed that it outperformed other measures. We
hope that the combination of methods from cognitive science and computer science that we used
to obtain these results is the first step towards closer integration between these disciplines, linking
psychological theories and behavioral methods to sophisticated algorithms and large databases.
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