
Supplementary material: Proofs of Lemmas 1 and 3

Proof of Lemma 1. If M = m but M̂ 6= m, then

‖f̂n − fm‖L1(Π) ≥ ‖fm − fcM‖L1(Π) − ‖f̂n − fcM‖L1(Π) ≥ 2ε− ‖f̂n − fcM‖L1(Π). (28)

Thus, if ‖f̂n − fm‖L1(Π) < ε, then it must be the case that ‖f̂n − fcM‖L1(Π) < ε, which, in view of
(28), is a contradiction. Hence,

PS,π(M̂ 6= M) ≤ PS,π
(
f̂n 6∈ Fε(fM )

)
≤ δ,

and the lemma is proved.

Proof of Lemma 3. We only prove (16), since the proof of (17) is similar. First note that

PS,m(xn, yn)
QS(xn, yn)

=
n∏
t=1

PmY |X(yt|xt)
QY |X(yt|xt)

=
∏
x∈X

∏
t:xt=x

PmY |X(yt|x)

QY |X(yt|x)
.

Then

D(P‖Q) =
1
N

N∑
m=1

∑
xn,yn

PS,m(xn, yn) log
PS,m(xn, yn)
QS(xn, yn)

=
1
N

N∑
m=1

∑
x∈X

EPS,m

[ ∑
t:Xt=x

log
PmY |X(Yt|x)

QY |X(Yt|x)

]

=
1
N

N∑
m=1

∑
x∈X

D(PmY |X(·|x)‖QY |X(·|x))EPS,m [N(x|Xn)] ,

which gives (16). Eq. (18) follows from the fact that, for a passive strategy, the expectation of
N(x|Xn) is equal to nΠ(x) under both PS,m and QS. The same proof holds with Dre replaced by
D.

Proof of Lemma 4. The proof is via the probabilistic method. Specifically, we shall show that if we
select N binary strings from {0, 1}kd uniformly at random, then the resulting set will have all three
desired properties with probability strictly greater than 0.

For a fixed β ∈ {0, 1}kd , let Uβ ,
{
β′ ∈ {0, 1}kd : dH(β, β′) ≤ d

}
. Then for any β′ ∈ Uβ

|{i ∈ [k] : βi = β′i = 1}| ≥ d
2 . Hence,

|Uβ | ≤
(
d

d/2

)(
k − d/2
d/2

)
≤
(
d

d/2

)(
k

d/2

)
≤ 2d

(
k

d/2

)
,

where we have used the fact that
(
d
`

)
≤ 2d for any ` ≤ d. From this we see that if we draw an

element of {0, 1}kd uniformly at random, then it will be in |Uβ | with probability

p =
|Uβ |∣∣{0, 1}kd∣∣ ≤

2d
(
k
d/2

)(
k
d

) .

Thus, if we select N elements of {0, 1}kd uniformly at random, then the probability that the jth
element will be d-close in the Hamming distance to any of the j− 1 already selected ones is at most
(j − 1)p, and the probability that any two elements are d-close is at most (N2/2)p. Hence, with the
choice N = b(3k/16d)d/4c ≥ (k/6d)d/4 we have

N2p

2
≤ 1

2

(
3k
16d

)d/2 2d
(
k
d/2

)(
k
d

) ≤ 1
2
,

where we have used the fact that
(
k
d

)
/
(
k
d/2

)
≥
(
k
d −

1
2

)k/2
, as well as the fact that 3k

4d ≤
k
d −

1
2 for

d ≤ k/2. Hence, with probability at least 1/2, all the N elements will be strictly d-separated.



We now show that the randomly selected set of N elements of {0, 1}kd will also be “well-balanced”
in the sense of (19) with probability strictly larger than 1/2. To that end, let us fix j ∈ [k] and
let Z1, . . . , ZN be the {0, 1}-valued random variables, corresponding to the jth coordinates of the
randomly chosen elements. Observe that EZi = d/k. Then Bernstein’s inequality gives

Pr

(∣∣∣∣∣ 1
N

N∑
i=1

Zi −
d

k

∣∣∣∣∣ > d

2k

)
≤ 2 exp

(
− N(d/2k)2

2(d/k)(1− d/k) + 2(1− d/k)(d/(2k))/3

)
= 2 exp

(
−Nd

12k

)
This, together with the union bound, shows that the probability of (19) being violated is at most
2k exp

(
−Nd

12k

)
, which will be strictly less than 1/2 for sufficiently large d. Hence, the probability

that a set ofN elements of {0, 1}kd drawn uniformly at random will fail to satisfy either the separation
condition (ii) or the balance condition (iii) is strictly less than 1. This completes the proof.


