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Abstract

We present a novel class of actor-critic algorithms for actors consisting of sets
of interacting modules. We present, analyze theoretically, and empirically eval-
uate an update rule for each module, which requires only local information: the
module’s input, output, and the TD error broadcast by a critic. Such updates are
necessary when computation of compatible features becomes prohibitively diffi-
cult and are also desirable to increase the biological plausibility of reinforcement
learning methods.

1 Introduction

Methods for solving sequential decision problems with delayed reward, where the problems are for-
mulated as Markov decision processes (MDPs), have been compared to the learning mechanisms of
animal brains [3, 4, 9, 10, 13, 20, 22]. These comparisons stem from similarities between activa-
tion of dopaminergic neurons and reward prediction error [19], also called the temporal difference
(TD) error [21]. Dopamine is broadcast to large portions of the human brain, suggesting that it may
be used in a similar manner to the TD error in reinforcement learning (RL) [23] systems, i.e., to
facilitate improvements to the brain’s decision rules.

Systems with a critic that computes and broadcasts the TD error to another module called the actor,
which stores the current decision rule, are called actor-critic architectures. Chang et al. [7] present a
compelling argument that the fly brain is an actor-critic by finding the neurons making up the critic
and then artificially activating them to train the actor portions of the brain. However, current actor-
critic methods in the artificial intelligence community remain biologically implausible because each
component of the actor can only be updated with detailed knowledge of the entire actor. This forces
computational neuroscientists to either create novel methods [14] or alter existing methods from the
artificial intelligence community in order to enforce locality constraints (e.g., [16]).
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Figure 1: Example modular actor.

The actor in an actor-critic maintains a decision rule, π, called a policy, parameterized by a vector
θ, that computes the probability of an action (decision), a, given an estimate of the current state of
the world, st, and the current parameters, θt. In some cases, an actor can be broken into multiple
interacting modules, each of which computes an action given some input, x, which may contain
elements of s as well as the outputs of other modules. An example of such a modular actor is
provided in Figure 1. This actor consists of three modules, A1, A2, and A3, with parameters θ1, θ2,
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and θ3, respectively. The ith module takes input xi, which is a subset of the state features and the
outputs of other modules. It then produces its action ai according to its policy, πi(xi, ai, θi) =
Pr(ai|xi, θi). The output, a, of the whole modular actor is one of the module outputs—in this case
a = a3. Later we modify this to allow the action a to follow any distribution with the state and
module outputs as parameters. This modular policy can also be written as a non-modular policy that
is a function of θ =

{
θ1, θ2, θ3

}
, i.e., π(s, a, θ) = Pr(a|s, θ). We assume that the modular policy is

not recurrent. Such modular policies appear frequently in models of the human brain, with modules
corresponding to neurons or collections thereof [12, 16].

Current actor-critic methods (e.g. [11, 15, 23, 24]) require knowledge of ∂π/∂θi in order to update
θi. However, ∂π/∂θi often depends on the current values of all other parameters as well as the
structure defining how the parameters are combined to produce the decision rule. This is akin to
assuming that a neuron (or cluster of neurons), Ai, must know its influence on the final decision
rule implemented. Were another module to modify its policy such that ∂π/∂θi changes, a message
must be sent to alert Ai of the exact changes so that it can update its estimate of ∂π/∂θi, which is
biologically implausible.

Rather than keeping a current estimate of ∂π/∂θi, one might attempt to compute it on the fly via
the error backpropagation learning algorithm [17]. In this algorithm, each module, Ai, beginning
with the output modules, computes its own update and then sends a message containing ∂π/∂aj
to each Aj that Ai uses as input (we call these Aj parents, and Ai a child of Aj). Once all of
Ai’s children have updated, it will have all of the information required to compute ∂π/∂θi. Though
an improvement upon the naive message passing scheme, backpropagation remains biologically
implausible because it would require rapid transmission of information backwards along the axon,
which has not been observed [8, 28]. However, gradient descent remains one of the most frequently
used methods. For example, Rivest et al. [16] use gradient descent to update a modular actor, and
are forced to assume that certain derivatives are always one in order to maintain realistic locality
constraints.

This raises the question: could each module update given only local information that does not in-
clude explicit knowledge of ∂π/∂θi? We assume that a critic exists that broadcasts the TD error, so
a module’s local information would consist of its input xi, which is not necessarily a Markov state
representation, its output ai, and the TD error. Though this has been achieved for tasks with imme-
diate rewards [3, 26, 27], we are not aware of any such methods for tasks with delayed rewards. In
this paper we present a class of algorithms, called policy gradient coagent networks (PGCNs), that
do exactly this: they allow modules to update given only local information.

PGCNs are also a viable technique for non-biological reinforcement learning applications in which
∂π/∂θ is prohibitively difficult to compute. For example, consider an artificial neural network where
the output of each neuron follows some probability distribution over the reals. Though this would
allow for exploration at every level, rather than just at the level of primitive actions of the output
layer, expressions for π(s, a, θ) would require a nested integral for every node and ∂π/∂θ would be
difficult to compute or approximate for networks with many neurons and layers. Because PGCNs
do not require knowledge of ∂π/∂θ, they remain simple even in such cases, making them a practical
choice for complex parameterized policies.

2 Background

An MDP is a tupleM = (S,A,P,R, ds0), where S andA are the sets of possible states and actions
respectively, P gives state transition probabilities: P(s, a, s′) = Pr(st+1=s′|st=s, at=a), where t
is the current time step,R(s, a) = E[rt|st=s, at=a] is the expected reward when taking action a in
state s, and ds0(s) = Pr(s0=s). An agentAwith time-variant parameters θt ∈ Θ (typically function
approximator weights, learning rates, etc.) observes the current state st, selects an action, at, based
on st and θt, which is used to update the state according to P . It then observes the resulting state,
st+1, receives uniformly bounded reward rt according toR, and updates its parameters to θt+1.

A policy is a mapping from states to probabilities of selecting each possible action. A’s policy π
may be parameterized by a vector, θ, such that π(s, a, θ) = Pr(at=a|st=s, θt=θ). We assume that
∂π(s, a, θ)/∂θ exists for all s, a, and θ. Let dθM (s) denote the stationary distribution over states
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under the policy induced by θ. We can then write the average reward for θ as

JM (θ) = lim
T→∞

1

T
E

[
T−1∑
t=0

rt

∣∣∣M, θ

]
. (1)

The state-value function, which maps states to the difference between the average reward and the
expected reward if the agent follows the policy induced by θ starting in the provided state, is

V θM (s) =

∞∑
t=1

E[rt − J(θ)|M, s0 = s, θ]. (2)

Lastly, we define the TD error to be δt = rt − JM (θ) + V θM (st+1)− V θM (st).

2.1 Policy Gradient

One approach to improving a policy for an MDP is to adjust the parameters θ to ascend the policy
gradient, ∇θJM (θ). For reviews of policy gradient methods, see [5, 15, 24]. A common variable
in policy gradient methods is the compatible features, ψsa = ∇θ log π(s, a, θ). Bhatnagar et al. [5]
showed that δtψsa is an unbiased estimate of∇θJM (θ) if s ∼ dθM (·) and a ∼ π(s, ·, θ). This results
in a simple actor-critic algorithm, which we reproduce from [5]:

Ĵt+1 =(1− cαt)Ĵt + cαtrt (3)

δt =rt − Ĵt+1 + vt · φ(st+1)− vt · φ(st) (4)
vt+1 =vt + αtδtφ(st) (5)
θt+1 =θt + βtδtψstat , (6)

where Ĵ is a scalar estimate of J , δt remains the scalar TD error, φ is any function taking S to a
feature space for linear value function approximation, v is a vector of weights for the approximation
v · φ(s) ≈ V θM (s), c is a constant, and αt and βt are learning rate schedules such that

∞∑
t=0

αt =

∞∑
t=0

βt =∞,
∞∑
t=0

(α2
t + β2

t ) <∞, αt = o(βt). (7)

One example of such a schedule would be αt = ααc
αc+t2/3

and βt = ββC
βC+t , for some constants

α, αC , β, and βC . We call this algorithm the vanilla actor-critic (VAC). Bhatnagar et al. [5] show
that under certain mild assumptions and in the limit as t → ∞, VAC will converge to a θt that is
within a small neighborhood of a local maximum of JM (θ).

Some more advanced actor-critic methods ascend the natural policy gradient [1, 5, 15],
∇̃θJM (θ) = G(θ)−1∇θJM (θ), (8)

where G(θ) = Es∼dθM (·),a∼π(s,·,θ)[∇θ log π(s, a, θ)∇θ log π(s, a, θ)T ] is the Fisher information
matrix of the policy. To help differentiate between the two types of policy gradients, we refer to
the non-natural policy gradient as the vanilla policy gradient hereafter. One view of the natural
gradient is that it corrects for the skewing of the vanilla gradient that is induced by a particular
parameterization of the policy [2]. Empirical studies have found that ascending the natural gradient
results in faster convergence [1, 5, 15]. One algorithm for ascending the natural policy gradient is
the Natural-Gradient Actor-Critic with Advantage Parameters [5], which we abbreviate as NAC
and use in our case study.

VAC and NAC have a property, which we reference later as Property 1, that is common to almost all
other actor-critic methods: if the policy is a function of x = f(s), for any f , such that π(s, a, θ) can
be written as π(x, a, θ) or π(f(s), a, θ), then updates to the policy parameters θ are independent of
s given x, a, and δt. For example, if s = (s1, s2) and f(s) = s1 so that the policy is a function of
only s1, then the update to θ requires knowledge of only s1, a, and δt, and not s2. This is one crucial
property will allow the actor to update given only local information.

VAC and NAC, as well as all other algorithms referenced, require computation of ∇θ log π(s, a, θ).
Hence, none of these methods allow for local updates to modular policies, which makes them un-
desirable from a biological standpoint, and impractical for policies for which this derivative is pro-
hibitively difficult to compute. However, by combining these methods with the CoMDP framework
reviewed in Section 2.2 and by taking advantage of Property 1, the updates to the actor can be
modified to satisfy the locality constraint.
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2.2 Conjugate Markov Decision Processes

In this section we review the aspects of the conjugate Markov decision process (CoMDP) framework
that are relevant to this work. Though Thomas and Barto [25] present the CoMDP framework for the
discounted reward setting with finite state, action, and reward spaces, the extension to the average
reward and infinite setting used here is straightforward. To solve M , one may create a network of
agents A1,A2, . . . ,An, where Ai has output ai ∈ Ai, where Ai is any space, though typically the
reals or integers. All agents receive the same reward. We focus on the case where Ai = {Ai, Ci}
are all actor critics, i.e., they contain an actor, Ai, and a critic, Ci. The action at ∈ A for M is
computed as at ∼ Γ(s, a1, a2, . . . , an), for some distribution Γ. Each agent Ai has parameters θi
defining its policy. We define θ̄i =

⋃
j∈{1,2,...,n}−{i} θ

j to be the parameters of all agents other
than Ai. Each agent takes as input si, which contains the state of M and the outputs of an arbitrary
number of other agents: si ∈ S ×

∏
j Aj , where

∏
j Aj is the Cartesian product of the output sets

of all the Aj whose output is used as input to Ai. Notice that si are not the components of s, but
rather s is the state of M , while si is the input to Ai. We require the graph with nodes for each Ai
and a directed edge from Ai to Aj if Aj takes ai as part of its input, to be acyclic. Thus, the network
of agents must be feed-forward, so we can assume an ordering of Ai such that if aj is part of si,
then j < i. When executing the modular policy, the policies of the Ai can be executed in this order
so that all requisite information for computing a module’s output is always available. Thomas and
Barto [25] call each Ai a coagent and the entire network a coagent network.

An agent Ai may treat the rest of the network and M as its environment, where it sees states sit and
takes actions ait resulting in reward rt (the same for all Ai) and a transition to state sit+1. This en-
vironment is called a conjugate Markov decision process (CoMDP), which is an MDP M i = (S ×∏
j Aj ,Ai,Pi,Ri, dis0) where S ×

∏
j Aj is the state space,Ai is the action space, Pi(si, ai, ŝi) =

Pr
{
sit+1 = ŝi|sit = si, ait = ai,M, θ̄i

}
, Ri(si, ai) = E

[
rt|sit = si, ait = ai,M, θ̄i

]
gives the ex-

pected reward when taking action a in state s, and dis0 is the distribution over initial states of M i.
We write πi(si, ai, θi) to denote Ai’s policy for M i. Notice that M i depends on θ̄i. Thus, as the
policies of other coagents change, so too does the CoMDP with which Ai interacts. While [25]
considers generic methods for handling this nonstationarity, we focus on the special case in which
all Ai are policy gradient methods.

Theorem 3 of [25] states that the policy gradient of M can be decomposed into the policy gradients
for all of the CoMDPs, M i:
∂JM (θ1, θ2, . . . , θn)

∂[θ1, θ2, . . . , θn]
=

[
∂JM (θ1, θ2, . . . , θn)

∂θ1
,
∂JM (θ1, θ2, . . . , θn)

∂θ2
, . . . ,

∂JM (θ1, θ2, . . . , θn)

∂θn

]
=

[
∂JM1(θ1)

∂θ1
,
∂JM2(θ2)

∂θ2
, . . . ,

∂JMn(θn)

∂θn

]
. (9)

Thus, if each coagent computes and follows the policy gradient based on the local environment that
it sees, the coagent network will follow its policy gradient on M .

Thomas and Barto [25] also show that the value functions for M and all the CoMDPs are the same
for all st, if the additional state components of M i are drawn according to the modular policy:

V θ
1

M1(s1t ) = V θ
2

M2(s2t ) = . . . = V θ
n

Mn(snt ) = V θM (st). (10)
The state-value based TD error is therefore the same as well:

δt = rt − JM (θ) + V θM (st+1)− V θM (st) = rt − JMi(θi) + V θ
i

Mi(sit+1)− V θ
i

Mi(sit),∀i. (11)
This means that, if the coagents require δt, we can maintain a global critic, C, that keeps an estimate
of V θM , which can be used to replace every Ci by computing δt and broadcasting it to each Ai.
Because all Ai share a global critic, C, all that remains of each module is the actor Ai. We therefore
refer to each Ai as a module.

Notice that the CoMDPs, M i, and thus the coagents, Ai, have S as part of their state space. This is
required for M i to remain Markov. However, if the actor’s policy is a function of some xi = f(si)
for any f , i.e., the policy can be written as πi(xi, ai, θi), then, by Property 1, updates to the actor’s
policy require only the TD error, ai, and xi. Hence, the full Markovian state representation is only
needed by the global critic, C. The modules, Ai, will be able to perform their updates given only
their input: the xi portion of the state of M i.
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3 Methods

The CoMDP framework tells us that, if each module is an actor that computes the policy gradient for
its local environment (CoMDP), then the entire modular actor will ascend its policy gradient. Actor-
critics satisfying Property 1 are able to perform their policy updates given only local information:
the policy’s input xt, the most recent action at, and the TD error δt. Combining these two, each
module Ai can compute its update given only its local input xit, most recent action ait, and the TD
error δt. We call any network of coagents, each using policy gradient methods, a policy gradient
coagent network (PGCN). One PGCN is the vanilla coagent network (VCN), which uses VAC for
all modules (coagents), and maintains a global critic that computes and broadcasts δt. The VCN
algorithm is depicted diagramatically in Figure 2, where ψixi,ai = ∇θi log πi(xi, ai, θi) are the
compatible features for the ith module. Notice that δtψixitait is an unbiased estimate of the policy
gradient for M i [5], which is an unbiased estimate of part of the policy gradient for M by Equation
9.
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Figure 2: Diagram of the vanilla coagent network (VCN) algorithm. The global critic observes
st, rt, st+1 tuples, updates its estimate Ĵ of the average reward, which it uses to compute the TD
error δt, which is then broadcast to all of the modules, Ai. Lastly, it updates the parameters, v, of its
state-value estimate. Each moduleAi draws its actions from πi(xit, ·, θit) and then computes updates
to θi given its input xit, action ait, and the TD error, δt, which was broadcast by the global critic.

To implement VCN, observe the current state st, compute the module outputs ait and then at =
Γ(st, a

1
t , a

2
t , . . . , a

n
t ). This action will result in a transition to st+1 with reward rt. Given st, rt, and

st+1 the global critic can execute to produce δt, which can then be used to train each module Ai.
Notice that the Ai can update concurrently. This process then repeats.

4 The Decomposed Natural Policy Gradient

Another interesting PGCN, which we call a natural coagent network (NCN), would use coagents
that ascend the natural policy gradient, e.g., NAC. However, Equation 9 does not hold for natural
gradients:

∇̃θJM (θ) 6=
[
∇̃θ1JM1(θ1), ∇̃θ2JM2(θ2), . . . , ∇̃θnJMn(θn)

]
≡ ∇̂θJM (θ), (12)

where θ =
{
θ1, θ2, . . . , θn

}
and ∇̂θJM (θ) is an estimate of the natural policy gradient that we call

the decomposed natural policy gradient, which has an implicit dependence on how θ is partitioned
into n components. Hence, a PGCN, where each module computes its natural policy gradient, would
not follow the natural policy gradient, but rather ∇̂θJM (θ) = Ĝ(θ)−1∇θJM (θ), an approximation
thereto, where Ĝ(θ) is an approximation of G(θ), constructed by:

Ĝ(θ)ij =

{
0 if the i and jth elements of θ are in different modules

G(θk)ij if the i and jth elements of θ are both in module Ak
, (13)

where G(θk) is the Fisher information matrix of the kth module’s policy:

G(θk) = E
sk∼dθk

Mk
(·),ak∼πk(xk,·,θk)[∇θk log πk(xk, ak, θk)∇θk log πk(xk, ak, θk)T ], (14)

where G(θk)ij in Equation 13 denotes the entry corresponding to the i and jth elements of θ, which
are elements of θk.

The decomposed natural policy gradient is intuitively a trade-off between the natural policy gradient
and the vanilla policy gradient depending on the granularity of modularization. For example, if the
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policy is one module, A1, and Γ(s, a1) = a1, then the decomposed natural policy gradient is triv-
ially the same as the natural policy gradient. On the other hand, as the policy is broken into more
and more modules, the gradient begins to differ more and more from the natural policy gradient,
because the structure of the modular policy begins to influence the direction of the gradient. With
finer granularity, Ĝ(θ) will tend to a diagonal approximation of the identity matrix. If the modular
actor contains one parameter per module and the module inputs are normalized, it is possible for
Ĝ(θ)−1 = I, in which case the decomposed natural policy gradient will be equivalent to the vanilla
policy gradient. Hence, the more coarse the modularization (fewer modules), the closer the decom-
posed natural policy gradient is to the natural policy gradient, while the finer the modularization
(more modules), the closer the decomposed natural policy gradient may come to the vanilla policy
gradient.

Each term of the decomposed natural policy gradient is within ninety degrees of the vanilla policy
gradient, so a system will converge to a local optimum if it follows the decomposed natural policy
gradient and the step size is decayed appropriately.

5 Variance of Gradient Estimates

Let ψs,a,i = ∇θi log π(s, a, θ) be the components of ψs,a that correspond to the parameters of Ai.
Both δtψixi,ai , the update to the parameters of Ai by VCN, and δtψs,a,i, the update by VAC, are
unbiased estimates of∇θiJMi(θi) = ∇θiJM (θ). This means that E[δtψs,a,i] = E[δtψ

i
xi,ai ], which

is particularly interesting because δt is the same for both, so the only difference between the two
are the compatible features used. Whereas ψs,a,i requires computation of the derivative of the entire
modular policy, π, ψixi,ai only requires differentiation of πi. Thus, the latter satisfies the locality
constraint, and is also easier to compute. However, this benefit comes at the cost of higher variance.

This increase in variance appears regardless of the actor-critic method used. In this section we focus
on VAC due to its simplicity, though the argument that stochasticity in the CoMDP is the root cause
of the variance of gradient estimates carries over to PGCNs using other actor-critic methods as well.
This increase in variance has also been observed in multi-agent reinforcement learning research as
additional stochasticity in one agent’s environment when another explores [18].

Consider using VAC on any MDP. Bhatnagar et al. [5] show that E[δt|st = s, at = a,M, θ] can
be viewed as the advantage of taking action at in state st over following the policy induced by
θ. If it is positive, it means taking at in st is better than following π. If it is negative, then at is
worse. So, following E[δtψst,at ] increases the likelihood of at if it is advantageous, and decreases
the likelihood of at if it is disadvantageous. However, our updates use samples rather than the
expected value, so an action at that is actually worse could, due to stochasticity in the environment,
result in a TD error that suggests it is advantageous. Thus, the gradient estimates are influenced by
the stochasticity of the transition function P and reward function R. If P or R is very stochastic,
the same s, a pair will result in seemingly random TD errors, which manifests as large variance in
δtψst,at samples.

Now consider the stochasticity in M and M i. The state transitions of M i depend not only on
M ’s transition function, but may also depend on the actions selected by some or all Aj , j 6= i.
Consider the modular actor from Figure 1 in the case where the transitions and rewards of M are
deterministic. The transition function for M3, the CoMDP for A3, remains relatively deterministic
because its actions completely determine the transitions of M . We therefore expect the variance in
the gradient estimate for the parameters of A3 to be only slightly higher for VCN than it is for VAC.
However, the actions of A1 and A2 influence the transitions of M indirectly through the actions
of A3, which adds a layer of stochasticity to their transition functions. We therefore expect policy
gradient estimates for their parameters to have higher variance. In summary, the stochasticity in the
CoMDPs is responsible for VCN’s policy gradient estimates having higher variance than those of
VAC.

We performed a simple study using the modular actor from Figure 1 on a 10 × 10 gridworld
with deterministic actions {up, down, left, right}, a reward of −1 for all transitions, factored
state (x̄, ȳ), and with a terminal state at (10, 10). For the modular actor, A1 = A2 = {0, 1},
A3 = {up, down, left, right}, A1 and A2 both received the full state (x̄, ȳ), and all modules used
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Figure 3: (a) Variance of the VAC and VCN updates for weights in each of the three modules. (b)
Variance of updates using VCN with various ε. Standard error bars are provided (n = 100).

linear function approximation rather than a tabular state representation. All modules also used soft-
max action selection:

πi(xi, a, θi) =
eτθ

i
a·x

i∑
â∈Ai e

τθiâ·xi
, (15)

where τ is a constant scaling the amount of exploration, and where the parameters θi for the ith
module contain a weight vector θia for each action a ∈ Ai. The critic is common to both methods,
and our goal is not to compare methods for value function approximation, so we used a tabular critic.
With all actor weights fixed and selected randomly with uniform distribution from (−1, 1), we first
observed that the mean of the updates δtψst,at,i and δtψixi,ai are approximately equal, as expected,
and then computed the variance of both updates. The results are shown in Figure 3(a). As predicted,
the variance of the gradient estimates for each parameter of A1 and A2 is larger for VCN, though
the variance of the gradient estimate for each parameter of A3 is similar for VCN and VAC.

6 Variance Mitigation

To mitigate the increase in the variance of gradient estimates, we observe that, in general, the addi-
tional variance due to the other modules can be completely removed for a module Ai if every other
module is made to be deterministic. This is not practical because every module must explore in order
to learn. However, we can approximate it by decreasing the exploration of each module, making its
policy less stochastic and more greedy. For example, every module could take a deterministic greedy
action without performing any updates with probability 1− ε for some ε ∈ [0, 1). With probability
ε the module would act using softmax action selection and update its parameters. As ε → 0, the
probability of two modules exploring simultaneously goes to zero, decreasing the variance in M i

but also decreasing the percent of time steps during which each module trains. When ε = 1, every
module explores and updates on every step, so the algorithm is the original PGCN algorithm (VCN
if using VAC for each module).

We repeated the gridworld study of the variance in gradient estimates for various ε. The results,
shown in Figure 3(b), show that smaller ε can be effective in reducing the variance of gradient
estimates. Notice that VCN using ε = 1 is equivalent to VCN as described previously, so the
points for ε = 1 in Figure 3(b) correspond exactly to the VCN data in Figure 3(a). Thus, if the
variance in gradient estimates precludes learning, we suggest making the policies of the modules
more deterministic by decreasing exploration and increasing exploitation.

Several questions remain. First, though the variance decreases, the amount of exploration also de-
creases, so what is the net effect on learning speed? Second, how does PGCN compare to an actor-
critic where∇θπ(s, a, θ) is known? Lastly, is there a significant loss in performance when using the
decomposed natural policy gradient as opposed to the true natural policy gradient? We attempt to
answer these questions in the following section.
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Algorithm α β c τ12 τ3 Average Reward Standard Error
VAC 0.75 0.25 0.13 0.5 2.5 −23.13 0.09
VCN 0.25 0.1 0.04 0.1 3.5 −29.15 0.09
NAC 0.5 0.1 0.02 0.05 1 −24.91 0.08
NCN 0.5 0.1 0.02 0.05 1 −28.32 0.14

Table 1: Best parameters found for each algorithm. The average reward per episode and standard
error are computed using 10000 samples (each a lifetime of 75 episodes). The optimization tested
each parameter set for 300 lifetimes, so the best parameters found still occasionally perform poorly.
We found the above parameters to perform poorly (average reward less than −200) approximately
one in 500 lifetimes. These outliers were removed for the average reward calculations. Random
policy parameters average less than −5000 reward per episode.

7 Case Study

In this section we compare the learning speed of VAC, VCN, NAC, and NCN. Our goal is to de-
termine whether VCN and NCN perform similarly to VAC and NAC, which are established meth-
ods [6], even though VCN and NCN’s modules do not have access to ∂π/∂θi. To perform a thorough
analysis, we again use the modular actor depicted in Figure 1, as in Section 5. We therefore require
a problem with a simple optimal policy. We select the gridworld from Section 5, and again use a
tabular critic in order to focus on the difference in policy improvements. To decrease the size of the
parameter space, we did not decay α nor β. For all four algorithms, we performed a grid search
for the α, β, c, τ12, and τ3 that maximize the average reward over 75 episodes, where τ12 is the τ
used by A1 and A2, while τ3 is that of A3. The best parameters are provided in Table 1. Recall
that the increased variance in VCN updates arises because A1 and A2’s actions only influence the
transitions of M indirectly through the actions of A3. Though decreased exploration is beneficial in
general, for this particular modular policy it is therefore particularly important that A3’s exploration
be decreased by increasing τ3. The optimization does just this, balancing the trade-off between
exploration and the variance of gradient estimates by selecting larger τ3 for VCN than VAC. The
mean ratio τ3/τ12 for the top 25 of the 202300 parameters tested was 5.48 for VAC and 31.04 for
VCN, further emphasizing the relatively smaller exploration of A3. For NAC and NCN, the explo-
ration parameters are identical, suggesting that the additional variance of gradient estimates was not
significant. This is likely due to the policy gradient estimates being filtered before being used.

The average rewards during a lifetime are similar, suggesting that, even though the variance of
gradient estimates can be orders larger for VCN with τ12 = τ3 = 1 (Figure 3(a)), exploration can
be tuned such that learning speed is not significantly diminished.

8 Conclusion

We have devised a class of algorithms, policy gradient coagent networks (PGCNs), and two spe-
cific instantiations thereof, the natural coagent network (NCN) and vanilla coagent network (VCN),
which allow modules within an actor to update given only local information. We show that the
NCN ascends the decomposed natural policy gradient, an approximation to the natural policy gra-
dient, while VCN ascends the vanilla policy gradient. We discussed the theoretical properties of
both the decomposed natural policy gradient and the increase in the variance of gradient estimates
when using PGCNs. Lastly, we presented a case study to compare NCN and VCN to two existing
actor-critic methods, NAC and VAC. We showed that, even though NAC and VAC are provided with
additional non-local information, VCN and NCN perform comparably. We point out how VCN’s
similar performance is achieved by decreasing exploration in order to decrease the stochasticity of
each module’s CoMDP, and thus the variance of the gradient estimates.
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