
A Proof of Corollary 1

In order to prove the convergence rates, we relate our choiceof P to a well-known quantity in spec-
tral graph theory, specifically, the graph Laplacian [3]. Recall the definition ofA as the symmetric
adjacency matrix of the undirected graphG, the degree of nodei asδi = |N(i)| =

∑n
j=1Aij ,

and the diagonal matrixD = diag{δ1, . . . , δn}. We assume that the graph is connected, so that
δi ≥ 1 for all i andD is invertible. The(normalized) graph Laplacianis given byL(G) =
I−D−1/2AD−1/2, a matrix which is always symmetric, positive semidefinite,and satisfiesL11 = 0.
Therefore, when the graph is degree-regular (δi = δ for all i ∈ V ), the standard random walk with
self loops onG given by the matrixP := I − δ

δ+1L is doubly stochastic and is valid for our theory.
For non-degree regular graphs, we make the minor modification as in (5) to obtain

Pn(G) := I − 1

δmax + 1

(
D −A

)
= I − 1

δmax + 1
D1/2LD1/2. (16)

As noted earlier,Pn(G) is doubly stochastic, and if the graph isδ-regular, thenPn(G) is simply
(I +A)/(δ + 1). The remainder of the corollary is based on bounding the spectral gap ofPn(G).

Lemma 4. The matrixP satisfiesσ2(Pn(G)) ≤ max
{
1− mini δi

δmax+1λn−1(L), δmax

δmax+1λ1(L)− 1
}

.

Proof By a theorem of Ostrowski on congruent matrices (cf. Theorem4.5.9, [10]), we have

λk(D
1/2LD1/2) ∈

[
min
i
δiλk(L),max

i
δiλk(L)

]
. (17)

Since L11 = 0, we haveλn(L) = 0, and so it suffices to focus onλ1(D1/2LD1/2) and
λn−1(D

1/2LD1/2). From the definition (16), the eigenvalues ofP are of the form1 − (δmax +
1)−1λk(D

1/2LD1/2). The bound (17) coupled with the fact that all the eigenvalues ofL are non-
negative implies thatσ2(P ) = maxk<n

{∣∣1 − (δmax + 1)−1λk(D
1/2LD1/2)

∣∣} is upper bounded
by the larger of1− δmin

δmax+1λn−1(L) and δmax

δmax+1λ1(L)− 1.

Computing the upper bound in Lemma 4 requires controllingλn−1(L) andλ1(L). To circumvent
this complication, we use the well-known idea of a lazy random walk [3, 14], in which we replace
by P by 1

2 (I + P ). The resulting symmetric matrix has the same eigenstructure asP , moreover,

σ2

(1
2
(I + P )

)
= λ2

(
I − 1

2(δmax + 1)
D1/2LD1/2

)
≤ 1− δmin

2(δmax + 1)
λn−1(L). (18)

Consequently, it is sufficient to bound onlyλn−1(L). The convergence rate implied by the lazy ran-
dom walk through Theorem 2 is no worse than twice that of the original walk, which is insignificant
for the analysis in this paper. The remainder of the proof involves exploiting results from spectral
graph theory [3] in order to control the eigenvalues of the Laplacian.

Cycles and paths: Recall the regulark-connected cycle from Figure 1(a), constructed by placing
then nodes on a circle and connecting every node tok neighbors on the right and left. For this
graph, the LaplacianL is a circulant matrix with diagonal entries1 and off-diagonal non-zero entries
−1/2k. Using known results on circulant matrices [2, 6], we find that λn−1(L) = Θ

(
k2

n2

)
for

k = o(n). For the regulark-connected path, by computing Cheeger constants [3, Chapter 2] we
find that if k ≤ √

n, thenλn−1(L) = Θ(k2/n2). Note also that for thek-connected path onn
nodes,mini δi = k andδmax = 2k. Thus, we can combine the above with Lemma 4 to see that for
regulark-connected paths or cycles withk ≤ √

n, σ2(P ) = 1−Θ
(
k2

n2

)
. Substituting the bound into

Theorem 2 yields the claim of Corollary 1(a).

Regular grids: Now consider the case of a
√
n-by-

√
n grid, focusing in particular on regular

k-connected grids, in which any node is joined to every node that is fewer thank horizontal or
vertical edges away in an axis-aligned direction. In this case, we use results on Cartesian products
of graphs [3, Section 2.6] to analyze the eigen-structure ofthe Laplacian. In particular, the

√
n-

by-
√
n k-connected grid is simply the Cartesian product of two regular k-connected paths of

√
n

nodes. The second smallest eigenvalue of a Cartesian product of graphs is half the minimum of
second-smallest eigenvalues of the original graphs [3, Theorem 2.13]. Thus, based on the preceding
discussion ofk-connected cycles, we conclude that ifk ≤ n1/4, then we haveλn−1(L) = Θ(k2/n),
and we use Lemma 4 and (18) to see that the result in Corollary 1(b) immediately follows.
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Random geometric graphs: Using the proof of Lemma 10 from Boyd et al. [2], we see that for

anyǫ > 0, if r =
√
log1+ǫ n/(nπ), then with probability at least1− 2/nc−1,

min
i
δi ≥ log1+ǫ n−

√
2c log n and max

i
δi ≤ log1+ǫ n+

√
2c log n. (19)

Thus, lettingL be the graph Laplacian of a random geometric graph, if we can boundλn−1(L), (19)
coupled with Lemma 4 will control the convergence rate of ouralgorithm.

Von Luxburg et al. [23] give concentration results on the second-smallest eigenvalue of a geometric
graph. In particular, their Theorem 3 says that ifr = ω(

√
log n/n), then with exceedingly high

probability,λn−1(L) = Ω(r). Using (19), we see that forr = (log1+ǫ n/n)1/2, the ratiomini δi
maxi δi

=

Θ(1) andλn−1(L) = Ω
(
log1+ǫ n

n

)
with high probability. Combining this with Lemma 4 and (18),

we haveσ2(P ) = 1− Ω
(
log1+ǫ n

n

)
, the desired result of Corollary 1(c).

Expanders: The constant spectral gap in expanders [3, Chapter 6] removes any penalty due to
network communication (up to logarithmic factors) and hence yields Corollary 1(d).

B Proof of Proposition 1

The proof is based on construction of a set of objective functions fi that force convergence to be
slow by using the second eigenvector of the communication matrix P . Recall that11 ∈ R

n is the
eigenvector ofP corresponding to its largest eigenvalue (equal to1). Let v ∈ R

n be the eigenvector
of P corresponding to its second singular value,σ2(P ). By using the lazy random walk (see Sec. A
and (18)), we may assume without loss of generality thatλ2(P ) = σ2(P ). Let w = v

‖v‖
∞

be a

normalized version of the second eigenvector ofP , and note that
∑n
i=1 wi = 0. Without loss of

generality, we assume that there is an indexi for whichwi = −1 (otherwise we can flip signs in
what follows); by re-indexing as needed, we can assume thatw1 = −1. We setX = [−1, 1] ⊂ R

and define the univariate functionsfi(x) := (c+ wi)x. The global problem is then to minimize

1

n

n∑

i=1

fi(x) =
1

n

n∑

i=1

(c+ wi)x = cx

for some constantc > 0 to be chosen. Note that eachfi is c+ 1-Lipschitz. By construction, we see
immediately thatx∗ = −1 is optimal for the global problem.

Consider the evolution of the{z(t)}∞t=0 ⊂ R
n, as generated by the update (4). By construction, we

havegi(t) = c+wi for all t. Defining the vectorg = (c11+w) ∈ R
n, we recall thatP11 = 11 to see

z(t+ 1) = Pz(t)− g = P 2z(t− 1)− Pg − g = · · · = −
t∑

τ=0

P τg

= −
t−1∑

τ=0

P τ (w + c11) = −
t−1∑

τ=0

P τw − ct11 = −
t−1∑

τ=0

σ2(P )
τw − ct11. (20)

In order to establish a lower bound, it suffices to show that atleast one node is far from the optimum
aftert steps, and we focus on node1. Sincew1 = −1, the evolution (20) guarantees that

z1(t+ 1) =

t−1∑

τ=0

σ2(P )
τ − ct =

1− σ2(P )
t−1

1− σ2(P )
− ct. (21)

Recalling thatψ(x) = 1
2x

2 for this scalar setting, we have

xi(t+ 1) = argmin
x∈X

{
− zi(t+ 1)x+

1

2α(t)
x2

}
= argmin

x∈X

{
(x− α(t)zi(t+ 1))2

}

Hencex1(t) is the projection ofα(t)z1(t+ 1) onto[−1, 1], and unlessz1(t) < 0 we have
f(x1(t))− f(−1) ≥ c > 0.

If t is overly small, the relation (21) will guarantee thatz1(t) ≥ 0, so thatx1(t) is far from the
optimum. If we choosec ≤ 1/3, then a little calculation with (21) shows that we requiret =
Ω((1− σ2(P ))

−1) in order to drivez1(t) below zero.
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