A Proof of Corollary[l

In order to prove the convergence rates, we relate our clodieto a well-known quantity in spec-
tral graph theory, specifically, the graph Laplacian [3]c&Ethe definition ofA as the symmetric
adjacency matrix of the undirected graph the degree of nodeasd; = [N(i)] = 327, Ay,
and the diagonal matriv = diag{ds,...,d,}. We assume that the graph is connected, so that
d; > 1 for all i and D is invertible. The(normalized) graph Laplaciams given by £L(G) =
I—-D~Y2AD~1/2, amatrix which is always symmetric, positive semidefirdied satisfie€1 = 0.
Therefore, when the graph is degree-regudar o for all i € V'), the standard random walk with
self loops onZ given by the matrixP := I — %ﬁ is doubly stochastic and is valid for our theory.
For non-degree regular graphs, we make the minor modifitatidn [5) to obtain

— _ 1 1/2 1/2

P,(G):=1 A (D-A)=1 - 1D LD=, (16)

As noted earlierP, (G) is doubly stochastic, and if the graphdgegular, thenP,, (G) is simply
(I+ A)/(d +1). The remainder of the corollary is based on bounding thetsgegap of P, (G).

Lemma4. The matrixP satisfiesrs (P, (G)) < max {1 — BN (L), Sme M (L) — 1}.

Proof By atheorem of Ostrowski on congruent matrices (cf. Theotes®, [10]), we have
Ao(DY2LDV?) € [min 8\ (L), max mk(ﬁ)] . 17)

Since L1 = 0, we have),(£) = 0, and so it suffices to focus oh;(D'/2£D'/?) and
An_1(DY2£D'?). From the definition[(16), the eigenvalues Bfare of the forml — (Spax +
1)~ \(DY2£D'?). The bound[{I7) coupled with the fact that all the eigenvaliel are non-
negative implies thatrs(P) = maxi<pn {|1 — (dmax + 1) Ax(DY/2LDY/?)|} is upper bounded

by the larger oft — 52=inr ), (L) and 2=y Ay (£) — 1. O

Computing the upper bound in Lemiah 4 requires controling; (£) and\;(£). To circumvent

this complication, we use the well-known idea of a lazy randwealk [3,[14], in which we replace

by P by %(I -+ P). The resulting symmetric matrix has the same eigenstretsi, moreover,
D1/2£D1/2> <o Omn ) @8

1
~(I+P)) =Xl ——
"2(2( + )> A2( 2 (G + 1) 2(Omax + 1)
Consequently, it is sufficient to bound only, 1 (£). The convergence rate implied by the lazy ran-
dom walk through Theorefd 2 is no worse than twice that of thgirmal walk, which is insignificant
for the analysis in this paper. The remainder of the proodlves exploiting results from spectral
graph theory([B] in order to control the eigenvalues of thplaaian.

Cyclesand paths: Recall the regulak-connected cycle from Figufé 1(a), constructed by placing
the n nodes on a circle and connecting every nodé teeighbors on the right and left. For this
graph, the LaplaciaZd is a circulant matrix with diagonal entriésand off-diagonal non-zero entries
—1/2k. Using known results on circulant matricés [2, 6], we findttha {(£) = @(ﬁé) for

k = o(n). For the regulak-connected path, by computing Cheeger constaits [3, Oh2btee

find that if k. < \/n, then\,,_1(£) = O(k*/n?). Note also that for thé&-connected path on
nodesmin; §; = k anddna.x = 2k. Thus, we can combine the above with Lenitha 4 to see that for
regulark-connected paths or cycles with< /n, oo(P) = 1— @(ﬁ—i) Substituting the bound into
Theorent2 yields the claim of Corolldy 1(a).

Regular grids: Now consider the case of @n-by-y/n grid, focusing in particular on regular
k-connected grids, in which any node is joined to every no@de it fewer thank horizontal or
vertical edges away in an axis-aligned direction. In thisegave use results on Cartesian products
of graphs|[[3, Section 2.6] to analyze the eigen-structurthefLaplacian. In particular, the/n-
by-/n k-connected grid is simply the Cartesian product of two regk#connected paths of/n
nodes. The second smallest eigenvalue of a Cartesian grofigcaphs is half the minimum of
second-smallest eigenvalues of the original graphs [3pfEma 2.13]. Thus, based on the preceding
discussion ok-connected cycles, we conclude that ik n'/4, then we have,,, (L) = ©(k?/n),

and we use Lemnid 4 arld{18) to see that the result in Cor&l{a)jirhmediately follows.
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Random geometric graphs:  Using the proof of Lemma 10 from Boyd et &l [2], we see that for
anye > 0, if 7 = y/log' ™ n/(n), then with probability at least — 2/n°~,
min d; > log' ™ n — V2clogn and maxd; < log' ™ n 4+ v2clogn. (19)

Thus, lettingC be the graph Laplacian of a random geometric graph, if we candb\,,_1(£), (Z9)
coupled with Lemm@l4 will control the convergence rate of algorithm.

Von Luxburg et al.[[28] give concentration results on theoselzsmallest eigenvalue of a geometric
graph. In particular, their Theorem 3 says that i w(y/logn/n), then with exceedingly high
probability, \,, 1 (£) = Q(r). Using [13), we see that for= (log' " n/n)!/2, the ratio 225 —

O(1) and\,_1 (L) = Q(L) with high probability. Combining this with Lemnid 4 arld118),
we havery(P) =1 — Q(k’gT) the desired result of Corollafy 1(c).

Expanders. The constant spectral gap in expandérs [3, Chapter 6] resrave penalty due to
network communication (up to logarithmic factors) and reeyields Corollary1L(d).

B Proof of Proposition[I]

The proof is based on construction of a set of objective fonstf; that force convergence to be
slow by using the second eigenvector of the communicatiomixn®&. Recall thatll € R" is the
eigenvector of” corresponding to its largest eigenvalue (equdl)td_etv € R™ be the eigenvector
of P corresponding to its second singular valag,P). By using the lazy random walk (see Set. A
and [18)), we may assume without loss of generality thdt?) = o5(P). Letw = = H be a
normalized version of the second eigenvectopfand note thaE _, w; = 0. Without loss of
generality, we assume that there is an indéar which w; = —1 (otherW|se we can flip signs in
what follows); by re-indexing as needed, we can assumeuthat —1. We sett = [-1,1] C R
and define the univariate functioffgz) := (¢ + w;)x. The global problem is then to minimize

n

1 1

- ;fz(x) = ;(c—i-wi)x =cx
for some constant > 0 to be chosen. Note that eag¢his ¢ + 1-Lipschitz. By construction, we see
immediately that:* = —1 is optimal for the global problem.

Consider the evolution of thgz(¢)}7°, C R™, as generated by the upddié (4). By construction, we
haveg; (t) = ¢+ w; for all t. Defining the vectoy = (cll +w) € R™, we recall that’1 = 1 to see

z(t+1):Pz(t)—g:Pzz(t—l)ngfg:...:,Zp‘fg

:—ZP7w+c]1 ZPT —ctl = — 202 w — ctll. (20)

In order to establish a lower bound, it suffices to show thigast one node is far from the optimum
aftert steps, and we focus on noﬂieSincewl = —1, the evolution[(2D) guarantees that

Lt +1) 202 - —%—ct. 1)

Recalling that(z) = 122 for this scalar setting, we have

zi(t+1) = ar;ger?(in{ —zi(t+ Dz + 2a1(t) xz} = arfg{in {(x —aft)z(t + 1))2}

Hencez (¢) is the projection ofy(t)z; (t + 1) onto[—1, 1], and unless; (¢) < 0 we have
flxi(¥)) — f(=1) > c>0.
If ¢ is overly small, the relatiof{21) will guarantee tha{t) > 0, so thatz;(¢) is far from the

optimum. If we choose: < 1/3, then a little calculation with[{21) shows that we require=
Q((1 — oo(P))~1) in order to drivez; (t) below zero.
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